Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of dichloro{2-[(5-methyl-1H-pyrazol-3-yl-κN2)methyl]-1H-1,3-benzimidazole-κN3}copper(II), [CuCl2(C12H12N4)], and di-μ-chloro-bis(chloro{2-[(5-methyl-1H-pyrazol-3-yl-κN2)methyl]-1H-1,3-benzimidazole-κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2-[(5-methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013945/dn1026sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013945/dn1026Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013945/dn1026IIsup3.hkl
Contains datablock II

CCDC references: 219556; 219557

Comment top

Les systèmes macrocycliques dérivés du benzimidazole et du pyrazole présentent des propriétés complexantes vis-à-vis des métaux de transition (Sbai et al., 2002) et des cations d'alcalins. Ce type de complexes possède des propriétés électrochimiques, photochimiques (Baitalik & Floerke, 1994) et catalytiques (Malachowski et al., 1996), en plus de leurs activités fongicides (Mishra et al., 1996) et antibactériens (Mishra & Sinha, 1999). Dans notre laboratoire de nombreux travaux de réactivité et de complexation ont été réalisés sur le ligand L, 2-[(5-méthylpyrazolyl)méthyle] benzimidazole (Essassi et al., 1987). Avec le nickel, un complexe cationique de type [ML2+2, 2X],nH2O est obtenu (Sbai et al., 2002), alors que, avec Cd ou Cu, on obtient des complexes neutres de type [ML(Cl)2]n. Avec le cuivre, le complexe (I) obtenu est un monomère CuL(Cl)2 dans lequel le métal est coordonné à deux atomes de Cl et à deux atomes d'azote, Fig. 1. Les distances et angles caractéristiques sont reportés dans le Tableau 1. Les angles du tétraèdre de coordination du cuivre, qui varient entre 90.31 (8) e t 143.89 (7)°, et l'angle dièdre entre les plans N1CuN12 et Cl2CuCl3 [128,02 (7)°] indiquent une géométrie intermédiaire entre une pyramide plan-carré et un tétraèdre, comme cela se rencontre souvent (Bhalla et al., 1997; Thorhauge, 2002). L'atome de cuivre est à 0,329 (3) Å au dessus du cycle formé par les atomes N1C9C10C11N12 Le ligand L est plan, on note un angle de 6.3 (1)° entre le cycle pyrazole C11N12N13C14C15 et le bicycle benzamidazole N1C2–C7N8C9. Dans le cristal, les molécules s'empilent parall`element entre elles, dans un plan proche du plan (010). Entre ces plans, les atomes de Cl établissent des liaisons de type hydrogène avec les groupements N/H voisins (Fig. 2 e t Tableau 2).

Le pontage de deux atomes métalliques par un ou plusieurs atomes de Cl est une situation assez fréquente qui conduit à la dimérization de composés de coordination. On peut citer l'exemple du µ-chloro-bis bis[2,2'-pyridylethylamino]cuivre(II) trishexafluorophosphate dans lequel un atome de Cl est lié à deux atomes de Cu (Alilou et al., 1992). Pour le complexe [FeCl2(tmmn)]2 [tmmn est N, N, N', N'- tétraméthylméthanediamine; Handley et al., 2001], le dimère résulte de l'établissement de deux ponts Fe—Cl—Fe. Pour le composé [Cd(L)Cl2]2 [L est 1-(5,6-diméthylbenzimidazoyl)-benzimidazoyl-2- thiapropane], deux ponts Cd—Cl—Cd sont également à l'origine de la formation d'un dimère (Matthews et al., 1998). Le complexe (II) obtenu dans le cas du cadmium (Fig. 3) e s t un dimère [CdL(Cl)2]2 dans lequel l'atome de Cl2 ponte deux atomes de Cd distants de 3.9511 (3) Å (Fig. 3). Le Tableau 3 contient les distances et angles importants. Les deux ponts Cd—Cl—Cd présentent une légère dissymétrie, les distances Cd—Cl, égales à 2.5783 (6) e t 2.6600 (7) Å, sont proches de celles données pour des composés voisins (Matthews et al., 1998; Long et al., 1993). L'atome de Cd est pentacoordonné selon une pyramide à base carrée formée par deux atomes de Cl et deux atomes d'azote du ligand, l'atome de Cl3 occupant la position apicale. Les distances et angles de coordination du cadmium sont proches de celles trouvées dans des composés voisins (Matthews et al., 1998; Long et al., 1993) dans lesquels le cadmium présente aussi une pentacoordination. Les plans CdCl2Cl2' et CdN1N12 forment un angle de 66.19 (6)° et l'atome de Cd est à 0.423 (4) Å du cycle N1C8C9C10N12. Le ligand L est plan, l'angle entre le cycle pyrazole C11N12N13C14C15 et le bicycle benzamidazole N1C2–C7N8C9 est égal à 7.5 (1) Å. Comme cela est le cas pour le composé de cuivre (I), les dimères (II), s'empilent dans le cristal parallèlement au plan (100) en établissant des liaisons hydrogène entre les atomes de Cl et les groupement N/H (Fig. 4 e t Tableau 4). De telles liaisons hydrogène ont été mizes en évidence dans d'autres complexes du cadmium, avec des distances Cl—N voisines (Matthews et al., 1998).

Experimental top

Complexe de cuivre: A une solution de 1,25.10−4 mole (26 mg) du 2-[(5-méthylpyrazolyl) méthyle)]benzimidazole solubilisé dans 5 ml d'acétone on ajoute une solution de 1,25.10−4 mole (21 mg) de chlorure de cuivre dissout dans 5 ml d'acétone, après agitation pendant quelques minutes on laisse reposer le mélange réactionnel à température ambiante. Après 24 h de s monocristaux transparents de couleur verte sont formés.

Complexe de cadmium: A une solution de 2,5.10−4 mole (53 mg) du 2- [(5-méthylpyrazolyl)méthyle)] benzimidazole solubilisé dans 10 ml de méthanol on ajoute une solution de 1,25.10−4 mole (23 mg) de chlorure de cadmium dissout dans 5 ml de méthanol, après agitation de quelques minutes on laisse reposer le mélange réactionnel à température ambiante sous forme de poudre jaune apparaît. Une recristallization dans l'éthanol donne après 48 h de s monocristaux transparents de couleur jaune.

Computing details top

For both compounds, data collection: KappaCCD (Nonius, 1998); data reduction: DENZO and Scalepak (Otwinowski & Minor, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1990) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Fig. 1. Dessin ORTEPIII (Burnett & Johnson, 1996) du (I). Les ellipsoides de vibration des atomes ont une probabilité de 50%.

Fig.2. Empilement dans la maille cristalline et liaisons hydrog`ene pour (I).

Fig. 3. Dessin ORTEPIII (Burnett & Johnson, 1996) du (II). Les ellipsoides de vibration des atomes ont une probabilité de 50%.

Fig.4. Empilement dans la maille cristalline et liaisons hydrog`ene pour (II).

Table 1. Distances et angles de liaison pour (I).

Table 2. Géométrie des liaisons hydrog`ene pour (I) (Å, °).

Table 3. Distances et angles de liaison pour (II).

Table 4. Géométrie des liaisons hydrog`ene pour (II) (Å, °)..
(I) top
Crystal data top
[CuCl2(C12H12N4)]F(000) = 700
Mr = 346.70Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9873 reflections
a = 13.4356 (6) Åθ = 2–26.4°
b = 7.2183 (2) ŵ = 1.98 mm1
c = 16.0421 (6) ÅT = 293 K
β = 118.510 (2)°Needle, blue
V = 1367.11 (9) Å30.25 × 0.08 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2492 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.4°, θmin = 2.6°
ϕ scanh = 016
9873 measured reflectionsk = 80
2744 independent reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.7253P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[CuCl2(C12H12N4)]V = 1367.11 (9) Å3
Mr = 346.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4356 (6) ŵ = 1.98 mm1
b = 7.2183 (2) ÅT = 293 K
c = 16.0421 (6) Å0.25 × 0.08 × 0.05 mm
β = 118.510 (2)°
Data collection top
KappaCCD
diffractometer
2492 reflections with I > 2σ(I)
9873 measured reflectionsRint = 0.037
2744 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.07Δρmax = 0.61 e Å3
2744 reflectionsΔρmin = 0.34 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37965 (2)0.20934 (4)0.321607 (19)0.02965 (11)
Cl20.27315 (6)0.41367 (11)0.20989 (5)0.04647 (19)
Cl30.41050 (7)0.00258 (10)0.23329 (4)0.04723 (19)
N10.31181 (17)0.2444 (3)0.40433 (14)0.0295 (4)
N80.29066 (19)0.3038 (3)0.52960 (15)0.0359 (5)
H80.30780.32920.58730.043*
N120.53108 (17)0.1884 (3)0.43342 (14)0.0303 (4)
N130.62656 (17)0.1623 (3)0.42593 (14)0.0329 (5)
H130.62700.12380.37540.040*
C20.1961 (2)0.2409 (4)0.37664 (18)0.0351 (6)
C30.1033 (2)0.1962 (5)0.2904 (2)0.0512 (8)
H30.11120.16860.23720.061*
C40.0009 (3)0.1947 (6)0.2873 (2)0.0637 (10)
H40.06450.16300.23080.076*
C50.0140 (3)0.2392 (6)0.3657 (3)0.0641 (10)
H50.08630.23960.35990.077*
C60.0774 (3)0.2825 (5)0.4519 (2)0.0534 (8)
H60.06890.31210.50460.064*
C70.1829 (2)0.2798 (4)0.45596 (18)0.0364 (6)
C90.3648 (2)0.2809 (3)0.49660 (16)0.0271 (5)
C100.4887 (2)0.2950 (3)0.56127 (16)0.0291 (5)
H10A0.50720.21480.61520.035*
H10B0.50500.42100.58510.035*
C110.5664 (2)0.2481 (3)0.52220 (16)0.0271 (5)
C140.7199 (2)0.2036 (4)0.50669 (19)0.0357 (6)
C150.6837 (2)0.2587 (4)0.57039 (18)0.0358 (6)
H150.72890.29540.63300.043*
C160.8353 (2)0.1945 (5)0.5150 (2)0.0519 (8)
H16A0.83320.11740.46540.078*
H16B0.88750.14330.57560.078*
H16C0.85940.31690.50940.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03491 (17)0.03676 (19)0.01630 (15)0.00303 (13)0.01142 (12)0.00022 (11)
Cl20.0541 (4)0.0574 (4)0.0315 (3)0.0205 (3)0.0234 (3)0.0169 (3)
Cl30.0739 (5)0.0424 (4)0.0234 (3)0.0169 (3)0.0216 (3)0.0010 (3)
N10.0304 (10)0.0379 (11)0.0194 (9)0.0011 (9)0.0113 (8)0.0010 (8)
N80.0398 (12)0.0494 (14)0.0227 (10)0.0007 (10)0.0184 (9)0.0026 (9)
N120.0326 (11)0.0353 (11)0.0228 (10)0.0023 (9)0.0131 (8)0.0006 (8)
N130.0361 (11)0.0388 (12)0.0271 (10)0.0007 (9)0.0176 (9)0.0024 (9)
C20.0338 (13)0.0441 (15)0.0282 (12)0.0019 (11)0.0154 (11)0.0023 (11)
C30.0381 (15)0.082 (2)0.0286 (14)0.0088 (15)0.0119 (12)0.0010 (14)
C40.0337 (15)0.105 (3)0.0420 (17)0.0099 (17)0.0096 (13)0.0064 (18)
C50.0342 (16)0.101 (3)0.059 (2)0.0012 (17)0.0236 (15)0.014 (2)
C60.0463 (17)0.078 (2)0.0468 (17)0.0038 (16)0.0306 (15)0.0055 (16)
C70.0363 (13)0.0453 (15)0.0279 (12)0.0007 (11)0.0155 (11)0.0024 (11)
C90.0360 (12)0.0253 (11)0.0215 (11)0.0002 (9)0.0148 (10)0.0012 (9)
C100.0353 (12)0.0313 (12)0.0190 (11)0.0012 (10)0.0115 (10)0.0001 (9)
C110.0346 (12)0.0234 (11)0.0210 (11)0.0005 (9)0.0113 (9)0.0022 (8)
C140.0348 (13)0.0367 (14)0.0366 (14)0.0017 (11)0.0179 (11)0.0005 (11)
C150.0339 (13)0.0414 (14)0.0273 (12)0.0020 (11)0.0106 (10)0.0042 (11)
C160.0377 (15)0.067 (2)0.0537 (18)0.0088 (14)0.0240 (14)0.0132 (16)
Geometric parameters (Å, º) top
Cu1—N11.952 (2)C4—C51.390 (5)
Cu1—N121.974 (2)C4—H40.9300
Cu1—Cl32.2286 (7)C5—C61.377 (5)
Cu1—Cl22.2331 (8)C5—H50.9300
N1—C91.327 (3)C6—C71.388 (4)
N1—C21.398 (3)C6—H60.9300
N8—C91.343 (3)C9—C101.486 (3)
N8—C71.374 (3)C10—C111.490 (3)
N8—H80.8600C10—H10A0.9700
N12—C111.340 (3)C10—H10B0.9700
N12—N131.357 (3)C11—C151.387 (3)
N13—C141.337 (3)C14—C151.383 (4)
N13—H130.8600C14—C161.493 (4)
C2—C31.388 (4)C15—H150.9300
C2—C71.395 (4)C16—H16A0.9600
C3—C41.377 (4)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
N1—Cu1—N1290.31 (8)C5—C6—C7116.5 (3)
N1—Cu1—Cl3143.89 (7)C5—C6—H6121.8
N12—Cu1—Cl395.90 (6)C7—C6—H6121.8
N1—Cu1—Cl297.57 (6)N8—C7—C6132.2 (3)
N12—Cu1—Cl2140.13 (7)N8—C7—C2105.6 (2)
Cl3—Cu1—Cl2100.05 (3)C6—C7—C2122.1 (3)
C9—N1—C2106.3 (2)N1—C9—N8111.1 (2)
C9—N1—Cu1127.43 (17)N1—C9—C10128.2 (2)
C2—N1—Cu1126.21 (16)N8—C9—C10120.7 (2)
C9—N8—C7108.7 (2)C9—C10—C11117.8 (2)
C9—N8—H8125.6C9—C10—H10A107.9
C7—N8—H8125.6C11—C10—H10A107.9
C11—N12—N13105.60 (19)C9—C10—H10B107.9
C11—N12—Cu1129.04 (17)C11—C10—H10B107.9
N13—N12—Cu1122.54 (15)H10A—C10—H10B107.2
C14—N13—N12111.8 (2)N12—C11—C15110.0 (2)
C14—N13—H13124.1N12—C11—C10123.8 (2)
N12—N13—H13124.1C15—C11—C10126.2 (2)
C3—C2—C7120.8 (2)N13—C14—C15106.4 (2)
C3—C2—N1130.8 (2)N13—C14—C16122.0 (2)
C7—C2—N1108.2 (2)C15—C14—C16131.5 (3)
C4—C3—C2116.8 (3)C14—C15—C11106.2 (2)
C4—C3—H3121.6C14—C15—H15126.9
C2—C3—H3121.6C11—C15—H15126.9
C3—C4—C5122.1 (3)C14—C16—H16A109.5
C3—C4—H4118.9C14—C16—H16B109.5
C5—C4—H4118.9H16A—C16—H16B109.5
C6—C5—C4121.6 (3)C14—C16—H16C109.5
C6—C5—H5119.2H16A—C16—H16C109.5
C4—C5—H5119.2H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl3i0.862.403.194 (2)153
N8—H8···Cl2i0.862.833.396 (2)125
N13—H13···Cl2ii0.862.783.548 (2)150
N13—H13···Cl30.862.843.278 (2)113
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
(II) top
Crystal data top
[Cd2Cl4(C12H12N4)2]Z = 1
Mr = 791.13F(000) = 388
Triclinic, P1Dx = 1.906 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8306 (2) ÅCell parameters from 10163 reflections
b = 9.7979 (3) Åθ = 2–26°
c = 10.1976 (4) ŵ = 1.96 mm1
α = 92.861 (1)°T = 293 K
β = 112.014 (1)°Needle, colourless
γ = 105.493 (1)°0.20 × 0.08 × 0.05 mm
V = 689.07 (4) Å3
Data collection top
KappaCCD
diffractometer
2474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 26°, θmin = 2.8°
ϕ scanh = 09
10163 measured reflectionsk = 1211
2614 independent reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0041P)2 + 0.8027P]
where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd2Cl4(C12H12N4)2]γ = 105.493 (1)°
Mr = 791.13V = 689.07 (4) Å3
Triclinic, P1Z = 1
a = 7.8306 (2) ÅMo Kα radiation
b = 9.7979 (3) ŵ = 1.96 mm1
c = 10.1976 (4) ÅT = 293 K
α = 92.861 (1)°0.20 × 0.08 × 0.05 mm
β = 112.014 (1)°
Data collection top
KappaCCD
diffractometer
2474 reflections with I > 2σ(I)
10163 measured reflectionsRint = 0.027
2614 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.09Δρmax = 0.35 e Å3
2614 reflectionsΔρmin = 0.47 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.27325 (3)0.336088 (19)0.47595 (2)0.02774 (7)
Cl30.03141 (10)0.33503 (8)0.28348 (8)0.04374 (17)
Cl20.56172 (10)0.38913 (7)0.40148 (8)0.03556 (15)
N10.2474 (3)0.0970 (2)0.4594 (2)0.0284 (4)
N80.2560 (3)0.1181 (2)0.5112 (2)0.0337 (5)
H80.26210.18740.55960.040*
N120.2414 (3)0.2942 (2)0.6848 (2)0.0330 (5)
N130.2332 (4)0.3980 (2)0.7738 (3)0.0366 (5)
H130.21330.47700.74940.044*
C20.2329 (3)0.0118 (3)0.3394 (3)0.0287 (5)
C30.2122 (4)0.0431 (3)0.2043 (3)0.0369 (6)
H30.20760.13320.18150.044*
C40.1985 (4)0.0644 (3)0.1050 (3)0.0413 (6)
H40.18320.04670.01310.050*
C50.2072 (4)0.1989 (3)0.1391 (3)0.0432 (7)
H50.19890.26840.06950.052*
C60.2275 (4)0.2320 (3)0.2722 (3)0.0413 (7)
H60.23320.32200.29470.050*
C70.2392 (4)0.1239 (3)0.3715 (3)0.0310 (5)
C90.2613 (3)0.0142 (3)0.5594 (3)0.0278 (5)
C100.2836 (4)0.0500 (3)0.7095 (3)0.0332 (6)
H10A0.40790.04200.77200.040*
H10B0.18510.02430.72380.040*
C110.2728 (3)0.1912 (3)0.7619 (3)0.0284 (5)
C140.2595 (4)0.3633 (3)0.9036 (3)0.0363 (6)
C150.2882 (4)0.2321 (3)0.8999 (3)0.0366 (6)
H150.31320.17990.97490.044*
C160.2523 (5)0.4585 (4)1.0182 (3)0.0481 (7)
H16A0.35030.54961.03980.072*
H16B0.27480.41491.10290.072*
H16C0.12720.47260.98610.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03186 (11)0.02158 (11)0.03359 (11)0.00968 (7)0.01548 (8)0.01136 (8)
Cl30.0408 (4)0.0419 (4)0.0461 (4)0.0201 (3)0.0090 (3)0.0142 (3)
Cl20.0427 (3)0.0232 (3)0.0500 (4)0.0088 (3)0.0294 (3)0.0076 (3)
N10.0311 (10)0.0206 (11)0.0367 (11)0.0096 (8)0.0155 (9)0.0093 (9)
N80.0397 (12)0.0211 (12)0.0405 (12)0.0122 (9)0.0135 (10)0.0114 (10)
N120.0468 (13)0.0263 (12)0.0339 (11)0.0157 (10)0.0211 (10)0.0120 (10)
N130.0513 (14)0.0282 (13)0.0413 (13)0.0192 (11)0.0247 (11)0.0131 (10)
C20.0262 (12)0.0217 (13)0.0382 (13)0.0073 (10)0.0131 (10)0.0053 (11)
C30.0437 (15)0.0284 (15)0.0420 (15)0.0104 (12)0.0208 (13)0.0099 (12)
C40.0474 (16)0.0350 (17)0.0404 (15)0.0082 (13)0.0200 (13)0.0034 (13)
C50.0453 (16)0.0326 (17)0.0482 (17)0.0103 (13)0.0176 (14)0.0040 (14)
C60.0463 (16)0.0254 (15)0.0527 (17)0.0157 (12)0.0173 (14)0.0069 (13)
C70.0276 (12)0.0249 (14)0.0387 (14)0.0083 (10)0.0108 (11)0.0075 (11)
C90.0231 (11)0.0205 (13)0.0393 (13)0.0067 (9)0.0115 (10)0.0092 (11)
C100.0403 (14)0.0235 (14)0.0375 (14)0.0105 (11)0.0161 (12)0.0139 (11)
C110.0271 (12)0.0258 (14)0.0348 (13)0.0080 (10)0.0144 (10)0.0126 (11)
C140.0377 (14)0.0347 (16)0.0407 (15)0.0105 (12)0.0202 (12)0.0095 (13)
C150.0447 (15)0.0350 (16)0.0386 (14)0.0154 (12)0.0225 (12)0.0175 (13)
C160.062 (2)0.045 (2)0.0484 (17)0.0190 (16)0.0327 (16)0.0077 (15)
Geometric parameters (Å, º) top
Cd1—N122.280 (2)C4—C51.392 (4)
Cd1—N12.289 (2)C4—H40.9300
Cd1—Cl32.4533 (7)C5—C61.372 (4)
Cd1—Cl22.5783 (6)C5—H50.9300
Cd1—Cl2i2.6600 (7)C6—C71.389 (4)
N1—C91.325 (3)C6—H60.9300
N1—C21.397 (3)C9—C101.486 (4)
N8—C91.348 (3)C10—C111.492 (4)
N8—C71.378 (4)C10—H10A0.9700
N8—H80.8600C10—H10B0.9700
N12—C111.328 (3)C11—C151.395 (4)
N12—N131.360 (3)C14—C151.364 (4)
N13—C141.337 (4)C14—C161.486 (4)
N13—H130.8600C15—H150.9300
C2—C31.386 (4)C16—H16A0.9600
C2—C71.394 (3)C16—H16B0.9600
C3—C41.378 (4)C16—H16C0.9600
C3—H30.9300
N12—Cd1—N180.44 (8)C6—C5—H5119.0
N12—Cd1—Cl3112.74 (6)C4—C5—H5119.0
N1—Cd1—Cl3102.18 (6)C5—C6—C7116.4 (3)
N12—Cd1—Cl2133.64 (6)C5—C6—H6121.8
N1—Cd1—Cl291.02 (5)C7—C6—H6121.8
Cl3—Cd1—Cl2113.61 (3)N8—C7—C6132.8 (2)
N12—Cd1—Cl2i86.40 (6)N8—C7—C2104.9 (2)
N1—Cd1—Cl2i154.17 (6)C6—C7—C2122.3 (3)
Cl3—Cd1—Cl2i103.40 (2)N1—C9—N8111.6 (2)
Cl2—Cd1—Cl2i82.09 (2)N1—C9—C10128.9 (2)
Cd1—Cl2—Cd1i97.91 (2)N8—C9—C10119.5 (2)
C9—N1—C2105.6 (2)C9—C10—C11120.6 (2)
C9—N1—Cd1129.45 (18)C9—C10—H10A107.2
C2—N1—Cd1124.67 (16)C11—C10—H10A107.2
C9—N8—C7108.6 (2)C9—C10—H10B107.2
C9—N8—H8125.7C11—C10—H10B107.2
C7—N8—H8125.7H10A—C10—H10B106.8
C11—N12—N13105.2 (2)N12—C11—C15109.8 (2)
C11—N12—Cd1131.02 (18)N12—C11—C10125.9 (2)
N13—N12—Cd1121.92 (15)C15—C11—C10124.3 (2)
C14—N13—N12112.3 (2)N13—C14—C15105.9 (2)
C14—N13—H13123.8N13—C14—C16122.1 (3)
N12—N13—H13123.8C15—C14—C16131.9 (3)
C3—C2—C7120.5 (2)C14—C15—C11106.8 (2)
C3—C2—N1130.2 (2)C14—C15—H15126.6
C7—C2—N1109.3 (2)C11—C15—H15126.6
C4—C3—C2117.4 (3)C14—C16—H16A109.5
C4—C3—H3121.3C14—C16—H16B109.5
C2—C3—H3121.3H16A—C16—H16B109.5
C3—C4—C5121.5 (3)C14—C16—H16C109.5
C3—C4—H4119.3H16A—C16—H16C109.5
C5—C4—H4119.3H16B—C16—H16C109.5
C6—C5—C4122.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2ii0.862.663.345 (2)137
N8—H8···Cl3iii0.862.993.633 (2)134
N13—H13···Cl3iv0.862.583.369 (2)154
N13—H13···Cl2i0.862.863.295 (2)113
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[CuCl2(C12H12N4)][Cd2Cl4(C12H12N4)2]
Mr346.70791.13
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)13.4356 (6), 7.2183 (2), 16.0421 (6)7.8306 (2), 9.7979 (3), 10.1976 (4)
α, β, γ (°)90, 118.510 (2), 9092.861 (1), 112.014 (1), 105.493 (1)
V3)1367.11 (9)689.07 (4)
Z41
Radiation typeMo KαMo Kα
µ (mm1)1.981.96
Crystal size (mm)0.25 × 0.08 × 0.050.20 × 0.08 × 0.05
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9873, 2744, 2492 10163, 2614, 2474
Rint0.0370.027
(sin θ/λ)max1)0.6250.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.07 0.022, 0.051, 1.09
No. of reflections27442614
No. of parameters173173
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.340.35, 0.47

Computer programs: KappaCCD (Nonius, 1998), DENZO and Scalepak (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) for (I) top
Cu1—N11.952 (2)Cu1—Cl32.2286 (7)
Cu1—N121.974 (2)Cu1—Cl22.2331 (8)
N1—Cu1—N1290.31 (8)N1—Cu1—Cl297.57 (6)
N1—Cu1—Cl3143.89 (7)N12—Cu1—Cl2140.13 (7)
N12—Cu1—Cl395.90 (6)Cl3—Cu1—Cl2100.05 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl3i0.862.403.194 (2)152.9
N8—H8···Cl2i0.862.833.396 (2)124.5
N13—H13···Cl2ii0.862.783.548 (2)149.6
N13—H13···Cl30.862.843.278 (2)113.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cd1—N122.280 (2)Cd1—Cl22.5783 (6)
Cd1—N12.289 (2)Cd1—Cl2i2.6600 (7)
Cd1—Cl32.4533 (7)
N12—Cd1—N180.44 (8)N12—Cd1—Cl2i86.40 (6)
N12—Cd1—Cl3112.74 (6)N1—Cd1—Cl2i154.17 (6)
N1—Cd1—Cl3102.18 (6)Cl3—Cd1—Cl2i103.40 (2)
N12—Cd1—Cl2133.64 (6)Cl2—Cd1—Cl2i82.09 (2)
N1—Cd1—Cl291.02 (5)Cd1—Cl2—Cd1i97.91 (2)
Cl3—Cd1—Cl2113.61 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2ii0.862.663.345 (2)137.1
N8—H8···Cl3iii0.862.993.633 (2)133.6
N13—H13···Cl3iv0.862.583.369 (2)153.6
N13—H13···Cl2i0.862.863.295 (2)113.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds