Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ni(C11H16ClN5)2]Cl2·C3H7NO, contains one monomeric nickel(II) com­plex cation, two Cl anions and one di­methyl­form­amide sol­vent mol­ecule. The Ni atom is coordinated to each of two 1-­(p-chloro­phenyl)-5-iso­propyl­biguanide (proguanil) ligands via two N atoms. The complex exhibits a square-planar coordination, with the Ni atom lying 0.021 (2) Å out of the basal plane. The crystal packing is characterized by several hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013519/dn1020sup1.cif
Contains datablocks bp54b, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013519/dn1020Isup2.hkl
Contains datablock I

CCDC reference: 219554

Comment top

Proguanil, 1-(p-chlorophenyl)-5-isopropylbiguanide, an antimalarial drug used worldwide, is characterized by different tautomeric forms, one of which is stabilized upon complexation. This fact prompted us to synthesize new complexes of 3 d elements with a view to modulating the pharmacological properties of the free ligand. The asymmetric unit of the title compound, (I), consists of one nickel(II) atom, two proguanil ligands, two Clanions and one DMF solvent molecule. The NiII atom exhibits a square-planar coordination, built from two bidentate chelating proguanil ligands via atoms N2 and N4 in the first ligand (atoms N22 and N24 in the second ligand) from the biguanidyl moiety of each molecule. The same square-planar geometry was observed in [bis(2- guanidinobenzimidazole)nickel(II) dinitrate] (Barba-Behrens et al., 1996) and [bis(biguanidino)nickelate(II):(6,7-dimethoxy-2,4(1H, 3H)quinazolinedione](Bishop et al., 2002). The Ni—N bond lengths are all equivalent [within 2 s.u.; mean 1.864 (3) Å] and the angles at the Ni atom are in the range 89.6 (1)–90.5 (1) °. These values agree with those found in bis(N,N-dimethylbiguanide)nickel(II) salicylate (Lemoine et al., 1996) and bis(N,N-dimethylbiguanide)nickel(II)monohydroxide chloride (Lemoine et al., 1999). The Ni atom is 0.021 (2) Å out of the basal plane [P1; N2/N4/N22/N24]. The N2—C7—N3—C8—N4 and N22—C27—N23—C28—N24 sequences have nearly planar geometries (mean planes P2 and P3, respectively), allowing delocalization of the π electron system along them. The NiII atom is displaced 0.244 (4) and −0.459 (4) Å out of planes P2 and P3 and the dihedral angle between these two planes is 32.05 (1)°. The Ni/N2/C7/N3/C8/N4 metalloring may be regarded as having a boat shape, with atoms Ni and N3 on the same side of the N2/C7/C8/N4 (P4) plane [0.234 (5) and 0.018 (5) Å, respectively]. The geometry is the same for the Ni/N22/C27/N23/C28/N24 ring, with atoms Ni and N23 being −0.380 (5) and −0.145 (5) Å, respectively, from plane P5 (N22/C27/C28/N24). These configurations are similar to those described for [bis(2- guanidinobenzimidazole)nickel(II) dinitrate] (Barba-Behrens et al., 1996) The dihedral angle between plane P2 and its attached phenyl ring (C1–C6) is 70.0 (1) ° [the corresponding dihedral angle for P3 and C21–C26 is 76.3 (1)°]. The two halves of each biguanide group are planar, with atom C7 0.011 (4)° out of plane P6 (N1/N2/N3) and atom C8 0.001 (4) Å out of plane P7 (N3/N4/N5) [the corresponding out of plane distance values are 0.002 (4) Å for atom C27 and plane P8 (N21/N22/N23) and 0.011 (4) Å for atom C28 and plane P9 (N23/N24/N25)]. The dihedral angle between planes P6 and P7 is 5.9 (3)° and between planes P8 and P9 is 15.0 (3)°. Thus, the biguanide moiety in each proguanil bidentate chelating agent is almost planar. In contrast, the corresponding dihedral angle between the homologous Ni atoms in the crystal structure of 1-(p-chlorophenyl)-5-isopropylbiguanide hydrochloride (Brown., 1967) is 58.9 °, a value which is characteristic of a non-planar molecule. In the title compound, the corresponding distances in the two proguanil ligands are all equivalent (within 3 s.u.) except for the C9—C11 [1.503 (5) Å] and C29—C31 [1.530 (5) Å] distances in the terminal methyl groups. The C1—N1—C7—N2 [−4.5 (5) °] and C9—N5—C8—N4 [17.0 (6) °] torsion angles in the first ligand, and C21—N21—C27—N22 [−3.3 (7) °] and C29—N25—C28—N24 [−13.0 (6)°] torsion angles in the second proguanil ligand, showed that this conformation remains synperiplanar upon metallation. The same conformation was found for the corresponding atomic set in PdCl2(proguanil) (Bentefrit et al., 2002) but differed from (proguanil) hydrochloride (Brown, 1967) where the conformation was antiperiplanar (the C—N—C—N torsion angles being 164.1 and 164.5°). The DMF solvent molecule exhibits some disorder in the terminal methyl groups, as shown by its Ueq values. The crystal packing is characterized by several intra- and intermolecular hydrogen bonds, which involve, in particular, the DMF solvate molecule with each ligand of the same complex (table), in contrast to hydrogen bonds observed in [bis(biguanidino)nickelate(II):(6,7-dimethoxy-2,4(1H,3H)quinazolinedione], in which the DMSO solvate acts as a bridging molecule between two neighbouring complexes (Bishop et al., 2002). In (I), atom Cl1 participates in three hydrogen bonds to two chelate entities, while atom Cl2 is involved in five hydrogen bonds belonging to three different complexes.

In addition, the crystalline cohesion is likewise ensured by many van der Waals contacts, the shortest being C26—C52iii = 3.41 (2) Å [symmetry code: (iii) 1/2 + x, 1/2 − y, z].

Experimental top

The title compound was obtained by dissolving proguanil hydrochloride in DMF to a concentration of 0.2 mol L−1, (4 × 10−4 mol) and adding nickel chloride hexahydrate in DMF to a concentration of 0.1 mol L−1, (2 × 10−4 mol). This hydrochloric mixture was neutralized by a sodium hydroxide solution (4 × 10−4 mol). After mixing and heating (50°) for a period of 2 h and slow evaporation, yellow crystals were obtained under ambient pressure.

Refinement top

All H atoms were placed at their idealized positions as riding atoms (C—Haromatic=0.93 Å, C—Hmethine= 0.93 Å, C—Hmethyl=0.96 Å and N—H=0.86 Å). A disordered model for the DMF solvate based on a 60:40 distribution of the N(Me)2 over two sites related by a pseudo twofold axis was applied.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A CAMERON (Watkin et al., 1996) drawing of the molecule of (I), showing the atom-numbering system and hydrogen bonding (dashed lines). Displacement ellipsoïds are shown at the 50% probability level for non-H atoms. [Symmetry codes: (i) −x, −y, −z; (ii) −x + 1/2, y + 1/2, −z.]
[Figure 2] Fig. 2. The packing of the unit cell of (I), projected along the c axis.
Bis[1-(p-chlorophenyl)-5-isopropylbiguanide] nickel(II) dichloride dimethylformamide solvate. top
Crystal data top
[Ni(C11H16ClN5)2]Cl2·C3H7NOF(000) = 1480
Mr = 710.18Dx = 1.377 Mg m3
Dm = 1.38 Mg m3
Dm measured by flotation (CHCl3 / CH2Cl2)
Monoclinic, P21/aMo Kα radiation, λ = 0.71069 Å
a = 10.824 (5) ÅCell parameters from 25 reflections
b = 24.12 (1) Åθ = 7.0–11.1°
c = 13.180 (3) ŵ = 0.92 mm1
β = 95.42 (3)°T = 293 K
V = 3426 (2) Å3Parallelepipedic, orange
Z = 40.45 × 0.37 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3270 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω – 2θ scansh = 1212
Absorption correction: empirical (using intensity measurements)
'multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)'
k = 028
Tmin = 0.648, Tmax = 0.883l = 1515
11970 measured reflections3 standard reflections every 60 min
6000 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0724P)2]
where P = (Fo2 + 2Fc2)/3
6000 reflections(Δ/σ)max = 0.001
417 parametersΔρmax = 0.37 e Å3
31 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ni(C11H16ClN5)2]Cl2·C3H7NOV = 3426 (2) Å3
Mr = 710.18Z = 4
Monoclinic, P21/aMo Kα radiation
a = 10.824 (5) ŵ = 0.92 mm1
b = 24.12 (1) ÅT = 293 K
c = 13.180 (3) Å0.45 × 0.37 × 0.10 mm
β = 95.42 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3270 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
'multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)'
Rint = 0.061
Tmin = 0.648, Tmax = 0.8833 standard reflections every 60 min
11970 measured reflections intensity decay: 2%
6000 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04031 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.96Δρmax = 0.37 e Å3
6000 reflectionsΔρmin = 0.69 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.17718 (4)0.124941 (15)0.02731 (3)0.03747 (14)
N10.3256 (3)0.03075 (11)0.0936 (2)0.0480 (8)
H10.31340.06400.07140.058*
N20.2604 (3)0.06218 (10)0.0808 (2)0.0423 (7)
H20.31010.06790.13470.051*
N30.1791 (2)0.00413 (10)0.0336 (2)0.0406 (7)
H30.18510.03790.05360.049*
N40.0777 (3)0.07998 (10)0.0611 (2)0.0415 (7)
H40.01080.09530.08800.050*
N50.0332 (3)0.00371 (11)0.1680 (2)0.0482 (8)
H50.03500.03190.17010.058*
N210.3881 (3)0.25224 (12)0.1615 (3)0.0597 (9)
H210.39910.28650.14650.072*
N220.2813 (3)0.17040 (11)0.1114 (2)0.0468 (8)
H220.31940.15460.16380.056*
N230.2423 (3)0.25324 (11)0.0259 (2)0.0483 (8)
H230.27440.28460.01160.058*
N240.0939 (3)0.18774 (10)0.0268 (2)0.0412 (7)
H240.01930.18230.05350.049*
N250.0753 (3)0.28051 (11)0.0810 (2)0.0549 (9)
H250.10120.31360.06730.066*
Cl10.15706 (11)0.11925 (4)0.15644 (9)0.0699 (3)
Cl20.19344 (9)0.14532 (4)0.13548 (8)0.0559 (3)
Cl40.70335 (12)0.01491 (6)0.43410 (10)0.0930 (4)
Cl240.69527 (14)0.16978 (6)0.52408 (11)0.1046 (5)
C10.4180 (3)0.02108 (13)0.1745 (3)0.0427 (9)
C20.4077 (4)0.04429 (15)0.2688 (3)0.0531 (10)
H200.34090.06720.27890.064*
C30.4962 (4)0.03345 (18)0.3478 (3)0.0607 (11)
H300.48910.04880.41170.073*
C40.5942 (4)0.00027 (17)0.3327 (3)0.0561 (10)
C50.6085 (4)0.02173 (16)0.2390 (3)0.0561 (11)
H500.67730.04350.22920.067*
C60.5197 (3)0.01124 (15)0.1593 (3)0.0499 (9)
H600.52840.02600.09510.060*
C70.2551 (3)0.01135 (13)0.0494 (3)0.0382 (8)
C80.0939 (3)0.02861 (13)0.0885 (3)0.0380 (8)
C90.0366 (4)0.03274 (16)0.2522 (3)0.0522 (10)
H900.10140.05470.22400.063*
C100.0421 (5)0.0710 (2)0.3063 (4)0.0868 (15)
H1010.08570.09560.25790.130*
H1020.00920.09220.35530.130*
H1030.10090.04990.34050.130*
C110.0990 (4)0.0106 (2)0.3212 (3)0.0817 (15)
H1110.03720.03310.34880.123*
H1120.14900.00720.37580.123*
H1130.15060.03350.28310.123*
C210.4594 (3)0.22990 (14)0.2478 (3)0.0493 (10)
C220.5558 (4)0.19353 (15)0.2375 (3)0.0532 (10)
H2200.57280.18190.17300.064*
C230.6273 (4)0.17427 (16)0.3224 (4)0.0611 (11)
H2300.69150.14940.31520.073*
C240.6034 (4)0.19192 (18)0.4170 (3)0.0622 (11)
C250.5072 (4)0.22774 (18)0.4283 (3)0.0665 (12)
H2500.49080.23920.49310.080*
C260.4352 (4)0.24668 (16)0.3442 (4)0.0616 (11)
H2600.36990.27090.35210.074*
C270.3039 (3)0.22284 (13)0.1014 (3)0.0435 (9)
C280.1337 (3)0.23848 (13)0.0293 (3)0.0419 (9)
C290.0282 (4)0.27375 (16)0.1581 (3)0.0594 (11)
H2900.08620.24700.13260.071*
C300.0129 (5)0.2517 (2)0.2553 (4)0.0996 (18)
H3010.06920.27750.28190.149*
H3020.05810.24670.30390.149*
H3030.05390.21680.24260.149*
C310.0942 (4)0.32978 (18)0.1709 (4)0.0894 (16)
H3110.11240.34330.10540.134*
H3120.17010.32540.21410.134*
H3130.04150.35580.20120.134*
C510.3507 (4)0.10755 (15)0.3792 (4)0.0579 (11)
H510.41710.09720.42520.070*
O500.3558 (3)0.09921 (11)0.2894 (2)0.0673 (8)
N500.2534 (18)0.1309 (14)0.4132 (11)0.063 (5)0.61
C520.1569 (12)0.1532 (7)0.3434 (10)0.081 (4)0.61
H52A0.16910.19240.33650.122*0.61
H52B0.07790.14650.36860.122*0.61
H52C0.15890.13570.27810.122*0.61
C530.2452 (16)0.1461 (9)0.5186 (10)0.114 (7)0.61
H53A0.31100.12840.56070.171*0.61
H53B0.16670.13430.53930.171*0.61
H53C0.25260.18560.52580.171*0.61
N50A0.278 (3)0.135 (2)0.4333 (17)0.080 (9)0.39
C52A0.157 (2)0.1524 (14)0.3977 (19)0.140 (13)0.39
H52D0.14340.18950.42070.210*0.39
H52E0.09730.12790.42380.210*0.39
H52F0.14720.15150.32460.210*0.39
C53A0.305 (2)0.1432 (11)0.5430 (13)0.084 (7)0.39
H53D0.38150.12500.56590.126*0.39
H53E0.23880.12770.57760.126*0.39
H53F0.31190.18210.55750.126*0.39
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0510 (3)0.01572 (19)0.0442 (3)0.0026 (2)0.00305 (19)0.0002 (2)
N10.0585 (19)0.0178 (13)0.064 (2)0.0007 (13)0.0127 (16)0.0001 (13)
N20.0545 (18)0.0202 (13)0.0488 (18)0.0033 (13)0.0127 (14)0.0003 (12)
N30.0498 (18)0.0186 (13)0.0510 (18)0.0001 (12)0.0078 (14)0.0069 (12)
N40.0415 (17)0.0236 (14)0.0571 (18)0.0036 (12)0.0072 (14)0.0056 (13)
N50.0580 (19)0.0268 (15)0.056 (2)0.0011 (14)0.0136 (15)0.0085 (14)
N210.072 (2)0.0232 (15)0.079 (2)0.0127 (15)0.0141 (19)0.0047 (15)
N220.065 (2)0.0224 (14)0.0499 (18)0.0073 (14)0.0109 (15)0.0027 (13)
N230.057 (2)0.0194 (14)0.067 (2)0.0071 (13)0.0008 (16)0.0072 (14)
N240.0473 (18)0.0196 (14)0.0554 (19)0.0028 (12)0.0020 (14)0.0046 (12)
N250.067 (2)0.0222 (15)0.074 (2)0.0010 (14)0.0028 (18)0.0134 (15)
Cl10.0910 (8)0.0285 (5)0.0928 (8)0.0013 (5)0.0222 (6)0.0127 (5)
Cl20.0487 (6)0.0274 (4)0.0909 (8)0.0015 (4)0.0032 (5)0.0015 (5)
Cl40.0815 (8)0.1200 (11)0.0710 (8)0.0028 (8)0.0260 (7)0.0133 (7)
Cl240.1243 (12)0.0970 (10)0.0857 (9)0.0176 (9)0.0265 (8)0.0027 (8)
C10.044 (2)0.0326 (19)0.050 (2)0.0073 (16)0.0045 (17)0.0023 (16)
C20.054 (2)0.040 (2)0.066 (3)0.0043 (18)0.005 (2)0.0081 (19)
C30.063 (3)0.063 (3)0.055 (3)0.013 (2)0.003 (2)0.015 (2)
C40.052 (3)0.058 (3)0.057 (3)0.008 (2)0.003 (2)0.003 (2)
C50.048 (2)0.053 (2)0.067 (3)0.0045 (19)0.004 (2)0.001 (2)
C60.052 (2)0.046 (2)0.051 (2)0.0018 (18)0.0010 (19)0.0013 (18)
C70.046 (2)0.0227 (16)0.045 (2)0.0014 (15)0.0001 (17)0.0034 (15)
C80.041 (2)0.0256 (17)0.047 (2)0.0013 (15)0.0015 (16)0.0024 (15)
C90.055 (2)0.052 (2)0.048 (2)0.0108 (19)0.0044 (19)0.0060 (18)
C100.113 (4)0.073 (3)0.075 (3)0.001 (3)0.011 (3)0.008 (3)
C110.084 (3)0.089 (4)0.067 (3)0.001 (3)0.022 (3)0.028 (3)
C210.051 (2)0.0314 (19)0.064 (3)0.0102 (17)0.001 (2)0.0069 (18)
C220.056 (3)0.041 (2)0.062 (3)0.0069 (19)0.002 (2)0.0155 (19)
C230.053 (3)0.044 (2)0.086 (3)0.0009 (19)0.002 (2)0.010 (2)
C240.059 (3)0.058 (3)0.068 (3)0.002 (2)0.003 (2)0.000 (2)
C250.072 (3)0.063 (3)0.064 (3)0.004 (2)0.006 (2)0.015 (2)
C260.054 (3)0.047 (2)0.083 (3)0.0017 (19)0.005 (2)0.019 (2)
C270.058 (2)0.0196 (16)0.052 (2)0.0057 (16)0.0008 (18)0.0046 (16)
C280.051 (2)0.0263 (18)0.048 (2)0.0024 (16)0.0053 (18)0.0054 (15)
C290.060 (3)0.042 (2)0.075 (3)0.003 (2)0.003 (2)0.025 (2)
C300.125 (5)0.094 (4)0.077 (4)0.005 (4)0.001 (3)0.015 (3)
C310.080 (3)0.056 (3)0.129 (5)0.010 (3)0.004 (3)0.041 (3)
C510.073 (3)0.038 (2)0.061 (3)0.003 (2)0.009 (2)0.008 (2)
O500.096 (2)0.0474 (16)0.0554 (19)0.0021 (15)0.0098 (16)0.0012 (14)
N500.069 (6)0.047 (11)0.075 (6)0.003 (8)0.017 (6)0.000 (6)
C520.066 (6)0.067 (7)0.114 (10)0.027 (5)0.025 (6)0.023 (8)
C530.132 (15)0.119 (11)0.092 (11)0.000 (12)0.025 (10)0.017 (9)
N50A0.12 (2)0.033 (9)0.091 (15)0.015 (14)0.026 (12)0.017 (12)
C52A0.127 (19)0.098 (19)0.20 (3)0.010 (15)0.04 (2)0.07 (2)
C53A0.13 (2)0.059 (10)0.067 (11)0.007 (12)0.036 (12)0.019 (9)
Geometric parameters (Å, º) top
Ni—N41.859 (3)C10—H1010.9600
Ni—N221.861 (3)C10—H1020.9600
Ni—N21.866 (3)C10—H1030.9600
Ni—N241.869 (3)C11—H1110.9600
N1—C71.367 (4)C11—H1120.9600
N1—C11.411 (4)C11—H1130.9600
N1—H10.8600C21—C261.382 (5)
N2—C71.293 (4)C21—C221.380 (5)
N2—H20.8600C22—C231.379 (5)
N3—C71.357 (4)C22—H2200.9300
N3—C81.368 (4)C23—C241.366 (6)
N3—H30.8600C23—H2300.9300
N4—C81.307 (4)C24—C251.371 (6)
N4—H40.8600C25—C261.372 (6)
N5—C81.327 (4)C25—H2500.9300
N5—C91.460 (4)C26—H2600.9300
N5—H50.8600C29—C301.494 (6)
N21—C271.351 (4)C29—C311.530 (5)
N21—C211.419 (5)C29—H2900.9800
N21—H210.8600C30—H3010.9600
N22—C271.298 (4)C30—H3020.9600
N22—H220.8600C30—H3030.9600
N23—C271.358 (4)C31—H3110.9600
N23—C281.370 (4)C31—H3120.9600
N23—H230.8600C31—H3130.9600
N24—C281.299 (4)C51—O501.207 (5)
N24—H240.8600C51—N50A1.289 (13)
N25—C281.345 (4)C51—N501.309 (9)
N25—C291.449 (5)C51—H510.9300
N25—H250.8600N50—C521.430 (14)
Cl4—C41.737 (4)N50—C531.449 (12)
Cl24—C241.732 (4)C52—H52A0.9600
C1—C61.379 (5)C52—H52B0.9600
C1—C21.377 (5)C52—H52C0.9600
C2—C31.372 (5)C53—H53A0.9600
C2—H200.9300C53—H53B0.9600
C3—C41.358 (5)C53—H53C0.9600
C3—H300.9300N50A—C52A1.420 (17)
C4—C51.366 (5)N50A—C53A1.461 (16)
C5—C61.379 (5)C52A—H52D0.9600
C5—H500.9300C52A—H52E0.9600
C6—H600.9300C52A—H52F0.9600
C9—C101.483 (6)C53A—H53D0.9600
C9—C111.503 (5)C53A—H53E0.9600
C9—H900.9800C53A—H53F0.9600
N4—Ni—N22177.55 (13)C9—C11—H111109.5
N4—Ni—N289.65 (12)C9—C11—H112109.5
N22—Ni—N290.53 (12)H111—C11—H112109.5
N4—Ni—N2490.23 (12)C9—C11—H113109.5
N22—Ni—N2489.58 (13)H111—C11—H113109.5
N2—Ni—N24179.79 (13)H112—C11—H113109.5
C7—N1—C1121.8 (3)C26—C21—C22119.1 (4)
C7—N1—H1119.1C26—C21—N21119.4 (4)
C1—N1—H1119.1C22—C21—N21121.5 (4)
C7—N2—Ni130.0 (2)C23—C22—C21120.4 (4)
C7—N2—H2115.0C23—C22—H220119.8
Ni—N2—H2115.0C21—C22—H220119.8
C7—N3—C8126.5 (3)C24—C23—C22119.7 (4)
C7—N3—H3116.8C24—C23—H230120.1
C8—N3—H3116.8C22—C23—H230120.1
C8—N4—Ni129.9 (2)C23—C24—C25120.4 (4)
C8—N4—H4115.0C23—C24—Cl24120.3 (4)
Ni—N4—H4115.0C25—C24—Cl24119.3 (4)
C8—N5—C9124.4 (3)C24—C25—C26120.1 (4)
C8—N5—H5117.8C24—C25—H250120.0
C9—N5—H5117.8C26—C25—H250120.0
C27—N21—C21123.8 (3)C25—C26—C21120.2 (4)
C27—N21—H21118.1C25—C26—H260119.9
C21—N21—H21118.1C21—C26—H260119.9
C27—N22—Ni128.5 (3)N22—C27—N21125.1 (3)
C27—N22—H22115.7N22—C27—N23121.1 (3)
Ni—N22—H22115.7N21—C27—N23113.8 (3)
C27—N23—C28125.9 (3)N24—C28—N25125.6 (3)
C27—N23—H23117.1N24—C28—N23120.1 (3)
C28—N23—H23117.1N25—C28—N23114.3 (3)
C28—N24—Ni128.6 (3)N25—C29—C30111.6 (4)
C28—N24—H24115.7N25—C29—C31107.5 (4)
Ni—N24—H24115.7C30—C29—C31113.1 (4)
C28—N25—C29124.4 (3)N25—C29—H290108.2
C28—N25—H25117.8C30—C29—H290108.2
C29—N25—H25117.8C31—C29—H290108.2
C6—C1—C2119.7 (3)C29—C30—H301109.5
C6—C1—N1120.2 (3)C29—C30—H302109.5
C2—C1—N1120.2 (3)H301—C30—H302109.5
C3—C2—C1119.8 (4)C29—C30—H303109.5
C3—C2—H20120.1H301—C30—H303109.5
C1—C2—H20120.1H302—C30—H303109.5
C4—C3—C2120.0 (4)C29—C31—H311109.5
C4—C3—H30120.0C29—C31—H312109.5
C2—C3—H30120.0H311—C31—H312109.5
C3—C4—C5121.2 (4)C29—C31—H313109.5
C3—C4—Cl4119.7 (3)H311—C31—H313109.5
C5—C4—Cl4119.1 (3)H312—C31—H313109.5
C4—C5—C6119.1 (4)O50—C51—N50A135.5 (12)
C4—C5—H50120.4O50—C51—N50121.3 (8)
C6—C5—H50120.4N50A—C51—N5017 (2)
C1—C6—C5120.1 (4)O50—C51—H51119.4
C1—C6—H60120.0N50A—C51—H51104.5
C5—C6—H60120.0N50—C51—H51119.4
N2—C7—N3121.6 (3)C51—N50—C52120.3 (12)
N2—C7—N1124.2 (3)C51—N50—C53124.1 (12)
N3—C7—N1114.2 (3)C52—N50—C53114.5 (10)
N4—C8—N5125.3 (3)C51—N50A—C52A124.2 (18)
N4—C8—N3120.1 (3)C51—N50A—C53A122.9 (18)
N5—C8—N3114.5 (3)C52A—N50A—C53A112.1 (15)
N5—C9—C10112.6 (3)N50A—C52A—H52D109.5
N5—C9—C11107.3 (3)N50A—C52A—H52E109.5
C10—C9—C11112.8 (4)H52D—C52A—H52E109.5
N5—C9—H90108.0N50A—C52A—H52F109.5
C10—C9—H90108.0H52D—C52A—H52F109.5
C11—C9—H90108.0H52E—C52A—H52F109.5
C9—C10—H101109.5N50A—C53A—H53D109.5
C9—C10—H102109.5N50A—C53A—H53E109.5
H101—C10—H102109.5H53D—C53A—H53E109.5
C9—C10—H103109.5N50A—C53A—H53F109.5
H101—C10—H103109.5H53D—C53A—H53F109.5
H102—C10—H103109.5H53E—C53A—H53F109.5
C1—N1—C7—N24.5 (5)C21—N21—C27—N223.3 (6)
C9—N5—C8—N416.9 (6)C29—N25—C28—N2413.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.862.543.184 (3)133
N2—H2···O500.862.192.981 (4)153
N3—H3···Cl10.862.393.212 (3)161
N4—H4···Cl2i0.862.543.394 (3)170
N5—H5···Cl10.862.483.253 (3)149
N21—H21···Cl1ii0.862.363.138 (3)151
N22—H22···O500.862.132.957 (4)160
N23—H23···Cl2ii0.862.623.358 (3)145
N24—H24···Cl2i0.862.613.454 (3)169
N25—H25···Cl2ii0.862.673.213 (3)123
N2—H2···O500.862.192.981 (4)153
N22—H22···O500.862.132.957 (4)160
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C11H16ClN5)2]Cl2·C3H7NO
Mr710.18
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)10.824 (5), 24.12 (1), 13.180 (3)
β (°) 95.42 (3)
V3)3426 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.45 × 0.37 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
'multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)'
Tmin, Tmax0.648, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
11970, 6000, 3270
Rint0.061
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 0.96
No. of reflections6000
No. of parameters417
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.69

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni—N41.859 (3)N4—C81.307 (4)
Ni—N221.861 (3)N5—C81.327 (4)
Ni—N21.866 (3)N21—C271.351 (4)
Ni—N241.869 (3)N23—C271.358 (4)
N1—C71.367 (4)N23—C281.370 (4)
N2—C71.293 (4)N24—C281.299 (4)
N3—C71.357 (4)N25—C281.345 (4)
N3—C81.368 (4)
N4—Ni—N22177.55 (13)N2—C7—N1124.2 (3)
N4—Ni—N289.65 (12)N3—C7—N1114.2 (3)
N22—Ni—N290.53 (12)N4—C8—N5125.3 (3)
N4—Ni—N2490.23 (12)N4—C8—N3120.1 (3)
N22—Ni—N2489.58 (13)N5—C8—N3114.5 (3)
N2—Ni—N24179.79 (13)N22—C27—N21125.1 (3)
C7—N2—Ni130.0 (2)N22—C27—N23121.1 (3)
C7—N3—C8126.5 (3)N21—C27—N23113.8 (3)
C8—N4—Ni129.9 (2)N24—C28—N25125.6 (3)
C27—N22—Ni128.5 (3)N24—C28—N23120.1 (3)
C28—N24—Ni128.6 (3)N25—C28—N23114.3 (3)
N2—C7—N3121.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.862.543.184 (3)132.5
N2—H2···O500.862.192.981 (4)153.4
N3—H3···Cl10.862.393.212 (3)160.5
N4—H4···Cl2i0.862.543.394 (3)169.8
N5—H5···Cl10.862.483.253 (3)149.2
N21—H21···Cl1ii0.862.363.138 (3)150.5
N22—H22···O500.862.132.957 (4)160.1
N23—H23···Cl2ii0.862.623.358 (3)144.6
N24—H24···Cl2i0.862.613.454 (3)168.6
N25—H25···Cl2ii0.862.673.213 (3)122.7
N2—H2···O500.862.192.981 (4)153.4
N22—H22···O500.862.132.957 (4)160.1
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds