Download citation
Download citation
link to html
The two title mol­ecules, both C15H14N2O3, are roughly planar and display a trans conformation with respect to the –N=N– double bond, as found for other diazene derivatives. In both compounds, there are intramolecular O—H...O hydrogen bonds and the crystal packing is governed by weak intermolecular C—H...O hydrogen bonds and π–π stacking.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010844/dn1045sup1.cif
Contains datablocks paper, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010844/dn1045Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010844/dn1045IIsup3.hkl
Contains datablock I

CCDC references: 243625; 243626

Comment top

Diazenes have been the most widely used class of dyes owing to their versatile applications in various fields, such as dyeing textile fibres, colouring different materials, plastics, biological–medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Catino & Farris, 1985; Gregory, 1991). As part of a general study of the crystal chemistry of dyes and to provide templates for molecular modelling studies, the crystal structure of the yellow dye (I) and light-brown dye (II) have been determined.

In the azo frame, the N1—C1 and N2—C7 bond lengths [1.426 (2) and 1.426 (2) Å in (I), and 1.424 (3) and 1.421 (3) Å in (II), respectively] indicate significant single-bond character, whereas the –N=N– bond lengths [1.248 (2) Å in (I) and 1.250 (2) Å in (II)] are indicative of significant double-bond character. Similar values have been observed in other trans-azo compounds (Alder et al., 1999; Alder et al., 2001; Dimmock et al., 1997; Odabaşoǧlu et al., 2003; Ersanlı, Albayrak et al., 2004; Ersanlı, Odabaşoǧlu et al., 2004; Koşar et al., 2004). The aromatic rings are in a trans conformation with respect to the azo double-bond. The C14—O3 bond length [1.413 (2) in (I) and 1.429 (3) Å in (II)] is approximately equal to that usually associated with a methyl C—O bond in a methoxy group attached to an aromatic ring (1.424 Å; Allen et al., 1987).

The structures of both (I) and (II) contain two essentially planar fragments, viz. one monosubstituted (C1–C6) and one trisubstituted phenyl ring (C7–C12). The largest deviations from the mean plane of these rings are 0.007 (1) and 0.002 (3) Å for (I), and 0.002 (1) and 0.006 (2) Å for (II), respectively. In (I), the dihedral angle, θ1, between the mean planes of the C1–C6 phenyl ring and the C1—N1=N2—C7 azo bridge is 1.24 (7)° and the angle, θ2, between the C1—N1=N2—C7 azo group and the substituted C7–C12 phenyl ring is 1.06 (6)°. The angle, θ3, between the two rings is 0.53 (4)°, i.e. the phenyl rings are nearly coplanar. Compound (I) has strong intramolecular O—H···O [O···O=2.611 (2) Å] and weak intermolecular C—H···O [C···O=3.205 (2) Å and C···O=3.567 (2) Å] hydrogen bonds (see Table 2 for details). The weak ππ stacking involves the p-tolyl ring (centroid Cg2). The weak intermolecular hydorgen bonds result in the formation of layers parallel to the (010) plane (Fig. 3). ππ stacking interactions between these layers form a three-dimensionnal network. The ring in the molecule at (x, y, z) stacks above the ring at (1 − x, −y, −z), with a distance of 3.812 (3) Å between the ring centroids and a perpendicular distance between the rings of 3.479 (1) Å. In (II), the dihedral angle, θ1, between the mean planes of the C1–C6 phenyl ring and the C1—N1=N2—C7 azo bridge is 7.05 (2)°, and the angle, θ2, between the C1—N1=N2—C7 azo group and the substituted C7—C12 phenyl ring is 1.70 (1)°. The dihedral angle, θ3, between the two rings, 8.23 (7)°, is larger than that in (I), and the two phenyl rings are slightly twisted with respect to one another. As in (I), compound (II) has a strong intramolecular O—H···O [O···O=2.611 (2) Å] hydrogen bond (see Table 4 for details). The weak ππ stacking involves the o-tolyl ring (centroid Cg2). The ring in the molecule at (x, y, z) stacks above the ring at (x, y, 1 + z), with a distance of 3.917 (3) Å between the ring centroids and a perpendicular distance between the rings of 3.410 (1) Å.

Experimental top

Compounds (I) and (II) were prepared as described by Odabaşoǧlu et al. (2003) using o-vanilline and 4-methylaniline for (I), and o-vanilline and 2-methylaniline for (II), as starting materials. Well shaped crystals of (I) and (II) were obtained by slow evaporation from acetic acid [m.p. 407–409 K, yield 83% for (I); m.p. 381–383 K, yield 82% for (II)].

Refinement top

For (I), C—H distances are in the range 0.94 (1)–1.01 (1) Å, and Uiso(H) values are in the range 0.049 (4)–0.072 (5) Å2. For the hydroxy H atom, the O—H distance is 0.97 (2) Å. The remaining H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96 Å for atoms C14 and C15. The Uiso (H) values were constrained as 1.5Ueq(Cmethyl). For (II), all H atoms were positioned geometrically and refined as riding, with C—H distances of 0.93–0.96 Å and O—H distances of 0.82 Å. The Uiso(H) values were constrained as 1.2Ueq(C) [1.5Ueq(Cmethyl)]. Owing to the absence of atoms heavier than Si and to the use of Mo Kα radiation, the absolute structure could not be determined reliably and Friedel pairs were merged, resulting in a low data/parameter ratio.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A view of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A view of the packing structure of (I), illustrating the C—H···O interactions.
(I) 3-Methoxy-5-(4-methylphenyldiazenyl)salicylaldehyde top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 5746 reflections
a = 6.746 (5) Åθ = 1.6–28.7°
b = 12.529 (5) ŵ = 0.10 mm1
c = 15.556 (5) ÅT = 293 K
β = 91.842 (5)°Prism, yellow
V = 1314.1 (12) Å30.50 × 0.35 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1784 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.119
Plane graphite monochromatorθmax = 28.7°, θmin = 2.1°
Detector resolution: 6.67 pixels mm-1h = 97
ω scansk = 1616
10018 measured reflectionsl = 2020
3361 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
3361 reflectionsΔρmax = 0.32 e Å3
216 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C15H14N2O3V = 1314.1 (12) Å3
Mr = 270.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.746 (5) ŵ = 0.10 mm1
b = 12.529 (5) ÅT = 293 K
c = 15.556 (5) Å0.50 × 0.35 × 0.25 mm
β = 91.842 (5)°
Data collection top
Stoe IPDS-II
diffractometer
1784 reflections with I > 2σ(I)
10018 measured reflectionsRint = 0.119
3361 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.32 e Å3
3361 reflectionsΔρmin = 0.20 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33622 (19)0.36193 (9)0.40389 (8)0.0444 (3)
C20.3628 (2)0.25298 (10)0.39561 (9)0.0504 (3)
C30.2200 (2)0.18339 (10)0.42316 (9)0.0510 (3)
C40.04802 (19)0.22003 (10)0.45914 (8)0.0470 (3)
C50.0219 (2)0.32943 (11)0.46570 (9)0.0536 (3)
C60.1636 (2)0.39996 (11)0.43900 (9)0.0524 (3)
C70.62022 (19)0.59095 (10)0.35405 (8)0.0456 (3)
C80.79107 (19)0.55422 (10)0.31816 (8)0.0469 (3)
C90.93263 (19)0.62663 (9)0.29046 (8)0.0444 (3)
C100.90115 (19)0.73650 (9)0.29936 (8)0.0448 (3)
C110.72723 (19)0.77318 (9)0.33588 (8)0.0459 (3)
C120.5900 (2)0.70062 (10)0.36292 (8)0.0475 (3)
C131.1077 (2)0.58737 (12)0.24961 (9)0.0529 (3)
C140.5280 (2)0.92439 (11)0.36598 (11)0.0680 (4)
H14A0.50540.90610.42480.102*
H14B0.42320.89570.32970.102*
H14C0.53101.00060.36010.102*
C150.1063 (2)0.14499 (11)0.49108 (10)0.0640 (4)
H15A0.07420.12590.54970.096*
H15B0.10970.08180.45610.096*
H15C0.23370.17920.48790.096*
N10.49277 (16)0.42766 (8)0.37451 (7)0.0501 (3)
N20.46433 (16)0.52530 (8)0.38410 (7)0.0502 (3)
O11.23469 (15)0.64489 (8)0.21944 (7)0.0635 (3)
O21.03377 (15)0.80895 (7)0.27247 (6)0.0574 (3)
O30.71129 (14)0.88132 (7)0.34145 (7)0.0599 (3)
H20.480 (2)0.2281 (11)0.3673 (9)0.057 (4)*
H2O1.130 (3)0.7604 (15)0.2488 (12)0.092 (6)*
H30.242 (2)0.1069 (12)0.4148 (9)0.064 (4)*
H50.103 (3)0.3568 (11)0.4890 (10)0.072 (5)*
H60.147 (2)0.4743 (13)0.4463 (9)0.066 (4)*
H80.816 (2)0.4810 (11)0.3113 (8)0.053 (4)*
H120.469 (2)0.7224 (11)0.3879 (8)0.049 (4)*
H131.119 (2)0.5073 (12)0.2452 (9)0.059 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (7)0.0411 (7)0.0480 (7)0.0020 (5)0.0058 (6)0.0025 (5)
C20.0463 (8)0.0453 (7)0.0602 (8)0.0037 (6)0.0122 (7)0.0005 (6)
C30.0536 (8)0.0367 (6)0.0632 (8)0.0005 (6)0.0098 (7)0.0016 (6)
C40.0474 (8)0.0457 (7)0.0480 (7)0.0046 (6)0.0041 (6)0.0036 (5)
C50.0478 (8)0.0497 (7)0.0641 (9)0.0026 (6)0.0147 (7)0.0010 (6)
C60.0535 (9)0.0394 (7)0.0650 (8)0.0006 (6)0.0121 (7)0.0002 (6)
C70.0443 (7)0.0445 (7)0.0482 (7)0.0048 (5)0.0036 (6)0.0032 (5)
C80.0496 (8)0.0395 (7)0.0518 (7)0.0013 (6)0.0033 (6)0.0002 (5)
C90.0437 (7)0.0435 (6)0.0461 (7)0.0003 (5)0.0039 (6)0.0001 (5)
C100.0427 (7)0.0442 (7)0.0478 (7)0.0051 (5)0.0045 (6)0.0031 (5)
C110.0476 (8)0.0373 (6)0.0531 (7)0.0005 (5)0.0069 (6)0.0016 (5)
C120.0432 (7)0.0451 (7)0.0546 (8)0.0004 (6)0.0098 (6)0.0015 (5)
C130.0489 (8)0.0524 (8)0.0578 (8)0.0015 (6)0.0083 (6)0.0004 (6)
C140.0586 (9)0.0451 (7)0.1017 (12)0.0062 (7)0.0248 (9)0.0010 (7)
C150.0595 (9)0.0587 (9)0.0747 (10)0.0115 (7)0.0141 (8)0.0086 (7)
N10.0486 (7)0.0434 (6)0.0589 (7)0.0038 (5)0.0074 (5)0.0028 (5)
N20.0514 (7)0.0417 (6)0.0580 (7)0.0048 (5)0.0077 (5)0.0028 (5)
O10.0515 (6)0.0663 (6)0.0738 (7)0.0011 (5)0.0178 (5)0.0043 (5)
O20.0503 (6)0.0477 (5)0.0752 (7)0.0065 (4)0.0191 (5)0.0029 (4)
O30.0533 (6)0.0383 (4)0.0894 (7)0.0003 (4)0.0233 (5)0.0015 (4)
Geometric parameters (Å, º) top
C1—C21.3832 (18)C9—C131.446 (2)
C1—C61.387 (2)C10—O21.350 (2)
C1—N11.426 (2)C10—C111.3976 (19)
C2—C31.3779 (19)C11—O31.362 (2)
C2—H20.971 (15)C11—C121.3731 (19)
C3—C41.383 (2)C12—H120.957 (14)
C3—H30.979 (15)C13—O11.224 (2)
C4—C51.3861 (19)C13—H131.009 (14)
C4—C151.4991 (19)C14—O31.413 (2)
C5—C61.375 (2)C14—H14A0.9600
C5—H50.989 (17)C14—H14B0.9600
C6—H60.945 (16)C14—H14C0.9600
C7—C81.3760 (19)C15—H15A0.9600
C7—C121.3965 (19)C15—H15B0.9600
C7—N21.426 (2)C15—H15C0.9600
C8—C91.3954 (18)N1—N21.248 (2)
C8—H80.940 (13)O2—H2O0.973 (19)
C9—C101.4004 (18)
C2—C1—C6119.27 (12)O2—C10—C9121.7 (2)
C2—C1—N1116.1 (1)C11—C10—C9119.7 (1)
C6—C1—N1124.6 (1)O3—C11—C12125.7 (2)
C3—C2—C1120.09 (13)O3—C11—C10114.9 (2)
C3—C2—H2121.8 (8)C12—C11—C10119.33 (12)
C1—C2—H2118.0 (8)C11—C12—C7121.28 (13)
C2—C3—C4121.34 (13)C11—C12—H12122.0 (8)
C2—C3—H3118.0 (8)C7—C12—H12116.7 (8)
C4—C3—H3120.7 (8)O1—C13—C9124.1 (1)
C3—C4—C5117.91 (12)O1—C13—H13120.2 (8)
C3—C4—C15121.77 (12)C9—C13—H13115.7 (8)
C5—C4—C15120.31 (13)O3—C14—H14A109.5
C6—C5—C4121.48 (14)O3—C14—H14B109.5
C6—C5—H5119.7 (9)H14A—C14—H14B109.5
C4—C5—H5118.8 (9)O3—C14—H14C109.5
C5—C6—C1119.90 (13)H14A—C14—H14C109.5
C5—C6—H6120.8 (9)H14B—C14—H14C109.5
C1—C6—H6119.3 (9)C4—C15—H15A109.5
C8—C7—C12119.73 (12)C4—C15—H15B109.5
C8—C7—N2125.2 (1)H15A—C15—H15B109.5
C12—C7—N2115.1 (1)C4—C15—H15C109.5
C7—C8—C9119.89 (12)H15A—C15—H15C109.5
C7—C8—H8121.9 (8)H15B—C15—H15C109.5
C9—C8—H8118.2 (8)N2—N1—C1114.2 (2)
C8—C9—C10120.07 (12)N1—N2—C7114.1 (2)
C8—C9—C13119.44 (12)C10—O2—H2O98.9 (10)
C10—C9—C13120.44 (11)C11—O3—C14117.9 (2)
O2—C10—C11118.6 (2)
C6—C1—C2—C30.9 (2)O2—C10—C11—O30.79 (17)
N1—C1—C2—C3179.32 (12)C9—C10—C11—O3179.93 (11)
C1—C2—C3—C40.2 (2)O2—C10—C11—C12179.46 (12)
C2—C3—C4—C50.9 (2)C9—C10—C11—C120.32 (19)
C2—C3—C4—C15178.64 (14)O3—C11—C12—C7179.80 (12)
C3—C4—C5—C61.3 (2)C10—C11—C12—C70.48 (19)
C15—C4—C5—C6178.25 (14)C8—C7—C12—C110.48 (19)
C4—C5—C6—C10.6 (2)N2—C7—C12—C11179.34 (12)
C2—C1—C6—C50.5 (2)C8—C9—C13—O1176.18 (13)
N1—C1—C6—C5179.73 (13)C10—C9—C13—O11.4 (2)
C12—C7—C8—C90.31 (19)C2—C1—N1—N2179.12 (12)
N2—C7—C8—C9179.50 (12)C6—C1—N1—N21.09 (18)
C7—C8—C9—C100.16 (18)C1—N1—N2—C7179.51 (10)
C7—C8—C9—C13177.45 (12)C8—C7—N2—N10.78 (18)
C8—C9—C10—O2179.28 (12)C12—C7—N2—N1179.04 (11)
C13—C9—C10—O21.69 (19)C12—C11—O3—C149.2 (2)
C8—C9—C10—C110.16 (18)C10—C11—O3—C14171.02 (12)
C13—C9—C10—C11177.43 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i1.01 (2)2.39 (1)3.205 (2)137.3 (10)
C2—H2···O1i0.97 (2)2.60 (2)3.567 (2)172.7 (11)
O2—H2O···O10.97 (2)1.68 (2)2.611 (2)159.1 (16)
Symmetry code: (i) x+2, y1/2, z+1/2.
(II) 3-Methoxy-5-(2-methylphenyldiazenyl)salicylaldehyde top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.336 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71069 Å
Hall symbol: C -2ycCell parameters from 8228 reflections
a = 10.734 (5) Åθ = 2.4–25.9°
b = 14.786 (5) ŵ = 0.10 mm1
c = 8.533 (5) ÅT = 293 K
β = 97.053 (5)°Prism, light brown
V = 1344.0 (11) Å30.60 × 0.33 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1052 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Plane graphite monochromatorθmax = 25.9°, θmin = 2.4°
Detector resolution: 6.67 pixels mm-1h = 1313
ω scansk = 1818
9238 measured reflectionsl = 910
1307 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0546P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
1307 reflectionsΔρmax = 0.12 e Å3
185 parametersΔρmin = 0.11 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C15H14N2O3V = 1344.0 (11) Å3
Mr = 270.28Z = 4
Monoclinic, CcMo Kα radiation
a = 10.734 (5) ŵ = 0.10 mm1
b = 14.786 (5) ÅT = 293 K
c = 8.533 (5) Å0.60 × 0.33 × 0.13 mm
β = 97.053 (5)°
Data collection top
Stoe IPDS-II
diffractometer
1052 reflections with I > 2σ(I)
9238 measured reflectionsRint = 0.077
1307 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.93Δρmax = 0.12 e Å3
1307 reflectionsΔρmin = 0.11 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4664 (2)0.68612 (19)0.0209 (3)0.0527 (6)
C20.4365 (2)0.75242 (19)0.0941 (3)0.0556 (6)
C30.3836 (3)0.7244 (2)0.2425 (3)0.0664 (7)
H30.36250.76770.32040.080*
C40.3614 (3)0.6350 (2)0.2780 (3)0.0729 (8)
H40.32620.61820.37890.088*
C50.3912 (3)0.5700 (2)0.1637 (3)0.0707 (7)
H50.37640.50930.18710.085*
C60.4432 (2)0.59563 (19)0.0147 (3)0.0615 (6)
H60.46290.55190.06270.074*
C70.6021 (2)0.68796 (18)0.4218 (3)0.0534 (6)
C80.6450 (2)0.62257 (18)0.5293 (3)0.0606 (6)
H80.63850.56190.50050.073*
C90.6981 (2)0.64610 (19)0.6809 (3)0.0588 (6)
C100.7070 (2)0.73696 (19)0.7241 (3)0.0563 (6)
C110.6614 (2)0.80367 (17)0.6145 (3)0.0539 (6)
C120.6097 (2)0.77953 (19)0.4657 (3)0.0551 (6)
H120.57960.82390.39360.066*
C130.7415 (3)0.5760 (2)0.7913 (3)0.0774 (8)
H130.73160.51630.75770.093*
C140.6149 (3)0.95977 (18)0.5744 (4)0.0775 (8)
H14A0.65260.96290.47820.116*
H14B0.62581.01660.62890.116*
H14C0.52700.94700.55040.116*
C150.4623 (3)0.85087 (19)0.0605 (4)0.0704 (7)
H15A0.43170.86710.03680.106*
H15B0.42060.88670.14500.106*
H15C0.55110.86160.05180.106*
N10.51716 (18)0.71794 (15)0.1733 (2)0.0548 (5)
N20.55309 (19)0.65674 (15)0.2695 (2)0.0595 (6)
O10.7909 (2)0.58971 (17)0.9275 (3)0.0962 (7)
O20.75812 (19)0.76390 (15)0.8682 (3)0.0735 (6)
H2O0.78100.71950.92170.110*
O30.67369 (16)0.88961 (13)0.6724 (3)0.0670 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (12)0.0627 (16)0.0452 (14)0.0024 (10)0.0045 (10)0.0027 (10)
C20.0518 (13)0.0649 (15)0.0508 (14)0.0001 (11)0.0082 (11)0.0038 (12)
C30.0654 (15)0.085 (2)0.0459 (15)0.0036 (14)0.0036 (11)0.0082 (14)
C40.0704 (16)0.097 (2)0.0488 (14)0.0109 (13)0.0031 (12)0.0044 (13)
C50.0771 (18)0.0750 (18)0.0585 (14)0.0143 (14)0.0025 (12)0.0115 (14)
C60.0697 (15)0.0621 (16)0.0512 (13)0.0037 (12)0.0010 (10)0.0018 (12)
C70.0567 (12)0.0593 (15)0.0429 (13)0.0020 (10)0.0007 (10)0.0012 (10)
C80.0625 (14)0.0627 (14)0.0547 (15)0.0014 (12)0.0003 (11)0.0007 (12)
C90.0557 (14)0.0678 (15)0.0510 (14)0.0009 (11)0.0012 (11)0.0045 (12)
C100.0493 (13)0.0737 (17)0.0437 (14)0.0007 (11)0.0027 (11)0.0038 (11)
C110.0527 (12)0.0572 (14)0.0510 (14)0.0026 (11)0.0027 (10)0.0053 (11)
C120.0557 (12)0.0632 (14)0.0455 (12)0.0005 (10)0.0024 (10)0.0021 (11)
C130.0857 (19)0.0783 (18)0.0630 (17)0.0070 (14)0.0115 (14)0.0101 (13)
C140.0849 (18)0.0590 (15)0.0838 (19)0.0010 (13)0.0080 (15)0.0041 (14)
C150.0812 (19)0.0616 (16)0.0679 (17)0.0006 (13)0.0073 (13)0.0054 (13)
N10.0573 (12)0.0608 (13)0.0446 (12)0.0028 (9)0.0009 (9)0.0025 (10)
N20.0663 (12)0.0658 (15)0.0442 (11)0.0012 (9)0.0023 (9)0.0014 (10)
O10.1105 (17)0.0988 (16)0.0702 (13)0.0086 (12)0.0259 (11)0.0164 (11)
O20.0771 (12)0.0870 (14)0.0513 (12)0.0015 (10)0.0128 (9)0.0051 (9)
O30.0770 (11)0.0604 (10)0.0602 (10)0.0031 (8)0.0057 (8)0.0075 (8)
Geometric parameters (Å, º) top
C1—C61.388 (4)C9—C131.439 (4)
C1—C21.396 (4)C10—O21.344 (4)
C1—N11.427 (3)C10—C111.405 (4)
C2—C31.386 (4)C11—O31.364 (3)
C2—C151.503 (4)C11—C121.369 (4)
C3—C41.372 (5)C12—H120.9300
C3—H30.9300C13—O11.234 (4)
C4—C51.378 (4)C13—H130.9300
C4—H40.9300C14—O31.429 (4)
C5—C61.377 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C81.373 (4)C15—H15A0.9600
C7—C121.405 (4)C15—H15B0.9600
C7—N21.418 (3)C15—H15C0.9600
C8—C91.393 (4)N1—N21.251 (3)
C8—H80.9300O2—H2O0.8200
C9—C101.393 (4)
C6—C1—C2120.2 (3)O2—C10—C11118.1 (3)
C6—C1—N1123.7 (2)C9—C10—C11119.6 (2)
C2—C1—N1116.0 (2)O3—C11—C12126.1 (2)
C3—C2—C1117.7 (3)O3—C11—C10113.8 (2)
C3—C2—C15120.6 (2)C12—C11—C10120.2 (2)
C1—C2—C15121.7 (3)C11—C12—C7120.2 (2)
C4—C3—C2122.0 (3)C11—C12—H12119.9
C4—C3—H3119.0C7—C12—H12119.9
C2—C3—H3119.0O1—C13—C9124.5 (3)
C3—C4—C5119.8 (3)O1—C13—H13117.8
C3—C4—H4120.1C9—C13—H13117.8
C5—C4—H4120.1O3—C14—H14A109.5
C6—C5—C4119.6 (3)O3—C14—H14B109.5
C6—C5—H5120.2H14A—C14—H14B109.5
C4—C5—H5120.2O3—C14—H14C109.5
C5—C6—C1120.5 (3)H14A—C14—H14C109.5
C5—C6—H6119.7H14B—C14—H14C109.5
C1—C6—H6119.7C2—C15—H15A109.5
C8—C7—C12119.8 (2)C2—C15—H15B109.5
C8—C7—N2116.1 (2)H15A—C15—H15B109.5
C12—C7—N2124.2 (2)C2—C15—H15C109.5
C7—C8—C9120.7 (2)H15A—C15—H15C109.5
C7—C8—H8119.7H15B—C15—H15C109.5
C9—C8—H8119.7N2—N1—C1114.4 (2)
C8—C9—C10119.6 (2)N1—N2—C7114.6 (2)
C8—C9—C13119.4 (3)C10—O2—H2O109.5
C10—C9—C13121.0 (2)C11—O3—C14116.6 (2)
O2—C10—C9122.3 (2)
C6—C1—C2—C30.0 (4)C13—C9—C10—C11178.7 (2)
N1—C1—C2—C3178.2 (2)O2—C10—C11—O31.2 (3)
C6—C1—C2—C15179.0 (2)C9—C10—C11—O3178.9 (2)
N1—C1—C2—C152.8 (4)O2—C10—C11—C12179.3 (2)
C1—C2—C3—C40.4 (4)C9—C10—C11—C120.6 (4)
C15—C2—C3—C4178.6 (3)O3—C11—C12—C7179.5 (2)
C2—C3—C4—C50.4 (5)C10—C11—C12—C70.1 (4)
C3—C4—C5—C60.0 (5)C8—C7—C12—C111.0 (4)
C4—C5—C6—C10.4 (4)N2—C7—C12—C11178.3 (2)
C2—C1—C6—C50.4 (4)C8—C9—C13—O1179.3 (3)
N1—C1—C6—C5178.5 (2)C10—C9—C13—O11.6 (4)
C12—C7—C8—C91.1 (4)C6—C1—N1—N27.8 (3)
N2—C7—C8—C9178.2 (2)C2—C1—N1—N2174.02 (19)
C7—C8—C9—C100.4 (4)C1—N1—N2—C7179.2 (2)
C7—C8—C9—C13179.6 (2)C8—C7—N2—N1178.6 (2)
C8—C9—C10—O2179.5 (2)C12—C7—N2—N10.7 (3)
C13—C9—C10—O21.4 (4)C12—C11—O3—C147.2 (4)
C8—C9—C10—C110.4 (4)C10—C11—O3—C14172.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.922.640 (3)146

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H14N2O3C15H14N2O3
Mr270.28270.28
Crystal system, space groupMonoclinic, P21/cMonoclinic, Cc
Temperature (K)293293
a, b, c (Å)6.746 (5), 12.529 (5), 15.556 (5)10.734 (5), 14.786 (5), 8.533 (5)
β (°) 91.842 (5) 97.053 (5)
V3)1314.1 (12)1344.0 (11)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.50 × 0.35 × 0.250.60 × 0.33 × 0.13
Data collection
DiffractometerStoe IPDS-II
diffractometer
Stoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10018, 3361, 1784 9238, 1307, 1052
Rint0.1190.077
(sin θ/λ)max1)0.6760.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 0.84 0.031, 0.078, 0.93
No. of reflections33611307
No. of parameters216185
No. of restraints02
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.200.12, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—N11.426 (2)C13—O11.224 (2)
C7—N21.426 (2)C14—O31.413 (2)
C10—O21.350 (2)N1—N21.248 (2)
C11—O31.362 (2)
C2—C1—N1116.1 (1)O3—C11—C12125.7 (2)
C6—C1—N1124.6 (1)O3—C11—C10114.9 (2)
C8—C7—N2125.2 (1)O1—C13—C9124.1 (1)
C12—C7—N2115.1 (1)N2—N1—C1114.2 (2)
O2—C10—C11118.6 (2)N1—N2—C7114.1 (2)
O2—C10—C9121.7 (2)C11—O3—C14117.9 (2)
C11—C10—C9119.7 (1)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i1.01 (2)2.39 (1)3.205 (2)137.3 (10)
C2—H2···O1i0.97 (2)2.60 (2)3.567 (2)172.7 (11)
O2—H2O···O10.97 (2)1.68 (2)2.611 (2)159.1 (16)
Symmetry code: (i) x+2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
C1—N11.427 (3)C13—O11.234 (4)
C7—N21.418 (3)C14—O31.429 (4)
C10—O21.344 (4)N1—N21.251 (3)
C11—O31.364 (3)
C6—C1—N1123.7 (2)O3—C11—C12126.1 (2)
C2—C1—N1116.0 (2)O3—C11—C10113.8 (2)
C8—C7—N2116.1 (2)O1—C13—C9124.5 (3)
C12—C7—N2124.2 (2)N2—N1—C1114.4 (2)
O2—C10—C9122.3 (2)N1—N2—C7114.6 (2)
O2—C10—C11118.1 (3)C11—O3—C14116.6 (2)
C9—C10—C11119.6 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.821.922.640 (3)146
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds