Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of three compounds, namely 7-methoxy-2-[3-(tri­fluoro­methyl)­phenyl]-9H-indeno­[1,2-c]­pyridazin-9-one, C19H11F3N2O2, (Id), 6-methoxy-2-[3-(tri­fluoro­methyl)­phenyl]-9H-indeno­[1,2-c]­pyridazin-9-one, C19H11F3N2O2, (IId), and 2-methyl-6-(4,4,4-tri­fluoro­butoxy)-9H-indeno­[1,2-c]­pyridazin-9-one, C16H13F3N2O2, (IIf), which are potent reversible type-B mono­amine oxidase (MAO-B) inhibitors, are presented and discussed. Compounds (Id) and (IId) crystallize in a nearly planar conformation. The crystal structures are stabilized by weak C—H...O hydrogen bonds. The packing is dominated by π–π stacking interactions between the heterocyclic central moieties of centrosymmetrically related mol­ecules. In compound (IIf), the tri­fluoro­ethyl termination is almost perpendicular to the plane of the ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104014660/dn1056sup1.cif
Contains datablocks global, Id, IId, IIf

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014660/dn1056Idsup2.hkl
Contains datablock Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014660/dn1056IIdsup3.hkl
Contains datablock IId

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014660/dn1056IIfsup4.hkl
Contains datablock IIf

CCDC references: 251302; 251303; 251304

Comment top

5H-Indeno[1,2-c]pyridazin-5-ones, (Ia)-(Ie), have been described by Testa (Kneubühler et al., 1993, 1995) to be reversible and selective MAO-B inhibitors. As part of a project aiming to improve the biological activity of compounds of this family, we recently described a general MAO-B pharmacophore. This led to the rational design of compounds (If) and (IIf), bearing a hydrophobic (4,4,4)-trifluorobutoxy side chain on positions 7 and 6, respectively, of the indeno[1,2-c]pyridazin-5-one ring (Ooms et al., 2003). The values of IC50 given for compounds (Ia)-(Id) are taken from Kneubühler et al. (1995). \sch

We planned for synthesis of (If), possessing the side chain on position 7, using the strategy successfully used by Testa (Kneubühler et al., 1995) to produce two related compounds, (Ic) and (Id). Surprisingly, we found that the resulting product possesses the isomeric structure (IIf), with the side chain on position 6.

In order to validate the results obtained by Testa, we repeated the synthesis of (Id). We found that the major isomer (47% yield, yellow, m.p. 487 K, 1H NMR spectrum identical to that published) was in fact (IId) and not (Id), as proved unambiguously by the X-ray crystal data. The minor product (3.5% yield, orange, m.p. 477 K), on the other hand, presented the structure (Id), again proved by X-ray crystallography.

Compound (Id) (Fig. 1), the minor isomer, crystallized in the triclinic P1 space group. This compound possesses the methoxy group on position C7 of the 5H-indeno[1,2-c]pyridazine ring [O2—C7—C8—C9 torsion angle −178.7 (2)°]. The dihedral angle between the phenyl ring D and the adjacent pyridazine ring C is approximately 19° (Fig. 1). Atom C10 acts as a donor for a weak intermolecular C—H···O hydrogen-bond with carboxyl atom O1 (Table 1). The crystal packing is dominated by ππ stacking interactions between the centrosymmetrically related molecules (Fig. 2, Table 2). The stacking geometry is such that rings A, B, C of one molecule are superimposed on rings C, B and A, respectively, of a symmetry-related molecule at (1 − x, 1 − y, −z). On the other hand, ππ stacking interactions arise between one molecule and its symmetry-related molecule at (-x, 2 − y, −z) (Table 2).

Compound (IId) (Fig. 3), the major isomer, also crystallized in the triclinic P1 space group. In this compound, the asymmetric unit contains two independent molecules, one, (IIdA), with the methoxy group located on position 6 (atom C8) of the 5H-indeno[1,2-c]pyridazine ring and defined by a C19—O2—C8—C9 torsion angle of 169.8 (2)°, and the other, (IIdB), with the methoxy group also located at the same position 6 (atom C28) but with a value for the same torsion angle of 0.5 (3)°. This leads to an arrangement in which atom C10 in molecule (IIdA) acts as donor for a weak intermolecular C—H···O hydrogen bond with carboxyl atom O3 in (IIdB) (Table 3). Atoms C30 and C33 in molecule (IIdB) are also donors for weak intermolecular C—H···O hydrogen bonds with carboxyl atom O1 of a neighbouring (IIdA) molecule (Table 3). The crystal packing is dominated by ππ stacking interactions between the heterocyclic central moiety of (IIdA) and its centrosymmetrically related structure at (1 − x, 2 − y, −z), and between the heterocyclic central moiety of (IIdB) and its centrosymmetrically related structure at (2 − x, 1 − y, −z) (Fig. 4, Table 4). Other ππ stacking interactions arise between (IIdA) and a symmetry-related (IIdB) molecule situated at (1 − x, 1 − y, −z), and also between (IIdB) and a symmetry-related (IIdA) molecule at (1 − x, 1 − y, −z) (Fig. 4, Table 4).

Derivative (IIf), bearing a hydrophobic 4,4,4-triflorobutoxy side-chain at position 6 (atom C8), crystallized in the monoclinic P21/c space group (Fig. 5). The molecular structure of (IIf) shows a nearly planar conformation of the 5H-indeno[1,2-c]pyridazin-5-one ring, except for the trifluoroethyl termination of the side-chain, which is almost perpendicular to the plane of the ring [O2—C13—C14—C15 torsion angle −60.6 (5)° and C13—C14—C15 bond angle 116.6 (4)°]. Atom C14 acts as donor for a weak intermolecular C—H···O hydrogen bond with carboxyl atom O1 of a neighbouring molecule (Table 5). The crystalline cohesion is maintained by ππ stacking interactions between one molecule and the translated structures at (x − 1, y, z) and (1 + x, y, z), leading to a parallel arrangement along the a axis (Fig. 6).

Experimental top

The syntheses of compounds (Id), (IId) and (IIf) will be reported elsewhere. The compounds were crystallized by slow overnight evaporation of acetonitrile solutions.

Refinement top

In all three compounds, the trifluoro groups present very large ellipsoids. In two cases, for (Id) and (IIdB), a disordered model with the trifluoro group distributed over two sites could be defined, whereas no satisfactory models could be defined for (IIdA) and (IIf). The disordered models were constrained to have chemically reasonable dimensions, whereas restraints on the anisotropic displacement parameters were used for all trifluoro groups. The H atoms were introduced geometrically and treated as riding, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C). Please check added text..

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1995); cell refinement: CAD-4 EXPRESS. Data reduction: PLATON (Spek, 2003) for (Id), (IId); HELENA (Spek, 1997) for (IIf). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEPIII for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (Id). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, only one of the disordered CF3 groups is shown.
[Figure 2] Fig. 2. A packing diagram for compound (Id), illustrating the ππ stacking network. For clarity, H atoms have been omitted and only the major conformations of the disordered F atoms are shown. [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x, 2 − y, −z.]
[Figure 3] Fig. 3. The molecular structure of compound (IId). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, only one of the disordered CF3 groups is shown.
[Figure 4] Fig. 4. A packing diagram for compound (IId), illustrating the ππ stacking network. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 − x, 2 − y, −z for (IIdA); (ii) 1 − x, 1 − y, −z for (IIdA); (iii) 2 − x, 1 − y, −z for (IIdB).]
[Figure 5] Fig. 5. The molecular structure of compound (IIf). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 6] Fig. 6. A packing diagram for compound (IId), illustrating the ππ stacking network leading to a parallel arrangement along the a axis. H atoms have been omitted for clarity.
(Id) 7-methoxy-2-[3-(trifluoromethyl)phenyl]-9H-indeno[1,2-c]pyridazin-9-one top
Crystal data top
C19H11F3N2O2Z = 2
Mr = 356.30F(000) = 364
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Melting point: 204 K
a = 7.768 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.750 (2) ÅCell parameters from 24 reflections
c = 12.703 (2) Åθ = 14–47°
α = 89.01 (1)°µ = 1.05 mm1
β = 81.59 (2)°T = 293 K
γ = 68.05 (1)°Prism, yellow
V = 791.6 (3) Å30.30 × 0.18 × 0.04 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2692 reflections with I > 2σ(I)
Radiation source: long fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 75.1°, θmin = 3.5°
θ/2θ scansh = 99
Absorption correction: analytical
(Alcock, 1970)
k = 100
Tmin = 0.743, Tmax = 0.959l = 1515
3495 measured reflections3 standard reflections every 200 reflections
3273 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.1799P]
where P = (Fo2 + 2Fc2)/3
3273 reflections(Δ/σ)max = 0.004
263 parametersΔρmax = 0.20 e Å3
62 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H11F3N2O2γ = 68.05 (1)°
Mr = 356.30V = 791.6 (3) Å3
Triclinic, P1Z = 2
a = 7.768 (2) ÅCu Kα radiation
b = 8.750 (2) ŵ = 1.05 mm1
c = 12.703 (2) ÅT = 293 K
α = 89.01 (1)°0.30 × 0.18 × 0.04 mm
β = 81.59 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2692 reflections with I > 2σ(I)
Absorption correction: analytical
(Alcock, 1970)
Rint = 0.015
Tmin = 0.743, Tmax = 0.9593 standard reflections every 200 reflections
3495 measured reflections intensity decay: 3%
3273 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04862 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3273 reflectionsΔρmin = 0.22 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.22710 (19)0.46525 (18)0.12994 (12)0.0668 (4)
O20.9023 (2)0.3901 (2)0.34062 (13)0.0762 (4)
N10.3258 (2)0.88744 (19)0.05287 (13)0.0585 (4)
N20.1629 (2)0.9429 (2)0.12131 (13)0.0583 (4)
C10.5166 (2)0.6854 (2)0.09655 (14)0.0489 (4)
C20.3525 (2)0.7651 (2)0.01540 (13)0.0481 (4)
C30.2209 (2)0.6904 (2)0.01855 (13)0.0474 (4)
C40.3003 (3)0.5568 (2)0.10466 (14)0.0506 (4)
C50.4848 (2)0.5612 (2)0.15071 (14)0.0490 (4)
C60.6139 (3)0.4648 (2)0.23252 (15)0.0563 (4)
H60.59080.38380.26780.068*
C70.7802 (3)0.4914 (2)0.26118 (15)0.0570 (4)
C80.8124 (3)0.6147 (2)0.20849 (16)0.0585 (5)
H80.92340.63200.22880.070*
C90.6809 (3)0.7117 (2)0.12613 (16)0.0566 (4)
H90.70340.79350.09140.068*
C100.0590 (3)0.7437 (2)0.05089 (14)0.0502 (4)
H100.03040.69650.05190.060*
C110.0339 (3)0.8758 (2)0.12194 (14)0.0500 (4)
C120.1365 (3)0.9466 (2)0.20275 (14)0.0529 (4)
C130.3010 (3)0.9231 (2)0.19324 (16)0.0594 (5)
H130.30570.86350.13450.071*
C140.4578 (3)0.9873 (3)0.26997 (18)0.0695 (5)
H140.56640.96970.26280.083*
C150.4544 (3)1.0766 (3)0.35650 (19)0.0754 (6)
H150.56001.11960.40810.091*
C160.2916 (4)1.1022 (3)0.36619 (17)0.0736 (6)
C170.1337 (3)1.0377 (2)0.29052 (16)0.0647 (5)
H170.02521.05520.29830.078*
C180.2855 (6)1.2009 (4)0.4598 (3)0.1084 (10)
F1A0.2136 (9)1.0963 (10)0.5344 (5)0.153 (3)0.55
F2A0.2153 (16)1.3005 (11)0.4370 (5)0.202 (4)0.55
F3A0.4626 (6)1.2830 (8)0.5139 (4)0.1372 (17)0.55
F1B0.0997 (8)1.1990 (7)0.4616 (5)0.1152 (18)0.45
F2B0.3689 (14)1.3563 (8)0.4583 (8)0.184 (3)0.45
F3B0.3021 (18)1.1424 (14)0.5509 (5)0.174 (4)0.45
C191.0785 (3)0.4037 (3)0.37258 (19)0.0794 (7)
H19A1.05930.51080.40000.119*
H19B1.15150.32050.42690.119*
H19C1.14410.38890.31240.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0660 (8)0.0679 (9)0.0782 (9)0.0382 (7)0.0084 (7)0.0218 (7)
O20.0651 (9)0.0824 (10)0.0762 (9)0.0270 (8)0.0046 (7)0.0207 (8)
N10.0714 (10)0.0541 (9)0.0604 (9)0.0372 (8)0.0040 (7)0.0098 (7)
N20.0709 (10)0.0537 (9)0.0583 (9)0.0346 (8)0.0026 (7)0.0092 (7)
C10.0570 (10)0.0442 (9)0.0525 (9)0.0248 (7)0.0137 (7)0.0020 (7)
C20.0587 (10)0.0428 (8)0.0501 (9)0.0257 (7)0.0126 (7)0.0014 (7)
C30.0555 (9)0.0422 (8)0.0512 (9)0.0234 (7)0.0143 (7)0.0001 (7)
C40.0562 (10)0.0483 (9)0.0539 (9)0.0245 (8)0.0143 (8)0.0036 (7)
C50.0542 (9)0.0459 (9)0.0523 (9)0.0223 (7)0.0146 (7)0.0001 (7)
C60.0606 (11)0.0541 (10)0.0580 (10)0.0242 (8)0.0121 (8)0.0072 (8)
C70.0564 (10)0.0563 (10)0.0552 (10)0.0171 (8)0.0096 (8)0.0011 (8)
C80.0541 (10)0.0604 (11)0.0668 (11)0.0274 (9)0.0109 (8)0.0053 (9)
C90.0618 (11)0.0535 (10)0.0643 (11)0.0314 (9)0.0129 (8)0.0007 (8)
C100.0553 (9)0.0471 (9)0.0554 (9)0.0261 (8)0.0114 (7)0.0010 (7)
C110.0604 (10)0.0433 (9)0.0507 (9)0.0233 (8)0.0118 (8)0.0015 (7)
C120.0660 (11)0.0422 (9)0.0514 (9)0.0215 (8)0.0076 (8)0.0007 (7)
C130.0646 (11)0.0540 (10)0.0602 (11)0.0226 (9)0.0094 (9)0.0005 (8)
C140.0635 (12)0.0663 (13)0.0745 (13)0.0221 (10)0.0035 (10)0.0002 (10)
C150.0780 (14)0.0638 (13)0.0725 (13)0.0209 (11)0.0107 (11)0.0034 (10)
C160.1017 (17)0.0552 (12)0.0592 (12)0.0296 (12)0.0043 (11)0.0084 (9)
C170.0819 (14)0.0570 (11)0.0602 (11)0.0329 (10)0.0064 (10)0.0057 (9)
C180.147 (3)0.105 (2)0.0790 (18)0.065 (2)0.0210 (19)0.0344 (16)
F1A0.138 (4)0.209 (5)0.089 (4)0.033 (3)0.028 (3)0.052 (3)
F2A0.320 (9)0.208 (7)0.144 (4)0.219 (7)0.102 (6)0.106 (5)
F3A0.135 (3)0.139 (4)0.120 (3)0.048 (3)0.035 (2)0.085 (3)
F1B0.142 (4)0.118 (4)0.090 (3)0.055 (3)0.007 (3)0.057 (3)
F2B0.193 (7)0.091 (3)0.220 (8)0.004 (4)0.031 (6)0.091 (4)
F3B0.287 (11)0.226 (8)0.069 (3)0.191 (8)0.051 (5)0.041 (4)
C190.0688 (14)0.0930 (17)0.0716 (14)0.0298 (12)0.0043 (11)0.0040 (12)
Geometric parameters (Å, º) top
O1—C41.212 (2)C11—C121.484 (3)
O2—C71.351 (2)C12—C171.389 (3)
O2—C191.418 (3)C12—C131.390 (3)
N1—C21.325 (2)C13—C141.381 (3)
N1—N21.351 (2)C13—H130.9300
N2—C111.336 (2)C14—C151.369 (3)
C1—C91.378 (3)C14—H140.9300
C1—C51.412 (2)C15—C161.387 (3)
C1—C21.466 (3)C15—H150.9300
C2—C31.409 (2)C16—C171.380 (3)
C3—C101.352 (3)C16—C181.499 (4)
C3—C41.501 (2)C17—H170.9300
C4—C51.481 (2)C18—F2A1.200 (5)
C5—C61.375 (3)C18—F3B1.266 (8)
C6—C71.392 (3)C18—F2B1.270 (7)
C6—H60.9300C18—F1A1.338 (7)
C7—C81.396 (3)C18—F3A1.372 (5)
C8—C91.389 (3)C18—F1B1.440 (6)
C8—H80.9300C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—C111.416 (2)C19—H19C0.9600
C10—H100.9300
C7—O2—C19119.26 (17)C12—C13—H13119.6
C2—N1—N2117.56 (15)C15—C14—C13120.5 (2)
C11—N2—N1121.67 (15)C15—C14—H14119.7
C9—C1—C5119.50 (17)C13—C14—H14119.7
C9—C1—C2132.66 (16)C14—C15—C16119.1 (2)
C5—C1—C2107.84 (15)C14—C15—H15120.4
N1—C2—C3123.11 (17)C16—C15—H15120.4
N1—C2—C1127.29 (16)C17—C16—C15120.9 (2)
C3—C2—C1109.60 (14)C17—C16—C18119.1 (2)
C10—C3—C2119.54 (16)C15—C16—C18120.0 (2)
C10—C3—C4132.65 (15)C16—C17—C12120.1 (2)
C2—C3—C4107.80 (15)C16—C17—H17119.9
O1—C4—C5128.01 (17)C12—C17—H17119.9
O1—C4—C3126.58 (17)F2A—C18—F3B125.4 (6)
C5—C4—C3105.40 (13)F2A—C18—F2B52.8 (5)
C6—C5—C1121.69 (17)F3B—C18—F2B114.2 (6)
C6—C5—C4128.96 (15)F2A—C18—F1A115.9 (7)
C1—C5—C4109.35 (15)F3B—C18—F1A29.1 (6)
C5—C6—C7118.37 (17)F2B—C18—F1A134.3 (5)
C5—C6—H6120.8F2A—C18—F3A107.9 (5)
C7—C6—H6120.8F3B—C18—F3A69.9 (5)
O2—C7—C6115.18 (17)F2B—C18—F3A57.5 (5)
O2—C7—C8124.48 (18)F1A—C18—F3A99.0 (4)
C6—C7—C8120.33 (18)F2A—C18—F1B47.2 (6)
C9—C8—C7120.90 (17)F3B—C18—F1B95.8 (6)
C9—C8—H8119.5F2B—C18—F1B97.1 (6)
C7—C8—H8119.5F1A—C18—F1B73.6 (5)
C1—C9—C8119.22 (17)F3A—C18—F1B137.0 (3)
C1—C9—H9120.4F2A—C18—C16114.0 (4)
C8—C9—H9120.4F3B—C18—C16117.3 (4)
C3—C10—C11115.92 (16)F2B—C18—C16116.5 (5)
C3—C10—H10122.0F1A—C18—C16108.2 (4)
C11—C10—H10122.0F3A—C18—C16110.8 (3)
N2—C11—C10122.19 (17)F1B—C18—C16111.7 (3)
N2—C11—C12115.95 (16)O2—C19—H19A109.5
C10—C11—C12121.85 (16)O2—C19—H19B109.5
C17—C12—C13118.55 (19)H19A—C19—H19B109.5
C17—C12—C11120.08 (18)O2—C19—H19C109.5
C13—C12—C11121.36 (16)H19A—C19—H19C109.5
C14—C13—C12120.77 (19)H19B—C19—H19C109.5
C14—C13—H13119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.408 (2)156
Symmetry code: (i) x, y+1, z.
(IId) 6-methoxy-2-[3-(trifluoromethyl)phenyl]-9H-indeno[1,2-c]pyridazin-9-one top
Crystal data top
C19H11F3N2O2Z = 4
Mr = 356.30F(000) = 728
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Melting point: 214 K
a = 10.306 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.798 (1) ÅCell parameters from 24 reflections
c = 14.986 (1) Åθ = 18–42°
α = 73.453 (6)°µ = 1.06 mm1
β = 79.592 (7)°T = 293 K
γ = 89.422 (7)°Plate, yellow
V = 1570.8 (2) Å30.38 × 0.15 × 0.04 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
4032 reflections with I > 2σ(I)
Radiation source: long fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 71.9°, θmin = 3.1°
θ/2θ scansh = 1212
Absorption correction: analytical
(Alcock, 1970)
k = 130
Tmin = 0.689, Tmax = 0.959l = 1817
6538 measured reflections3 standard reflections every 200 reflections
6193 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.065P)2 + 0.4238P]
where P = (Fo2 + 2Fc2)/3
6193 reflections(Δ/σ)max = 0.001
498 parametersΔρmax = 0.22 e Å3
86 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H11F3N2O2γ = 89.422 (7)°
Mr = 356.30V = 1570.8 (2) Å3
Triclinic, P1Z = 4
a = 10.306 (1) ÅCu Kα radiation
b = 10.798 (1) ŵ = 1.06 mm1
c = 14.986 (1) ÅT = 293 K
α = 73.453 (6)°0.38 × 0.15 × 0.04 mm
β = 79.592 (7)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4032 reflections with I > 2σ(I)
Absorption correction: analytical
(Alcock, 1970)
Rint = 0.015
Tmin = 0.689, Tmax = 0.9593 standard reflections every 200 reflections
6538 measured reflections intensity decay: 2%
6193 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04886 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
6193 reflectionsΔρmin = 0.27 e Å3
498 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F30.4996 (3)0.8514 (4)0.62198 (18)0.1688 (13)
F20.3435 (3)0.7210 (4)0.64617 (16)0.1663 (12)
F10.3348 (3)0.9054 (3)0.55514 (16)0.1635 (12)
O20.07242 (16)1.03571 (18)0.14894 (12)0.0638 (5)
O10.60999 (16)0.75863 (19)0.04513 (12)0.0641 (5)
N10.28645 (18)0.9006 (2)0.16846 (13)0.0522 (5)
N20.34104 (18)0.8603 (2)0.24698 (13)0.0523 (5)
C100.5288 (2)0.7804 (2)0.16210 (15)0.0438 (5)
H100.61040.74280.16080.053*
C10.3090 (2)0.9097 (2)0.00235 (14)0.0416 (5)
C30.4725 (2)0.8183 (2)0.08426 (15)0.0414 (5)
C170.4428 (2)0.8052 (3)0.41151 (17)0.0608 (7)
H170.37620.86390.40270.073*
C60.3974 (2)0.8935 (2)0.15903 (16)0.0489 (5)
H60.46340.86900.20100.059*
C50.4087 (2)0.8720 (2)0.06567 (15)0.0427 (5)
C110.4559 (2)0.8014 (2)0.24530 (15)0.0441 (5)
C90.1982 (2)0.9650 (2)0.03114 (16)0.0480 (5)
H90.13200.98870.01110.058*
C20.3502 (2)0.8770 (2)0.09068 (15)0.0420 (5)
C120.5010 (2)0.7588 (2)0.33759 (15)0.0491 (5)
C160.4821 (3)0.7658 (3)0.49834 (18)0.0672 (7)
C80.1866 (2)0.9852 (2)0.12604 (16)0.0482 (5)
C70.2867 (2)0.9518 (2)0.18989 (16)0.0518 (6)
H70.27930.96870.25310.062*
C190.0618 (3)1.0791 (3)0.24721 (19)0.0691 (8)
H19A0.12961.14460.28080.104*
H19B0.02321.11420.25290.104*
H19C0.07201.00750.27350.104*
C40.5131 (2)0.8102 (2)0.01548 (15)0.0452 (5)
C130.5996 (3)0.6711 (3)0.35268 (19)0.0670 (7)
H130.64000.63870.30380.080*
C150.5800 (3)0.6785 (3)0.5129 (2)0.0766 (9)
H150.60640.65170.57140.092*
C140.6384 (3)0.6314 (3)0.4397 (2)0.0825 (9)
H140.70460.57240.44890.099*
C180.4174 (4)0.8148 (5)0.5778 (2)0.1114 (14)
O40.57687 (17)0.51958 (18)0.23769 (12)0.0628 (5)
O31.15461 (17)0.3164 (2)0.16338 (13)0.0693 (5)
N30.81428 (18)0.3828 (2)0.07603 (13)0.0506 (5)
N40.87510 (18)0.34240 (19)0.15163 (13)0.0505 (5)
C321.0490 (2)0.2531 (2)0.23202 (16)0.0484 (5)
C210.8307 (2)0.4088 (2)0.09628 (15)0.0439 (5)
C370.9883 (2)0.2855 (2)0.31253 (16)0.0522 (6)
H370.91560.33720.30990.063*
C250.9298 (2)0.3841 (2)0.16543 (16)0.0480 (5)
C280.6901 (2)0.4758 (2)0.20869 (16)0.0495 (5)
C270.7873 (2)0.4485 (2)0.27753 (16)0.0553 (6)
H270.77070.46070.33840.066*
C231.0079 (2)0.3305 (2)0.02026 (16)0.0451 (5)
C310.9966 (2)0.2976 (2)0.14269 (15)0.0446 (5)
C220.8798 (2)0.3742 (2)0.00594 (15)0.0437 (5)
C290.7117 (2)0.4566 (2)0.11611 (16)0.0477 (5)
H290.64800.47540.06990.057*
C361.0349 (2)0.2419 (3)0.39629 (18)0.0578 (6)
C260.9069 (2)0.4040 (2)0.25697 (17)0.0552 (6)
H260.97160.38740.30360.066*
C301.0700 (2)0.2918 (2)0.05461 (16)0.0484 (5)
H301.15560.26310.04860.058*
C341.2030 (3)0.1318 (3)0.3225 (2)0.0822 (9)
H341.27550.07990.32570.099*
C351.1425 (3)0.1651 (3)0.4015 (2)0.0740 (8)
H351.17380.13590.45800.089*
C331.1568 (3)0.1750 (3)0.23851 (19)0.0651 (7)
H331.19830.15140.18570.078*
C241.0481 (2)0.3394 (2)0.12393 (16)0.0506 (6)
C380.9709 (3)0.2778 (4)0.4822 (2)0.0807 (9)
F40.8816 (5)0.3663 (4)0.4664 (3)0.1143 (15)0.77
F50.9093 (5)0.1790 (5)0.5501 (4)0.1380 (19)0.77
F61.0565 (5)0.3239 (6)0.5215 (4)0.1395 (18)0.77
F4A0.8462 (11)0.2952 (18)0.4881 (11)0.119 (5)0.23
F5A0.9840 (16)0.1934 (17)0.5578 (9)0.122 (5)0.23
F6A1.0237 (17)0.3857 (12)0.4870 (11)0.119 (4)0.23
C390.4728 (3)0.5492 (3)0.1696 (2)0.0698 (8)
H39A0.44660.47290.11760.105*
H39B0.39860.57870.19920.105*
H39C0.50400.61570.14670.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F30.135 (2)0.315 (4)0.1217 (18)0.044 (2)0.0479 (16)0.152 (2)
F20.1192 (18)0.285 (4)0.0652 (13)0.030 (2)0.0150 (13)0.0247 (18)
F10.193 (2)0.252 (3)0.0859 (15)0.130 (2)0.0550 (16)0.0985 (18)
O20.0535 (10)0.0838 (13)0.0528 (10)0.0151 (9)0.0196 (8)0.0119 (9)
O10.0547 (10)0.0911 (14)0.0527 (10)0.0274 (9)0.0110 (8)0.0305 (9)
N10.0448 (10)0.0715 (14)0.0448 (10)0.0123 (9)0.0106 (8)0.0225 (10)
N20.0480 (11)0.0721 (14)0.0414 (10)0.0111 (10)0.0115 (8)0.0219 (9)
C100.0393 (11)0.0502 (13)0.0455 (12)0.0036 (9)0.0112 (9)0.0173 (10)
C10.0417 (11)0.0423 (12)0.0409 (11)0.0006 (9)0.0077 (9)0.0120 (9)
C30.0392 (11)0.0450 (12)0.0418 (11)0.0017 (9)0.0068 (9)0.0160 (9)
C170.0555 (14)0.0855 (19)0.0458 (13)0.0139 (13)0.0147 (11)0.0227 (13)
C60.0513 (13)0.0558 (14)0.0420 (12)0.0053 (11)0.0079 (10)0.0187 (10)
C50.0428 (11)0.0444 (12)0.0422 (11)0.0021 (9)0.0080 (9)0.0144 (9)
C110.0412 (11)0.0511 (13)0.0431 (12)0.0015 (10)0.0113 (9)0.0161 (10)
C90.0409 (11)0.0568 (14)0.0468 (12)0.0060 (10)0.0078 (10)0.0162 (11)
C20.0390 (11)0.0467 (13)0.0413 (11)0.0014 (9)0.0073 (9)0.0146 (10)
C120.0441 (12)0.0616 (15)0.0426 (12)0.0007 (11)0.0108 (10)0.0151 (11)
C160.0614 (16)0.098 (2)0.0447 (13)0.0063 (15)0.0141 (12)0.0219 (14)
C80.0436 (12)0.0515 (14)0.0486 (12)0.0001 (10)0.0141 (10)0.0095 (10)
C70.0596 (14)0.0574 (15)0.0395 (11)0.0011 (11)0.0146 (10)0.0121 (11)
C190.0705 (17)0.079 (2)0.0596 (16)0.0120 (15)0.0310 (14)0.0104 (14)
C40.0442 (12)0.0510 (13)0.0424 (12)0.0040 (10)0.0075 (9)0.0172 (10)
C130.0681 (16)0.087 (2)0.0533 (15)0.0217 (15)0.0229 (13)0.0255 (14)
C150.0757 (19)0.109 (3)0.0485 (15)0.0114 (18)0.0277 (14)0.0175 (16)
C140.082 (2)0.106 (3)0.0660 (18)0.0341 (19)0.0322 (16)0.0247 (17)
C180.095 (2)0.206 (4)0.0513 (17)0.051 (3)0.0309 (17)0.058 (2)
O40.0610 (10)0.0777 (12)0.0536 (10)0.0189 (9)0.0232 (8)0.0178 (9)
O30.0518 (10)0.1024 (15)0.0600 (11)0.0171 (10)0.0065 (8)0.0363 (10)
N30.0454 (10)0.0631 (13)0.0455 (10)0.0072 (9)0.0106 (8)0.0179 (9)
N40.0478 (11)0.0615 (13)0.0436 (10)0.0064 (9)0.0101 (8)0.0167 (9)
C320.0439 (12)0.0523 (14)0.0484 (13)0.0018 (10)0.0104 (10)0.0123 (11)
C210.0447 (12)0.0450 (12)0.0434 (11)0.0003 (10)0.0088 (9)0.0147 (10)
C370.0489 (13)0.0590 (15)0.0496 (13)0.0036 (11)0.0115 (10)0.0157 (11)
C250.0477 (12)0.0506 (13)0.0473 (12)0.0013 (10)0.0081 (10)0.0171 (10)
C280.0521 (13)0.0489 (13)0.0485 (13)0.0023 (11)0.0150 (10)0.0120 (10)
C270.0635 (15)0.0635 (16)0.0429 (12)0.0034 (12)0.0158 (11)0.0179 (11)
C230.0418 (11)0.0474 (13)0.0492 (12)0.0019 (10)0.0081 (10)0.0189 (10)
C310.0422 (11)0.0470 (13)0.0469 (12)0.0008 (10)0.0094 (9)0.0162 (10)
C220.0407 (11)0.0465 (13)0.0460 (12)0.0007 (9)0.0092 (9)0.0159 (10)
C290.0482 (12)0.0512 (14)0.0453 (12)0.0042 (10)0.0093 (10)0.0158 (10)
C360.0597 (15)0.0647 (16)0.0507 (14)0.0007 (13)0.0161 (12)0.0155 (12)
C260.0584 (14)0.0627 (16)0.0467 (13)0.0040 (12)0.0069 (11)0.0209 (12)
C300.0405 (11)0.0566 (14)0.0520 (13)0.0046 (10)0.0112 (10)0.0201 (11)
C340.0763 (19)0.101 (2)0.0697 (19)0.0389 (18)0.0281 (16)0.0168 (17)
C350.0785 (19)0.089 (2)0.0532 (16)0.0156 (17)0.0266 (14)0.0094 (15)
C330.0615 (15)0.0772 (19)0.0572 (15)0.0203 (14)0.0126 (12)0.0197 (14)
C240.0459 (12)0.0588 (15)0.0512 (13)0.0026 (11)0.0075 (10)0.0232 (11)
C380.086 (2)0.111 (3)0.0530 (16)0.0137 (19)0.0221 (15)0.0302 (17)
F40.144 (3)0.141 (3)0.073 (2)0.071 (3)0.029 (2)0.052 (2)
F50.156 (4)0.143 (3)0.078 (3)0.002 (3)0.038 (3)0.011 (2)
F60.125 (3)0.226 (5)0.115 (4)0.018 (3)0.049 (2)0.110 (4)
F4A0.083 (5)0.215 (13)0.065 (7)0.018 (7)0.007 (5)0.055 (9)
F5A0.160 (11)0.146 (9)0.037 (4)0.035 (9)0.008 (7)0.002 (5)
F6A0.160 (10)0.120 (7)0.093 (8)0.011 (7)0.013 (7)0.064 (6)
C390.0658 (17)0.084 (2)0.0667 (17)0.0295 (15)0.0231 (14)0.0277 (15)
Geometric parameters (Å, º) top
F3—C181.293 (4)O3—C241.208 (3)
F2—C181.341 (5)N3—C221.318 (3)
F1—C181.302 (4)N3—N41.355 (2)
O2—C81.352 (3)N4—C311.336 (3)
O2—C191.437 (3)C32—C331.389 (3)
O1—C41.214 (3)C32—C371.390 (3)
N1—C21.320 (3)C32—C311.485 (3)
N1—N21.354 (2)C21—C291.375 (3)
N2—C111.337 (3)C21—C251.399 (3)
C10—C31.354 (3)C21—C221.478 (3)
C10—C111.411 (3)C37—C361.380 (3)
C10—H100.9300C37—H370.9300
C1—C91.366 (3)C25—C261.390 (3)
C1—C51.407 (3)C25—C241.483 (3)
C1—C21.476 (3)C28—C271.395 (3)
C3—C21.406 (3)C28—C291.402 (3)
C3—C41.505 (3)C27—C261.374 (3)
C17—C121.382 (3)C27—H270.9300
C17—C161.382 (3)C23—C301.353 (3)
C17—H170.9300C23—C221.398 (3)
C6—C51.378 (3)C23—C241.509 (3)
C6—C71.386 (3)C31—C301.415 (3)
C6—H60.9300C29—H290.9300
C5—C41.470 (3)C36—C351.378 (4)
C11—C121.485 (3)C36—C381.489 (4)
C9—C81.403 (3)C26—H260.9300
C9—H90.9300C30—H300.9300
C12—C131.387 (3)C34—C351.375 (4)
C16—C151.378 (4)C34—C331.381 (4)
C16—C181.485 (4)C34—H340.9300
C8—C71.394 (3)C35—H350.9300
C7—H70.9300C33—H330.9300
C19—H19A0.9600C38—F5A1.263 (11)
C19—H19B0.9600C38—F4A1.288 (11)
C19—H19C0.9600C38—F6A1.316 (11)
C13—C141.383 (4)C38—F61.318 (5)
C13—H130.9300C38—F51.318 (5)
C15—C141.378 (4)C38—F41.322 (5)
C15—H150.9300C39—H39A0.9600
C14—H140.9300C39—H39B0.9600
O4—C281.353 (3)C39—H39C0.9600
O4—C391.441 (3)
C8—O2—C19118.57 (19)C25—C21—C22107.74 (19)
C2—N1—N2117.16 (18)C36—C37—C32120.7 (2)
C11—N2—N1121.36 (18)C36—C37—H37119.6
C3—C10—C11115.83 (19)C32—C37—H37119.6
C3—C10—H10122.1C26—C25—C21119.5 (2)
C11—C10—H10122.1C26—C25—C24130.7 (2)
C9—C1—C5121.1 (2)C21—C25—C24109.81 (19)
C9—C1—C2131.3 (2)O4—C28—C27115.6 (2)
C5—C1—C2107.64 (18)O4—C28—C29123.8 (2)
C10—C3—C2119.13 (19)C27—C28—C29120.6 (2)
C10—C3—C4133.05 (19)C26—C27—C28121.1 (2)
C2—C3—C4107.82 (18)C26—C27—H27119.4
C12—C17—C16120.9 (2)C28—C27—H27119.4
C12—C17—H17119.5C30—C23—C22118.8 (2)
C16—C17—H17119.5C30—C23—C24133.2 (2)
C5—C6—C7119.5 (2)C22—C23—C24107.99 (19)
C5—C6—H6120.3N4—C31—C30122.5 (2)
C7—C6—H6120.3N4—C31—C32115.20 (19)
C6—C5—C1120.2 (2)C30—C31—C32122.3 (2)
C6—C5—C4130.0 (2)N3—C22—C23124.6 (2)
C1—C5—C4109.79 (18)N3—C22—C21125.92 (19)
N2—C11—C10122.57 (19)C23—C22—C21109.51 (19)
N2—C11—C12115.20 (19)C21—C29—C28117.4 (2)
C10—C11—C12122.23 (19)C21—C29—H29121.3
C1—C9—C8118.4 (2)C28—C29—H29121.3
C1—C9—H9120.8C35—C36—C37120.4 (2)
C8—C9—H9120.8C35—C36—C38118.8 (2)
N1—C2—C3123.86 (19)C37—C36—C38120.7 (2)
N1—C2—C1126.83 (19)C27—C26—C25119.0 (2)
C3—C2—C1109.29 (18)C27—C26—H26120.5
C17—C12—C13118.4 (2)C25—C26—H26120.5
C17—C12—C11119.9 (2)C23—C30—C31115.9 (2)
C13—C12—C11121.7 (2)C23—C30—H30122.0
C15—C16—C17120.4 (3)C31—C30—H30122.0
C15—C16—C18119.1 (3)C35—C34—C33120.5 (3)
C17—C16—C18120.5 (3)C35—C34—H34119.8
O2—C8—C7123.7 (2)C33—C34—H34119.8
O2—C8—C9115.4 (2)C34—C35—C36119.4 (2)
C7—C8—C9120.9 (2)C34—C35—H35120.3
C6—C7—C8119.9 (2)C36—C35—H35120.3
C6—C7—H7120.0C34—C33—C32120.8 (3)
C8—C7—H7120.0C34—C33—H33119.6
O2—C19—H19A109.5C32—C33—H33119.6
O2—C19—H19B109.5O3—C24—C25128.4 (2)
H19A—C19—H19B109.5O3—C24—C23126.8 (2)
O2—C19—H19C109.5C25—C24—C23104.81 (18)
H19A—C19—H19C109.5F5A—C38—F4A106.3 (10)
H19B—C19—H19C109.5F5A—C38—F6A105.3 (10)
O1—C4—C5128.6 (2)F4A—C38—F6A105.9 (11)
O1—C4—C3125.9 (2)F5A—C38—F671.5 (9)
C5—C4—C3105.41 (17)F4A—C38—F6129.2 (9)
C14—C13—C12120.6 (3)F6A—C38—F636.7 (6)
C14—C13—H13119.7F5A—C38—F537.1 (8)
C12—C13—H13119.7F4A—C38—F572.9 (8)
C14—C15—C16119.1 (2)F6A—C38—F5130.3 (7)
C14—C15—H15120.5F6—C38—F5104.9 (4)
C16—C15—H15120.5F5A—C38—F4130.2 (8)
C15—C14—C13120.6 (3)F4A—C38—F435.9 (8)
C15—C14—H14119.7F6A—C38—F473.5 (8)
C13—C14—H14119.7F6—C38—F4106.0 (4)
F3—C18—F1109.5 (4)F5—C38—F4105.5 (4)
F3—C18—F2102.9 (3)F5A—C38—C36112.2 (9)
F1—C18—F2103.8 (3)F4A—C38—C36114.6 (8)
F3—C18—C16113.7 (3)F6A—C38—C36111.9 (8)
F1—C18—C16114.7 (3)F6—C38—C36112.5 (3)
F2—C18—C16111.1 (4)F5—C38—C36113.2 (4)
C28—O4—C39118.07 (18)F4—C38—C36114.0 (3)
C22—N3—N4116.97 (18)O4—C39—H39A109.5
C31—N4—N3121.19 (18)O4—C39—H39B109.5
C33—C32—C37118.2 (2)H39A—C39—H39B109.5
C33—C32—C31121.2 (2)O4—C39—H39C109.5
C37—C32—C31120.5 (2)H39A—C39—H39C109.5
C29—C21—C25122.3 (2)H39B—C39—H39C109.5
C29—C21—C22129.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.503.418 (3)168
C33—H33···O1i0.932.583.320 (3)137
C30—H30···O1i0.932.423.322 (3)164
Symmetry code: (i) x+2, y+1, z.
(IIf) 2-methyl-6-(4,4,4-trifluorobutoxy)-9H-indeno[1,2-c]pyridazin-9-one top
Crystal data top
C16H13F3N2O2F(000) = 664
Mr = 322.28Dx = 1.484 Mg m3
Monoclinic, P21/cMelting point: 116 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 4.918 (2) ÅCell parameters from 25 reflections
b = 11.978 (6) Åθ = 30–38°
c = 24.659 (5) ŵ = 1.08 mm1
β = 96.65 (2)°T = 293 K
V = 1442.8 (10) Å3Needle, yellow
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1160 reflections with I > 2σ(I)
Radiation source: long fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 71.9°, θmin = 3.6°
θ/2θ scansh = 60
Absorption correction: ψ scan
(North et al., 1968)
k = 1410
Tmin = 0.672, Tmax = 0.900l = 3030
4511 measured reflections3 standard reflections every 200 reflections
2816 independent reflections intensity decay: 6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.249H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1307P)2]
where P = (Fo2 + 2Fc2)/3
2816 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.25 e Å3
24 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H13F3N2O2V = 1442.8 (10) Å3
Mr = 322.28Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.918 (2) ŵ = 1.08 mm1
b = 11.978 (6) ÅT = 293 K
c = 24.659 (5) Å0.40 × 0.10 × 0.10 mm
β = 96.65 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1160 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.057
Tmin = 0.672, Tmax = 0.9003 standard reflections every 200 reflections
4511 measured reflections intensity decay: 6%
2816 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06824 restraints
wR(F2) = 0.249H-atom parameters constrained
S = 0.98Δρmax = 0.25 e Å3
2816 reflectionsΔρmin = 0.26 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0043 (9)0.2002 (4)0.00081 (14)0.1391 (16)
F30.3718 (9)0.2522 (3)0.03748 (15)0.1220 (14)
F20.3277 (10)0.0920 (4)0.00307 (16)0.1381 (15)
O20.3519 (6)0.2059 (2)0.19211 (12)0.0587 (9)
O11.2839 (7)0.4498 (3)0.36004 (14)0.0777 (11)
N11.1566 (9)0.0585 (3)0.34306 (16)0.0662 (12)
N21.3635 (9)0.0236 (4)0.38086 (17)0.0722 (13)
C10.9177 (9)0.2222 (4)0.29706 (16)0.0480 (11)
C150.1329 (11)0.1206 (4)0.08398 (19)0.0705 (15)
H15A0.29820.09290.10490.085*
H15B0.01020.05770.07640.085*
C80.5450 (9)0.2537 (4)0.22866 (16)0.0492 (11)
C140.0014 (10)0.2035 (5)0.11881 (19)0.0652 (14)
H14A0.12140.25090.09480.078*
H14B0.11550.16230.14140.078*
C90.7168 (9)0.1787 (4)0.26015 (17)0.0535 (12)
H90.69470.10190.25600.064*
C130.1866 (10)0.2774 (4)0.15546 (19)0.0588 (13)
H13A0.30080.32140.13400.071*
H13B0.08130.32790.17570.071*
C121.7425 (11)0.0496 (5)0.4499 (2)0.0875 (18)
H12A1.73360.03040.44830.131*
H12B1.71550.07420.48600.131*
H12C1.91860.07400.44140.131*
C31.2875 (9)0.2475 (4)0.36425 (17)0.0530 (12)
C70.5770 (9)0.3682 (4)0.23509 (18)0.0570 (12)
H70.46130.41670.21390.068*
C50.9522 (9)0.3378 (4)0.30377 (16)0.0505 (11)
C101.4916 (10)0.2128 (5)0.40277 (18)0.0610 (13)
H101.60340.26340.42350.073*
C21.1265 (9)0.1662 (4)0.33574 (17)0.0513 (11)
C41.1873 (10)0.3600 (4)0.34528 (19)0.0558 (12)
C111.5240 (10)0.0979 (5)0.40945 (19)0.0655 (14)
C60.7817 (10)0.4107 (4)0.27308 (18)0.0583 (13)
H60.80300.48740.27770.070*
C160.2047 (13)0.1643 (5)0.0319 (2)0.0797 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.111 (3)0.229 (4)0.070 (2)0.024 (3)0.020 (2)0.047 (3)
F30.135 (3)0.132 (3)0.104 (3)0.046 (3)0.038 (3)0.005 (2)
F20.188 (4)0.139 (3)0.094 (3)0.031 (3)0.048 (3)0.021 (2)
O20.0596 (19)0.0589 (19)0.0540 (17)0.0017 (17)0.0088 (16)0.0012 (15)
O10.085 (3)0.066 (2)0.078 (3)0.010 (2)0.006 (2)0.0154 (19)
N10.073 (3)0.062 (3)0.059 (2)0.007 (2)0.013 (2)0.005 (2)
N20.078 (3)0.074 (3)0.060 (3)0.018 (3)0.013 (2)0.002 (2)
C10.050 (3)0.055 (3)0.038 (2)0.001 (2)0.001 (2)0.005 (2)
C150.087 (4)0.061 (3)0.061 (3)0.005 (3)0.003 (3)0.005 (3)
C80.049 (3)0.057 (3)0.040 (2)0.003 (2)0.000 (2)0.001 (2)
C140.059 (3)0.082 (3)0.052 (3)0.002 (3)0.009 (3)0.005 (3)
C90.055 (3)0.051 (3)0.054 (3)0.000 (2)0.005 (2)0.003 (2)
C130.059 (3)0.064 (3)0.051 (2)0.008 (2)0.006 (2)0.005 (2)
C120.081 (4)0.114 (5)0.062 (3)0.022 (4)0.018 (3)0.004 (3)
C30.045 (3)0.067 (3)0.047 (2)0.002 (2)0.005 (2)0.013 (2)
C70.058 (3)0.060 (3)0.051 (3)0.008 (2)0.001 (2)0.006 (2)
C50.056 (3)0.049 (3)0.046 (2)0.001 (2)0.000 (2)0.005 (2)
C100.052 (3)0.081 (4)0.048 (3)0.002 (3)0.002 (2)0.014 (3)
C20.053 (3)0.056 (3)0.045 (2)0.005 (2)0.005 (2)0.006 (2)
C40.058 (3)0.053 (3)0.057 (3)0.008 (3)0.010 (2)0.009 (2)
C110.061 (3)0.082 (4)0.051 (3)0.011 (3)0.006 (3)0.007 (3)
C60.069 (3)0.049 (3)0.057 (3)0.000 (3)0.007 (3)0.004 (2)
C160.080 (4)0.094 (4)0.063 (3)0.004 (3)0.002 (3)0.001 (3)
Geometric parameters (Å, º) top
F1—C161.304 (6)C14—H14A0.9700
F3—C161.333 (6)C14—H14B0.9700
F2—C161.312 (6)C9—H90.9300
O2—C81.358 (5)C13—H13A0.9700
O2—C131.429 (5)C13—H13B0.9700
O1—C41.214 (5)C12—C111.495 (6)
N1—C21.309 (6)C12—H12A0.9600
N1—N21.364 (5)C12—H12B0.9600
N2—C111.335 (6)C12—H12C0.9600
C1—C91.367 (6)C3—C101.364 (6)
C1—C51.403 (6)C3—C21.392 (6)
C1—C21.479 (6)C3—C41.492 (6)
C15—C161.467 (7)C7—C61.390 (6)
C15—C141.514 (7)C7—H70.9300
C15—H15A0.9700C5—C61.375 (6)
C15—H15B0.9700C5—C41.477 (6)
C8—C71.388 (6)C10—C111.394 (7)
C8—C91.404 (6)C10—H100.9300
C14—C131.504 (6)C6—H60.9300
C8—O2—C13118.1 (3)C11—C12—H12C109.5
C2—N1—N2117.4 (4)H12A—C12—H12C109.5
C11—N2—N1120.4 (4)H12B—C12—H12C109.5
C9—C1—C5121.6 (4)C10—C3—C2118.0 (4)
C9—C1—C2130.6 (4)C10—C3—C4133.0 (4)
C5—C1—C2107.8 (4)C2—C3—C4109.0 (4)
C16—C15—C14115.3 (5)C8—C7—C6120.2 (4)
C16—C15—H15A108.4C8—C7—H7119.9
C14—C15—H15A108.4C6—C7—H7119.9
C16—C15—H15B108.4C6—C5—C1120.3 (4)
C14—C15—H15B108.4C6—C5—C4130.2 (4)
H15A—C15—H15B107.5C1—C5—C4109.5 (4)
O2—C8—C7123.6 (4)C3—C10—C11116.6 (5)
O2—C8—C9115.3 (4)C3—C10—H10121.7
C7—C8—C9121.1 (4)C11—C10—H10121.7
C13—C14—C15116.7 (4)N1—C2—C3124.8 (4)
C13—C14—H14A108.1N1—C2—C1126.5 (4)
C15—C14—H14A108.1C3—C2—C1108.7 (4)
C13—C14—H14B108.1O1—C4—C5127.9 (4)
C15—C14—H14B108.1O1—C4—C3127.1 (4)
H14A—C14—H14B107.3C5—C4—C3105.0 (4)
C1—C9—C8117.8 (4)N2—C11—C10122.9 (4)
C1—C9—H9121.1N2—C11—C12115.5 (5)
C8—C9—H9121.1C10—C11—C12121.6 (5)
O2—C13—C14107.0 (4)C5—C6—C7119.1 (4)
O2—C13—H13A110.3C5—C6—H6120.4
C14—C13—H13A110.3C7—C6—H6120.4
O2—C13—H13B110.3F1—C16—F2105.2 (5)
C14—C13—H13B110.3F1—C16—F3103.7 (5)
H13A—C13—H13B108.6F2—C16—F3105.0 (5)
C11—C12—H12A109.5F1—C16—C15114.0 (5)
C11—C12—H12B109.5F2—C16—C15114.3 (5)
H12A—C12—H12B109.5F3—C16—C15113.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.972.603.309 (6)130
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

(Id)(IId)(IIf)
Crystal data
Chemical formulaC19H11F3N2O2C19H11F3N2O2C16H13F3N2O2
Mr356.30356.30322.28
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)7.768 (2), 8.750 (2), 12.703 (2)10.306 (1), 10.798 (1), 14.986 (1)4.918 (2), 11.978 (6), 24.659 (5)
α, β, γ (°)89.01 (1), 81.59 (2), 68.05 (1)73.453 (6), 79.592 (7), 89.422 (7)90, 96.65 (2), 90
V3)791.6 (3)1570.8 (2)1442.8 (10)
Z244
Radiation typeCu KαCu KαCu Kα
µ (mm1)1.051.061.08
Crystal size (mm)0.30 × 0.18 × 0.040.38 × 0.15 × 0.040.40 × 0.10 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Analytical
(Alcock, 1970)
ψ scan
(North et al., 1968)
Tmin, Tmax0.743, 0.9590.689, 0.9590.672, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
3495, 3273, 2692 6538, 6193, 4032 4511, 2816, 1160
Rint0.0150.0150.057
(sin θ/λ)max1)0.6270.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.03 0.048, 0.147, 1.04 0.068, 0.249, 0.98
No. of reflections327361932816
No. of parameters263498209
No. of restraints628624
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.220.22, 0.270.25, 0.26

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1995), CAD-4 EXPRESS, PLATON (Spek, 2003), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEPIII for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (Id) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.543.408 (2)156
Symmetry code: (i) x, y+1, z.
Geometry of short Cg···Cg ring interactions for (Id) (Å,°) top
CgiCgjCgi···Cgjα
CgACgCi3.722 (1)0.27 (13)
CgACgDii3.885 (1)18.56 (11)
CgBCgBi3.427 (1)0.00 (15)
CgBCgDii3.811 (1)18.75 (12)
CgCCgCii3.841 (1)0.00 (15)
Cgi and Cgj denote the centres of gravity for rings i and j in (Id). α is the dihedral angle between the planes of rings i and j. Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x, 2 − y, −z.
Hydrogen-bond geometry (Å, º) for (IId) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.503.418 (3)168
C33—H33···O1i0.932.583.320 (3)137
C30—H30···O1i0.932.423.322 (3)164
Symmetry code: (i) x+2, y+1, z.
Geometry of short Cg···Cg ring interactions for (IId) (Å,°) top
CgiCgjCgi···Cgjα
CgA1CgC2ii3.686 (1)5.17 (11)
CgA2CgD2iii3.874 (1)15.66 (15)
CgB1CgB1i3.464 (1)0.00 (14)
CgC1CgA1i3.753 (1)1.86 (12)
CgC1CgA2ii3.587 (1)6.77 (11)
CgC2CgB2iii3.525 (1)1.82 (11)
Cgi and Cgj denote the centres of gravity for rings i and j in (IId). α denotes the dihedral angle between the planes of rings i and j. Symmetry codes: (i) 1 − x,2 − y,-z; (ii) 1 − x,1 − y,-z; (iii) 2 − x,1 − y,-z.
Hydrogen-bond geometry (Å, º) for (IIf) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O1i0.972.603.309 (6)130
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds