Download citation
Download citation
link to html
The solid-state structural analysis of the title compound, Me4C2N2C→B(C6F5)3 or C25H12BF15N2, provides useful metric parameters for the qualitative comparison of the donor strength with other mono- and dicoordinate main-group compounds which feature distinctive lone-pair character.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105006293/dn1084sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105006293/dn1084Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105006293/dn1084Isup3.hkl
Contains datablock I

CCDC reference: 273047

Comment top

The V-shaped dicoordinate ylene species are among the most important low-valent main-group compounds. Among the most studied of this family are the planar five-membered heterocycles where the central element is flanked by two imine groups, (I). The different types of central element include anions (Ga), neutral tetrels (C, Si, Ge, Sn) and cationic pnictogens (P, As, Sb). Imidazol-2-ylidene, (II), is the most developed in terms of synthesis, characterization and reactivity (Arduengo et al., 1992; Bourissou et al., 2000). In parallel work, tris-pentafluorophenylborane has been developed into one of the most important Lewis acids for early transition-metal catalysis (Piers & Chivers, 1997) and in the synthesis of unusual low-coordinate main-group complexes (Hino et al., 2004). The strong acceptor properties of B(C6F5)3 are useful for probing the donor capabilities of different low-valent main-group compounds with singlet lone-pair character, including terphenyl- [(IIIa)-(IIIc), E = Ga (Hardman et al., 2003), In (Haubrich & Power, 1998) or Tl (Niemeyer & Power, 1998)) and η5-C5Me5– [(IV), E = Al (Haaland et al., 1995) or Ga (Loos et al., 1997)) -stabilized triels and the β-diketiminate-chelated Ga species, (V) (Hardman et al., 2000). In order to construct a qualitative scale to determine the strength of donor–acceptor interactions for the comparison of (II) with (III), (IV) and (V), the synthesis and crystallographic characterization of the title adduct, (VI), consisting of 1,3,4,5-tetramethylimidazol-2-ylidene (imid) and B(C6F5)3, was performed.

The structure of (VI) reveals a Cimid—B bond length (Table 1) equal or near to those observed in imidazol-2-ylidene BF3 adducts, including [HCN(Mes)]2C BF3 [Mes = 2,4,6-(C6H2(CH3)3; 1.635 (8) Å; Arduengo et al., 2000] and (II) BF3 [mean 1.646 (8) Å; Kuhn et al., 1997]. Moreover, this distance is equivalent to the B—C single bond in the [H5C–B(C6F5)3] anion [1.635 (4) Å; Galsworthy et al., 1998].

The core parameters of the imidazol-2-ylidene unit in (VI) deviate only slightly from those of the uncomplexed form (Arduengo et al., 1992). In particular, the increased N–C1–N bond angle is consistent with displacement of the lone pair toward B. The three PhF5 groups adopt a typical C3 propeller-type orientation, with one of the ortho F atoms pointing directly towards to the central atom C1, generating a short F···C distance.

The triel B(C6F5)5 adducts feature shorter E···F interactions than that in (VI) (Table 2). The Cimid—B—CPhF bond angles in (VI) follow a pattern of increasing E—B—CPhF values, consistent with the triel complexes (Table 2). The largest angle is associated with the PhF5 group, which approximately eclipses the imidazol-2-ylidene plane in (VI). The unequal B—C—N1,2 bond angles in (VI) (Table 1) are the result of steric interactions, which cause a slight tilting of the imid moiety away from the eclipsing PhF5 group. The range of E—B—CPhF bond angles in the (III) B(C6F5)3 series is narrower, whereas the values are more analogous to those of the [H3C–B(C6F5)3] anion. Interestingly, the CPhF—B—CPhF bond angles for the B(C6F5)3 group in (VI) are typified by two large angles and one small angle, which indicate the angular compression of two PhF5 groups together with an angular expansion away from the third PhF5 group. This arrangement coincides with the B—CPhF bond lengths, where the two compressed phenyl groups have slightly longer distances than the third group. Moreover, the B—CPhF values are useful general indicators of the interaction strength between the coordinating central element and B(C6F5)3 moiety. Comparison of the B—CPhF distances for the series of (IIIa)–(IIIc) and (IV) B(C6F5)3 complexes (Table 2) reveals they are identical or closer to the values observed in B(C6F5)3 adducts containing weak donors, such as thiophene [1.626 (3) Å; Schaper & Brintzinger, 2002] and Ph3PO [1.637 (4) Å; Beckett et al., 2001], whereas (VI) has values equivalent to those of the [H3C–B(C6F5)3] anion [1.657 (3) Å; Galsworthy et al., 1998].

In conclusion, considering all the geometric parameters given in Table 2, it is evident that (II) is a stronger donor than the triel species (IIIa)–(IIIc), (IV) and (V). However, as expected, it is a weaker donor compared with the methylate anion, as correlated with the measured pKa values for these compounds [48 versus 24 for (II) in DMSO].

Analysis of the packing structure for (VI) reveals that fluorine groups are engaged in a number of intermolecular hydrogen-bonding interactions, the shortest of which [2.464 (3) Å] is between atoms F11 and H6B.

Experimental top

Air- and moisture-sensitive colourless crystals were obtained from the overnight 238 K cooling of a saturated n-hexanes solution of (VI), which was prepared by the 1:1 stoichiometric addition of (II) with a 1.0 M hydrocarbon solution of B(C6F5)3 (B2). Crystal selection and preparation, including mounting, were carried out according to the documented literature procedure of Hope (1995).

Refinement top

H atoms were positioned geometrically and refinned using a riding model, with Uiso = 1.5Ueq(C) and C—H distances set to 0.95 Å. The largest residual electron density is 0.38 Å −3. A highly disordered region of electron density is present within the unit cell and is presumably a mixture of various hydrocarbon solvates. This could not be satisfactorily modelled and instead its contribution to the overall structure factor was removed using the SQUEEZE procedure contained within PLATON (van der Sluis & Spek, 1990). A total of 210 electrons were eliminated, giving a total volume of 1047 Å3 [262 given in VRF?] as a solvent-accessible void.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (VI), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
1,3,4,5-tetramethylimidazol-2-ylidene–tris(pentafluorophenyl)borane top
Crystal data top
C25H12BF15N2F(000) = 2528
Mr = 636.18Dx = 1.505 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 924 reflections
a = 24.253 (2) Åθ = 2.5–31.5°
b = 13.9530 (12) ŵ = 0.16 mm1
c = 20.2762 (19) ÅT = 90 K
β = 125.102 (2)°Block, colourless
V = 5613.6 (9) Å30.41 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8716 independent reflections
Radiation source: fine-focus sealed tube6544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3 pixels mm-1θmax = 31.5°, θmin = 1.8°
ω scansh = 3534
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2003)
k = 1919
Tmin = 0.938, Tmax = 0.968l = 2928
36849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.1478P]
where P = (Fo2 + 2Fc2)/3
8716 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C25H12BF15N2V = 5613.6 (9) Å3
Mr = 636.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.253 (2) ŵ = 0.16 mm1
b = 13.9530 (12) ÅT = 90 K
c = 20.2762 (19) Å0.41 × 0.22 × 0.20 mm
β = 125.102 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
8716 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Sheldrick, 2003)
6544 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.968Rint = 0.026
36849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
8716 reflectionsΔρmin = 0.22 e Å3
436 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Unit cell and primary data collection was carried with a Bruker SMART 1000 equipped with a CCD detector. Empirical absorption corrections were applied using SADABS (Sheldrick, 2003). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.24463 (4)0.49887 (5)0.13894 (4)0.02760 (15)
F20.21528 (5)0.38147 (5)0.01922 (5)0.0415 (2)
F30.13314 (5)0.44071 (6)0.13753 (5)0.0442 (2)
F40.08185 (4)0.62297 (6)0.16985 (4)0.03292 (17)
F50.10838 (3)0.73918 (5)0.05406 (4)0.02616 (15)
F60.23586 (3)0.82370 (5)0.06318 (4)0.02781 (15)
F70.19775 (4)1.00542 (6)0.02052 (6)0.0441 (2)
F80.10178 (5)1.08394 (6)0.03411 (6)0.0482 (2)
F90.04706 (4)0.97695 (6)0.09523 (6)0.0417 (2)
F100.08452 (4)0.79737 (5)0.13976 (5)0.02993 (16)
F110.04653 (3)0.66193 (5)0.02622 (4)0.02340 (14)
F120.02739 (3)0.54040 (5)0.04703 (4)0.02627 (15)
F130.03233 (3)0.41853 (5)0.17418 (4)0.03018 (16)
F140.16981 (3)0.42592 (5)0.28592 (4)0.02529 (15)
F150.24317 (3)0.55184 (5)0.27187 (4)0.02443 (14)
N10.28408 (5)0.74159 (7)0.27513 (6)0.02392 (19)
N20.32796 (5)0.68601 (7)0.21623 (6)0.02298 (19)
C10.26807 (5)0.70278 (8)0.20477 (6)0.0207 (2)
C20.38112 (6)0.71136 (9)0.29445 (7)0.0265 (2)
C30.35338 (6)0.74714 (9)0.33092 (7)0.0266 (2)
C40.33929 (6)0.65267 (10)0.15658 (8)0.0280 (2)
H4C0.3014 (8)0.6635 (11)0.1037 (9)0.027 (4)*
H4B0.3767 (9)0.6863 (12)0.1641 (10)0.038 (4)*
H4A0.3497 (8)0.5851 (12)0.1636 (9)0.034 (4)*
C50.45295 (6)0.69679 (11)0.32530 (9)0.0345 (3)
H5C0.4619 (10)0.6283 (15)0.3215 (12)0.057 (5)*
H5B0.4651 (8)0.7340 (12)0.2933 (10)0.038 (4)*
H5A0.4828 (10)0.7109 (14)0.3847 (12)0.051 (5)*
C60.38438 (7)0.79002 (11)0.41249 (8)0.0344 (3)
H6C0.3681 (8)0.7600 (12)0.4415 (10)0.039 (4)*
H6B0.4317 (10)0.7795 (15)0.4412 (12)0.054 (5)*
H6A0.3736 (9)0.8622 (14)0.4078 (10)0.044 (4)*
C70.23698 (7)0.77190 (11)0.29403 (8)0.0311 (3)
H7C0.1906 (8)0.7450 (11)0.2537 (10)0.033 (4)*
H7B0.2545 (10)0.7494 (13)0.3474 (12)0.050 (5)*
H7A0.2336 (10)0.8443 (16)0.2939 (12)0.059 (5)*
C80.17966 (5)0.62688 (8)0.05030 (6)0.0201 (2)
C90.20386 (6)0.53324 (9)0.06233 (7)0.0235 (2)
C100.18938 (7)0.47061 (9)0.00168 (8)0.0290 (2)
C110.14819 (7)0.50031 (9)0.07748 (8)0.0306 (3)
C120.12252 (6)0.59173 (9)0.09361 (7)0.0260 (2)
C130.13824 (5)0.65200 (8)0.03063 (7)0.0221 (2)
C140.16143 (5)0.79876 (8)0.10186 (6)0.0214 (2)
C150.18869 (6)0.85884 (9)0.07253 (7)0.0242 (2)
C160.16951 (6)0.95270 (9)0.04930 (8)0.0306 (3)
C170.12100 (7)0.99259 (9)0.05580 (8)0.0337 (3)
C180.09325 (7)0.93826 (9)0.08642 (8)0.0306 (3)
C190.11391 (6)0.84413 (9)0.10888 (7)0.0253 (2)
C200.14828 (5)0.61770 (8)0.14965 (6)0.01846 (19)
C210.07889 (5)0.60789 (8)0.09431 (6)0.01914 (19)
C220.03954 (5)0.54425 (8)0.10244 (6)0.0203 (2)
C230.06975 (5)0.48252 (8)0.16738 (6)0.0213 (2)
C240.13875 (5)0.48676 (8)0.22347 (6)0.0201 (2)
C250.17593 (5)0.55356 (8)0.21376 (6)0.01941 (19)
B10.18992 (6)0.68792 (9)0.12664 (7)0.0194 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0321 (4)0.0258 (4)0.0267 (3)0.0017 (3)0.0179 (3)0.0034 (3)
F20.0700 (6)0.0219 (4)0.0481 (5)0.0004 (4)0.0430 (5)0.0014 (3)
F30.0725 (6)0.0355 (4)0.0359 (4)0.0182 (4)0.0377 (5)0.0149 (3)
F40.0289 (4)0.0499 (5)0.0185 (3)0.0082 (3)0.0127 (3)0.0024 (3)
F50.0221 (3)0.0330 (4)0.0212 (3)0.0035 (3)0.0112 (3)0.0039 (3)
F60.0223 (3)0.0305 (4)0.0327 (4)0.0024 (3)0.0169 (3)0.0032 (3)
F70.0435 (5)0.0329 (4)0.0594 (6)0.0029 (4)0.0317 (5)0.0149 (4)
F80.0545 (6)0.0233 (4)0.0628 (6)0.0078 (4)0.0314 (5)0.0096 (4)
F90.0424 (5)0.0346 (4)0.0529 (5)0.0119 (4)0.0302 (4)0.0006 (4)
F100.0306 (4)0.0306 (4)0.0361 (4)0.0014 (3)0.0236 (3)0.0008 (3)
F110.0178 (3)0.0288 (3)0.0189 (3)0.0009 (3)0.0078 (3)0.0064 (3)
F120.0141 (3)0.0361 (4)0.0213 (3)0.0042 (3)0.0059 (3)0.0041 (3)
F130.0224 (3)0.0371 (4)0.0285 (3)0.0065 (3)0.0132 (3)0.0089 (3)
F140.0228 (3)0.0293 (4)0.0210 (3)0.0023 (3)0.0109 (3)0.0085 (3)
F150.0159 (3)0.0307 (4)0.0197 (3)0.0024 (3)0.0062 (3)0.0020 (3)
N10.0196 (4)0.0262 (5)0.0220 (4)0.0056 (4)0.0097 (4)0.0038 (4)
N20.0173 (4)0.0247 (5)0.0234 (4)0.0027 (3)0.0097 (4)0.0003 (4)
C10.0176 (5)0.0214 (5)0.0203 (5)0.0028 (4)0.0092 (4)0.0005 (4)
C20.0174 (5)0.0258 (5)0.0256 (5)0.0042 (4)0.0061 (4)0.0019 (4)
C30.0203 (5)0.0271 (6)0.0229 (5)0.0054 (4)0.0068 (4)0.0007 (4)
C40.0229 (5)0.0340 (7)0.0307 (6)0.0015 (5)0.0174 (5)0.0008 (5)
C50.0179 (5)0.0365 (7)0.0371 (7)0.0017 (5)0.0088 (5)0.0008 (6)
C60.0294 (6)0.0361 (7)0.0248 (6)0.0078 (5)0.0081 (5)0.0070 (5)
C70.0285 (6)0.0377 (7)0.0280 (6)0.0058 (5)0.0167 (5)0.0109 (5)
C80.0170 (5)0.0240 (5)0.0198 (5)0.0039 (4)0.0109 (4)0.0010 (4)
C90.0246 (5)0.0252 (5)0.0230 (5)0.0035 (4)0.0150 (5)0.0000 (4)
C100.0402 (7)0.0211 (5)0.0355 (6)0.0052 (5)0.0275 (6)0.0028 (5)
C110.0406 (7)0.0304 (6)0.0291 (6)0.0150 (5)0.0249 (6)0.0109 (5)
C120.0234 (5)0.0362 (6)0.0201 (5)0.0090 (5)0.0136 (4)0.0033 (5)
C130.0184 (5)0.0263 (5)0.0226 (5)0.0038 (4)0.0124 (4)0.0008 (4)
C140.0184 (5)0.0220 (5)0.0195 (5)0.0027 (4)0.0084 (4)0.0008 (4)
C150.0192 (5)0.0257 (5)0.0247 (5)0.0037 (4)0.0109 (4)0.0006 (4)
C160.0287 (6)0.0254 (6)0.0333 (6)0.0048 (5)0.0153 (5)0.0039 (5)
C170.0341 (7)0.0212 (6)0.0377 (7)0.0005 (5)0.0158 (6)0.0018 (5)
C180.0288 (6)0.0274 (6)0.0338 (6)0.0026 (5)0.0168 (5)0.0024 (5)
C190.0239 (5)0.0253 (5)0.0261 (5)0.0019 (4)0.0140 (5)0.0014 (4)
C200.0171 (4)0.0217 (5)0.0162 (4)0.0015 (4)0.0094 (4)0.0009 (4)
C210.0179 (5)0.0224 (5)0.0151 (4)0.0001 (4)0.0083 (4)0.0022 (4)
C220.0147 (4)0.0264 (5)0.0179 (5)0.0026 (4)0.0081 (4)0.0007 (4)
C230.0190 (5)0.0258 (5)0.0206 (5)0.0037 (4)0.0122 (4)0.0009 (4)
C240.0193 (5)0.0238 (5)0.0158 (4)0.0013 (4)0.0092 (4)0.0027 (4)
C250.0153 (4)0.0241 (5)0.0158 (4)0.0013 (4)0.0072 (4)0.0014 (4)
B10.0162 (5)0.0222 (6)0.0182 (5)0.0026 (4)0.0089 (4)0.0009 (4)
Geometric parameters (Å, º) top
F1—C91.3617 (13)C5—H5B0.998 (17)
F2—C101.3458 (15)C5—H5A1.005 (19)
F3—C111.3402 (14)C6—H6C0.971 (18)
F4—C121.3413 (13)C6—H6B0.95 (2)
F5—C131.3543 (14)C6—H6A1.032 (19)
F6—C151.3544 (13)C7—H7C1.008 (17)
F7—C161.3455 (14)C7—H7B0.96 (2)
F8—C171.3415 (15)C7—H7A1.01 (2)
F9—C181.3447 (15)C8—C131.3888 (15)
F10—C191.3562 (13)C8—C91.3951 (16)
F11—C211.3582 (12)C8—B11.6555 (16)
F12—C221.3426 (12)C9—C101.3794 (17)
F13—C231.3355 (12)C10—C111.3791 (19)
F14—C241.3396 (12)C11—C121.3738 (19)
F15—C251.3558 (12)C12—C131.3868 (16)
N1—C11.3572 (14)C14—C191.3922 (16)
N1—C31.3870 (15)C14—C151.3948 (15)
N1—C71.4610 (16)C14—B11.6500 (17)
N2—C11.3529 (14)C15—C161.3788 (17)
N2—C21.3968 (15)C16—C171.3748 (19)
N2—C41.4620 (15)C17—C181.3760 (19)
C1—B11.6407 (16)C18—C191.3860 (17)
C2—C31.3494 (18)C20—C251.3920 (15)
C2—C51.4881 (17)C20—C211.3923 (14)
C3—C61.4929 (17)C20—B11.6552 (15)
C4—H4C0.940 (16)C21—C221.3809 (14)
C4—H4B0.952 (17)C22—C231.3795 (15)
C4—H4A0.965 (17)C23—C241.3816 (15)
C5—H5C0.99 (2)C24—C251.3873 (15)
C1—N1—C3111.08 (10)C12—C11—C10118.81 (11)
C1—N1—C7126.66 (10)F4—C12—C11120.55 (11)
C3—N1—C7122.24 (10)F4—C12—C13119.66 (12)
C1—N2—C2110.49 (10)C11—C12—C13119.79 (11)
C1—N2—C4127.37 (10)F5—C13—C12114.40 (10)
C2—N2—C4122.02 (10)F5—C13—C8121.25 (10)
N2—C1—N1104.98 (9)C12—C13—C8124.33 (11)
N2—C1—B1132.38 (10)C19—C14—C15113.17 (10)
N1—C1—B1122.59 (9)C19—C14—B1128.42 (10)
C3—C2—N2106.88 (10)C15—C14—B1118.37 (10)
C3—C2—C5130.72 (12)F6—C15—C16116.24 (10)
N2—C2—C5122.39 (12)F6—C15—C14119.18 (10)
C2—C3—N1106.53 (10)C16—C15—C14124.54 (11)
C2—C3—C6131.55 (11)F7—C16—C17119.82 (12)
N1—C3—C6121.88 (11)F7—C16—C15120.77 (11)
N2—C4—H4C111.5 (9)C17—C16—C15119.41 (11)
N2—C4—H4B109.0 (10)F8—C17—C16120.55 (12)
H4C—C4—H4B108.7 (13)F8—C17—C18120.24 (12)
N2—C4—H4A110.3 (9)C16—C17—C18119.19 (12)
H4C—C4—H4A109.1 (13)F9—C18—C17119.97 (12)
H4B—C4—H4A108.2 (14)F9—C18—C19120.54 (12)
C2—C5—H5C110.8 (11)C17—C18—C19119.48 (12)
C2—C5—H5B111.5 (10)F10—C19—C18114.89 (10)
H5C—C5—H5B106.9 (14)F10—C19—C14120.95 (10)
C2—C5—H5A109.8 (11)C18—C19—C14124.15 (11)
H5C—C5—H5A104.0 (16)C25—C20—C21113.54 (9)
H5B—C5—H5A113.5 (15)C25—C20—B1126.82 (9)
C3—C6—H6C112.1 (10)C21—C20—B1118.80 (9)
C3—C6—H6B106.1 (12)F11—C21—C22116.31 (9)
H6C—C6—H6B109.1 (15)F11—C21—C20119.26 (9)
C3—C6—H6A110.5 (9)C22—C21—C20124.41 (9)
H6C—C6—H6A107.9 (14)F12—C22—C23119.78 (9)
H6B—C6—H6A111.1 (16)F12—C22—C21120.79 (9)
N1—C7—H7C110.7 (9)C23—C22—C21119.42 (9)
N1—C7—H7B107.2 (11)F13—C23—C22119.77 (9)
H7C—C7—H7B111.0 (14)F13—C23—C24121.13 (10)
N1—C7—H7A111.2 (11)C22—C23—C24119.08 (10)
H7C—C7—H7A108.6 (15)F14—C24—C23120.49 (9)
H7B—C7—H7A108.1 (15)F14—C24—C25120.12 (9)
C13—C8—C9112.87 (10)C23—C24—C25119.38 (10)
C13—C8—B1126.34 (10)F15—C25—C24114.83 (9)
C9—C8—B1119.77 (9)F15—C25—C20121.05 (9)
F1—C9—C10116.07 (11)C24—C25—C20124.12 (10)
F1—C9—C8119.06 (10)C1—B1—C14102.98 (8)
C10—C9—C8124.86 (11)C1—B1—C20110.85 (9)
F2—C10—C11120.06 (11)C14—B1—C20115.10 (9)
F2—C10—C9120.60 (12)C1—B1—C8115.91 (9)
C11—C10—C9119.33 (12)C14—B1—C8112.71 (9)
F3—C11—C12120.70 (12)C20—B1—C899.84 (8)
F3—C11—C10120.49 (12)
C2—N2—C1—N11.97 (12)F8—C17—C18—C19179.71 (12)
C4—N2—C1—N1173.94 (11)C16—C17—C18—C191.0 (2)
C2—N2—C1—B1179.62 (11)F9—C18—C19—F100.43 (17)
C4—N2—C1—B13.71 (19)C17—C18—C19—F10178.77 (11)
C3—N1—C1—N21.36 (13)F9—C18—C19—C14179.91 (11)
C7—N1—C1—N2179.47 (11)C17—C18—C19—C140.7 (2)
C3—N1—C1—B1179.30 (10)C15—C14—C19—F10177.11 (10)
C7—N1—C1—B12.59 (18)B1—C14—C19—F100.37 (18)
C1—N2—C2—C31.89 (13)C15—C14—C19—C182.35 (17)
C4—N2—C2—C3174.28 (11)B1—C14—C19—C18179.83 (11)
C1—N2—C2—C5177.31 (11)C25—C20—C21—F11175.62 (9)
C4—N2—C2—C56.52 (18)B1—C20—C21—F115.36 (14)
N2—C2—C3—N10.97 (13)C25—C20—C21—C222.71 (16)
C5—C2—C3—N1178.13 (13)B1—C20—C21—C22172.96 (10)
N2—C2—C3—C6176.52 (13)F11—C21—C22—F122.89 (15)
C5—C2—C3—C64.4 (2)C20—C21—C22—F12178.74 (10)
C1—N1—C3—C20.23 (13)F11—C21—C22—C23175.62 (10)
C7—N1—C3—C2178.44 (11)C20—C21—C22—C232.75 (17)
C1—N1—C3—C6178.02 (11)F12—C22—C23—F130.83 (16)
C7—N1—C3—C63.77 (18)C21—C22—C23—F13177.70 (10)
C13—C8—C9—F1179.37 (9)F12—C22—C23—C24179.39 (10)
B1—C8—C9—F110.21 (14)C21—C22—C23—C240.86 (16)
C13—C8—C9—C100.24 (16)F13—C23—C24—F140.48 (16)
B1—C8—C9—C10169.41 (10)C22—C23—C24—F14178.06 (10)
F1—C9—C10—F20.54 (16)F13—C23—C24—C25179.27 (10)
C8—C9—C10—F2179.84 (10)C22—C23—C24—C250.73 (16)
F1—C9—C10—C11179.76 (10)F14—C24—C25—F151.09 (15)
C8—C9—C10—C110.14 (18)C23—C24—C25—F15179.89 (9)
F2—C10—C11—F30.55 (18)F14—C24—C25—C20178.14 (10)
C9—C10—C11—F3179.75 (11)C23—C24—C25—C200.66 (17)
F2—C10—C11—C12179.93 (11)C21—C20—C25—F15178.20 (9)
C9—C10—C11—C120.23 (18)B1—C20—C25—F158.88 (16)
F3—C11—C12—F40.04 (17)C21—C20—C25—C240.98 (15)
C10—C11—C12—F4179.48 (10)B1—C20—C25—C24170.31 (10)
F3—C11—C12—C13179.45 (10)N2—C1—B1—C14113.18 (13)
C10—C11—C12—C130.07 (17)N1—C1—B1—C1464.13 (12)
F4—C12—C13—F51.34 (14)N2—C1—B1—C20123.21 (12)
C11—C12—C13—F5178.08 (10)N1—C1—B1—C2059.49 (13)
F4—C12—C13—C8179.92 (10)N2—C1—B1—C810.35 (17)
C11—C12—C13—C80.50 (17)N1—C1—B1—C8172.34 (10)
C9—C8—C13—F5177.92 (9)C19—C14—B1—C1110.62 (12)
B1—C8—C13—F59.61 (16)C15—C14—B1—C166.74 (12)
C9—C8—C13—C120.56 (15)C19—C14—B1—C2010.13 (16)
B1—C8—C13—C12168.87 (10)C15—C14—B1—C20172.50 (9)
C19—C14—C15—F6179.67 (10)C19—C14—B1—C8123.75 (12)
B1—C14—C15—F61.92 (15)C15—C14—B1—C858.88 (13)
C19—C14—C15—C162.51 (17)C25—C20—B1—C120.09 (15)
B1—C14—C15—C16179.73 (11)C21—C20—B1—C1171.09 (10)
F6—C15—C16—F71.17 (17)C25—C20—B1—C14136.44 (11)
C14—C15—C16—F7179.05 (11)C21—C20—B1—C1454.74 (13)
F6—C15—C16—C17178.89 (11)C25—C20—B1—C8102.64 (11)
C14—C15—C16—C171.0 (2)C21—C20—B1—C866.19 (11)
F7—C16—C17—F80.4 (2)C13—C8—B1—C1133.55 (11)
C15—C16—C17—F8179.56 (12)C9—C8—B1—C158.87 (13)
F7—C16—C17—C18179.08 (12)C13—C8—B1—C1415.26 (14)
C15—C16—C17—C180.9 (2)C9—C8—B1—C14177.16 (9)
F8—C17—C18—F90.5 (2)C13—C8—B1—C20107.38 (11)
C16—C17—C18—F9178.20 (12)C9—C8—B1—C2060.21 (11)

Experimental details

Crystal data
Chemical formulaC25H12BF15N2
Mr636.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)24.253 (2), 13.9530 (12), 20.2762 (19)
β (°) 125.102 (2)
V3)5613.6 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.41 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Sheldrick, 2003)
Tmin, Tmax0.938, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
36849, 8716, 6544
Rint0.026
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.07
No. of reflections8716
No. of parameters436
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C11.3572 (14)C1—B11.6407 (16)
N1—C31.3870 (15)C8—B11.6555 (16)
N2—C11.3529 (14)C14—B11.6500 (17)
N2—C21.3968 (15)C20—B11.6552 (15)
C1—N1—C3111.08 (10)C1—B1—C20110.85 (9)
C1—N2—C2110.49 (10)C14—B1—C20115.10 (9)
N2—C1—N1104.98 (9)C1—B1—C8115.91 (9)
N2—C1—B1132.38 (10)C14—B1—C8112.71 (9)
N1—C1—B1122.59 (9)C20—B1—C899.84 (8)
C1—B1—C14102.98 (8)
Comparative bond distances (Å) and angles (°) for complexes of the type L(E) B(C6F5)3 top
LEAverage B—CE—B—CE—B—CE—B—CE—FReferencea
IIC1.652 (5)103.0 (1)110.9 (1)115.9 (1)2.756 (2)b
IVAl1.634 (3)102.9 (2)105.6 (2)107.9 (1)n/aQELBAKc
IIIaGa1.630 (12)104.6 (3)106.8 (3)107.5 (4)2.394 (2)WUWPEJd
IIIbGae1.628 (9)104.2 (3)106.5 (3)107.8 (3)2.441 (5)WUWPOTd
1.628 (4)105.1 (3)106.0 (3)107.5 (3)2.384 (5)
IIIcGa1.633 (5)104.1 (1)104.8 (1)106.2 (1)2.435 (2)WUWPINcd
IVGa1.628 (5)103.0 (1)105.0 (1)105.2 (1)n/aVOGQUDf
VGae1.645 (6)104.9 (2)106.4 (2)112.6 (2)2.451 (2)VOGQOXf
1.637 (9)104.6 (2)105.3 (1)112.5 (2)2.493 (2)
IIIaIn1.630 (5)104.6 (1)105.9 (1)108.0 (1)2.587 (1)OGAIMOYg
IIIbIne1.625 (13)103.1 (1)105.7 (1)107.3 (1)2.604 (1)OGAMISg
1.628 (10)105.2 (1)105.9 (1)105.9 (1)2.535 (1)
IIIbTl1.626 (5)100.9 (1)106.8 (1)107.1 (1)2.669 (1)h
(a) Refcodes are given from the Cambridge Structural Database (Allen, 2002). (b) This work. (c) Gorden et al., 2000). (d) Hardman et al., 2003). (e) two crystallographically independent molecules within the unit cell. (f) Hardman et al., 2001). (g) Wright et al., 2002). (h) Wright et al., 2005).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds