Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of two racemic thia­zolino­[2,3-a]­isoquinolinone S-oxides, i.e. 8,9-di­methoxy-2,3,5,6-tetra­hydro-10bH-thia­zolo­[2,3-a]­isoquinolin-3-one 1-oxide [C13H15NO4S, (IIa)] and 8,9-di­methoxy-10b-methyl-2,3,5,6-tetra­hydro-10bH-thia­zolo­[2,3-a]­isoquinolin-3-one 1-oxide [C14H17NO4S, (IIb)], are described. The thia­zolinone ring in (IIa) exists in an envelope conformation, while in (IIb), it assumes a half-chair conformation. In (IIa) and (IIb), the six-membered heterocyclic ring adopts an envelope conformation. The O atom at sulfur is oriented in a pseudo-axial position, whereas the H atom in (IIa) and the methyl group in (IIb), linked to the stereogenic C centre, occupy a bisectional position with respect to the partially saturated pyridine ring and a pseudo-axial position with respect to the thia­zolinone ring. In both structures, the S=O group and the substituent at the stereogenic C centre are trans with respect to one another. Intermolecular C—H...O hydrogen bonds are observed in the crystal lattice of (IIa) and (IIb).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016638/dn1001sup1.cif
Contains datablocks IIa, IIb, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016638/dn1001IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016638/dn1001IIbsup3.hkl
Contains datablock IIb

CCDC references: 179285; 179286

Comment top

Our studies of the sulfur-mediated synthesis of isoquinoline alkaloids (Brózda, 1994; Chrzanowska et al., 1998) have stimulated our interest in partially reduced thiazolo[2,3-a]isoquinoline-type heterocycles. We anticipated that the corresponding S-oxides with stereogenic sulfur may be attractive for the preparation of chiral non-racemic alkaloids. It turned out, however, that no systematic investigation has been carried out in this area. Thus, we have undertaken studies to learn more about this type of compound (Rozwadowska & Sulima, 2001). The relative configuration between the substituents at the C-10b and S-1 stereogenic centres was one of the most important problems to be solved. In order to solve the problem, the X-ray crystal structure analyses of two racemic thiazolino[2,3-a]isoquinolinone S-oxides, namely 8,9-dimethoxy-2,3,5,6-tetrahydro-10bH-thiazolo[2,3-a]isoquinolin-3-one 1-oxide, (IIa), and 8,9-dimethoxy-10b-methyl-2,3,5,6-tetrahydro-10bH-thiazolo[2,3-a]isoquinolin- 3-one 1-oxide, (IIb), have been carried out.

The molecular structures of compounds (IIa) and (IIb) and the atom-labeling schemes are illustrated in Figs. 1 and 2, respectively. In both structures, the O atom at S1 is in a pseudo-axial position [the angles to the Cremer & Pople thiazolinone plane normals are 3.21 (11) and 3.56 (8)° for (IIa) and (IIb), respectively]. The H atom in (IIa) and the methyl group in (IIb) at C10b occupy a bisectional position with respect to the partialy saturated pyridine ring [at 30.05 (7) and 37.66 (9)°, respectively] and a pseudo-axial position with respect to the five-membered thiazolinone ring [at 9.38 (8) and 7.24 (10)°, respectively]. The S1O1 bond is trans with respect to C10b—H10b in (IIa) and C10b—C13 in (IIb) [the torsion angle H10b—C10b—S1—O1 is 170° in (IIa) and C13—C10b—S1—O1 is 170.36 (11)° in (IIb)].

Both methoxy groups on the fused aromatic ring in (IIa) are coplanar with the ring, whereas those in (IIb) are rotated by 12.65 (18) (C8—OCH3) and 12.00 (7)° (C9—OCH3) out of the plane of the ring.

The five-membered thiazolinone ring has an envelope conformation in (IIa) [Cremer & Pople (1975) puckering parameters: Q = 0.415 (2) Å and Φ = 358.2 (3)°], with the S atom 0.730 (3) Å out of the plane defined by the remaining four atoms. For (IIb), the thiazolinone ring is found to be in a half-chair conformation twisted on S1—C10b [Cremer & Pople (1975) puckering parameters: Q = 0.421 (1) Å and Φ = 350.6 (2)°]. In both compounds, the partially hydrogenated pyridine moiety shows an envelope conformation [Cremer & Pople (1975) puckering parameters: for (IIa), Q = 0.437 (3) Å, Θ = 51.3 (3)° and Φ = 56.4 (4)°; for (IIb), Q = 0.451 (2) Å, Θ = 52.6 (3)° and Φ = 60.0 (3)°].

The dihedral angles between the best-fit planes of the central ring of the tricyclic skeleton and the outer six- and five-membered rings are 8.24 (14) and 36.82 (9)° in (IIa), and 10.01 (7) and 41.05 (7)° in (IIb). The angles between the outer rings are 37.12 (10) and 41.37 (7)° in (IIa) and (IIb), respectively.

The bond lengths and angles in the partially reduced dimethoxyisoquinoline core of both compounds are similar to those observed in other structures (Pavkovic et al., 1981; Chrzanowska et al., 1987; Lee et al., 1997; Warrener et al., 1998; Maurin et al., 1996; CSD, version 5.20, Allen et al., 1993). In the five-membered thiazolinone rings, the C3—N4 bond distances [1.342 (3) and 1.349 (2) Å in (IIa) and (IIb), respectively] are typical of a tertiary amide distance [1.346 (5) Å; Allen et al., 1987]. The S1—O1 distances are similar [1.4836 (18) Å in (IIa) and 1.4817 (13) Å in (IIb)] and somewhat shorter than the C—S( O)—C double bond [1.497 (1) Å; Allen et al., 1987].

Apart from normal van der Waals interactions, the molecular packing in the solid state in both compounds is stabilized by possible C—H···O non-classical intermolecular hydrogen bonds (Tables 1 and 2).

Examination of the structures of (IIa) and (IIb) with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattices.

Related literature top

For related literature, see: Allen & Kennard (1993); Allen et al. (1987); Brózda (1994); Chrzanowska et al. (1987, 1998); Cremer & Pople (1975); Lee et al. (1997); Maurin et al. (1996); Pavkovic et al. (1981); Rozwadowska & Sulima (2001); Warrener et al. (1998).

Experimental top

Compounds (IIa) and (IIb) were prepared from the corresponding thiazolino[2,3-a]isoquinolinones, (Ia) and (Ib), by oxidation with hydrogen peroxide in methanol/water (1:1) solution (see Scheme). Sulfoxides (IIa) and (IIb) were isolated as single diastereomers in yields of 42 and 44%, respectively.

Refinement top

In both compounds, all H atoms were located in difference Fourier maps and refined with a riding model (C—H = 0.93–0.97 Å), and with Uiso constrained to be 1.2 (1.5 for methyl groups) times Ueq of the parent atom. The methyl-H atoms were refined as rigid groups, which were allowed to rotate.

Computing details top

For both compounds, data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS7 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (IIa) showing the atomic labeling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are shown as spheres of an arbitrary size.
[Figure 2] Fig. 2. The molecular structure of (IIb) showing the atomic labeling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are shown as spheres of an arbitrary size.
(IIa) 8,9-Dimethoxy-6,10b-dihydro-1-oxo-5H-thiazolo[2,3-a]isoquinolin-3-one top
Crystal data top
C13H15NO4SF(000) = 592
Mr = 281.32Dx = 1.388 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 19.967 (2) ÅCell parameters from 49 reflections
b = 7.5484 (9) Åθ = 14.3–27.8°
c = 9.1666 (13) ŵ = 2.24 mm1
β = 102.967 (11)°T = 293 K
V = 1346.3 (3) Å3Plate, colourless
Z = 40.50 × 0.33 × 0.22 mm
Data collection top
Kuma KM-4
diffractometer
2119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 70.2°, θmin = 2.3°
ω/2θ scansh = 2423
Absorption correction: psi-scan
(North et al., 1968)
k = 90
Tmin = 0.455, Tmax = 0.611l = 011
2735 measured reflections2 standard reflections every 100 reflections
2556 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.112P)2 + 0.441P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C13H15NO4SV = 1346.3 (3) Å3
Mr = 281.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.967 (2) ŵ = 2.24 mm1
b = 7.5484 (9) ÅT = 293 K
c = 9.1666 (13) Å0.50 × 0.33 × 0.22 mm
β = 102.967 (11)°
Data collection top
Kuma KM-4
diffractometer
2119 reflections with I > 2σ(I)
Absorption correction: psi-scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.455, Tmax = 0.6112 standard reflections every 100 reflections
2735 measured reflections intensity decay: 3.5%
2556 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
2556 reflectionsΔρmin = 0.33 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13739 (3)0.30932 (7)0.08402 (6)0.0381 (2)
C20.04978 (12)0.2658 (3)0.0144 (3)0.0394 (5)
H2A0.01990.25910.05560.047*
H2B0.03330.35950.08590.047*
C30.05037 (11)0.0913 (3)0.0942 (2)0.0372 (5)
N40.10504 (10)0.0061 (2)0.0283 (2)0.0382 (4)
C50.12147 (14)0.1796 (3)0.0795 (3)0.0486 (6)
H5A0.08930.20900.17250.058*
H5B0.11740.26850.00560.058*
C60.19420 (14)0.1792 (3)0.1039 (3)0.0483 (6)
H6A0.20740.29950.12210.058*
H6B0.19560.10910.19180.058*
C6A0.24505 (12)0.1045 (3)0.0293 (2)0.0389 (5)
C70.31396 (13)0.1563 (3)0.0586 (3)0.0464 (6)
H7A0.32810.23660.00530.056*
C80.36166 (12)0.0910 (3)0.1801 (3)0.0449 (6)
C90.33926 (12)0.0297 (3)0.2768 (2)0.0400 (5)
C100.27133 (12)0.0793 (3)0.2498 (2)0.0371 (5)
H100.25690.15760.31490.044*
C10A0.22341 (11)0.0135 (3)0.1255 (2)0.0336 (5)
C10B0.14946 (11)0.0668 (3)0.1052 (2)0.0337 (5)
H10B0.13290.02780.19280.040*
O10.17430 (10)0.3703 (3)0.0304 (2)0.0565 (5)
O20.00588 (9)0.0465 (2)0.20395 (19)0.0504 (5)
O30.42959 (10)0.1315 (3)0.2172 (2)0.0677 (6)
C110.4545 (2)0.2540 (9)0.1233 (6)0.129 (2)
H11A0.43040.36440.12130.193*
H11B0.50280.27320.16170.193*
H11C0.44700.20690.02360.193*
O40.38964 (9)0.0877 (3)0.3936 (2)0.0575 (5)
C120.3690 (2)0.2088 (7)0.4925 (5)0.1003 (17)
H12A0.35350.31650.43990.150*
H12B0.40730.23410.57410.150*
H12C0.33230.15820.53080.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0407 (4)0.0315 (3)0.0431 (4)0.0005 (2)0.0117 (2)0.0041 (2)
C20.0381 (12)0.0405 (12)0.0402 (11)0.0060 (9)0.0100 (9)0.0004 (9)
C30.0380 (11)0.0369 (11)0.0368 (11)0.0005 (9)0.0087 (9)0.0021 (9)
N40.0409 (10)0.0321 (9)0.0392 (9)0.0004 (8)0.0040 (8)0.0046 (8)
C50.0504 (14)0.0324 (12)0.0573 (15)0.0015 (10)0.0000 (11)0.0104 (10)
C60.0509 (14)0.0438 (14)0.0463 (13)0.0065 (11)0.0027 (11)0.0154 (10)
C6A0.0449 (12)0.0338 (11)0.0374 (11)0.0017 (9)0.0083 (9)0.0033 (9)
C70.0470 (13)0.0444 (13)0.0488 (13)0.0061 (10)0.0133 (10)0.0104 (11)
C80.0387 (12)0.0465 (13)0.0496 (13)0.0039 (10)0.0103 (10)0.0038 (11)
C90.0384 (12)0.0421 (12)0.0384 (11)0.0025 (9)0.0065 (9)0.0028 (9)
C100.0400 (12)0.0371 (11)0.0358 (11)0.0031 (9)0.0122 (9)0.0047 (9)
C10A0.0379 (11)0.0311 (10)0.0329 (10)0.0008 (8)0.0100 (8)0.0020 (8)
C10B0.0385 (11)0.0322 (11)0.0310 (10)0.0017 (8)0.0088 (8)0.0000 (8)
O10.0575 (11)0.0463 (10)0.0726 (12)0.0016 (8)0.0289 (9)0.0140 (9)
O20.0477 (10)0.0510 (11)0.0460 (9)0.0002 (8)0.0031 (8)0.0046 (8)
O30.0409 (10)0.0851 (15)0.0736 (13)0.0146 (10)0.0055 (9)0.0263 (12)
C110.064 (2)0.184 (5)0.128 (4)0.057 (3)0.000 (2)0.075 (4)
O40.0392 (9)0.0722 (13)0.0569 (11)0.0009 (8)0.0020 (8)0.0225 (10)
C120.067 (2)0.129 (4)0.091 (3)0.019 (2)0.0104 (19)0.070 (3)
Geometric parameters (Å, º) top
S1—O11.4836 (18)C7—C81.384 (3)
S1—C21.809 (2)C7—H7A0.9300
S1—C10B1.851 (2)C8—O31.357 (3)
C2—C31.508 (3)C8—C91.412 (3)
C2—H2A0.9700C9—O41.366 (3)
C2—H2B0.9700C9—C101.375 (3)
C3—O21.231 (3)C10—C10A1.405 (3)
C3—N41.342 (3)C10—H100.9300
N4—C10B1.449 (3)C10A—C10B1.501 (3)
N4—C51.454 (3)C10B—H10B0.9800
C5—C61.518 (4)O3—C111.427 (4)
C5—H5A0.9700C11—H11A0.9600
C5—H5B0.9700C11—H11B0.9600
C6—C6A1.511 (3)C11—H11C0.9600
C6—H6A0.9700O4—C121.413 (4)
C6—H6B0.9700C12—H12A0.9600
C6A—C10A1.389 (3)C12—H12B0.9600
C6A—C71.397 (3)C12—H12C0.9600
O1—S1—C2106.37 (11)O3—C8—C7126.2 (2)
O1—S1—C10B107.90 (10)O3—C8—C9115.3 (2)
C2—S1—C10B87.79 (11)C7—C8—C9118.5 (2)
C3—C2—S1106.77 (15)O4—C9—C10125.2 (2)
C3—C2—H2A110.4O4—C9—C8114.7 (2)
S1—C2—H2A110.4C10—C9—C8120.1 (2)
C3—C2—H2B110.4C9—C10—C10A120.9 (2)
S1—C2—H2B110.4C9—C10—H10119.5
H2A—C2—H2B108.6C10A—C10—H10119.5
O2—C3—N4125.6 (2)C6A—C10A—C10119.3 (2)
O2—C3—C2123.6 (2)C6A—C10A—C10B122.1 (2)
N4—C3—C2110.75 (19)C10—C10A—C10B118.54 (19)
C3—N4—C10B117.02 (18)N4—C10B—C10A113.67 (17)
C3—N4—C5124.59 (19)N4—C10B—S1104.24 (14)
C10B—N4—C5118.37 (18)C10A—C10B—S1112.28 (15)
N4—C5—C6109.8 (2)N4—C10B—H10B108.8
N4—C5—H5A109.7C10A—C10B—H10B108.8
C6—C5—H5A109.7S1—C10B—H10B108.8
N4—C5—H5B109.7C8—O3—C11117.3 (2)
C6—C5—H5B109.7O3—C11—H11A109.5
H5A—C5—H5B108.2O3—C11—H11B109.5
C6A—C6—C5111.9 (2)H11A—C11—H11B109.5
C6A—C6—H6A109.2O3—C11—H11C109.5
C5—C6—H6A109.2H11A—C11—H11C109.5
C6A—C6—H6B109.2H11B—C11—H11C109.5
C5—C6—H6B109.2C9—O4—C12116.2 (2)
H6A—C6—H6B107.9O4—C12—H12A109.5
C10A—C6A—C7119.4 (2)O4—C12—H12B109.5
C10A—C6A—C6120.2 (2)H12A—C12—H12B109.5
C7—C6A—C6120.3 (2)O4—C12—H12C109.5
C8—C7—C6A121.7 (2)H12A—C12—H12C109.5
C8—C7—H7A119.2H12B—C12—H12C109.5
C6A—C7—H7A119.2
O1—S1—C2—C376.65 (17)C7—C6A—C10A—C100.3 (3)
C10B—S1—C2—C331.37 (16)C6—C6A—C10A—C10179.1 (2)
S1—C2—C3—O2157.67 (19)C7—C6A—C10A—C10B176.6 (2)
S1—C2—C3—N422.9 (2)C6—C6A—C10A—C10B2.1 (3)
O2—C3—N4—C10B176.6 (2)C9—C10—C10A—C6A0.5 (3)
C2—C3—N4—C10B2.8 (3)C9—C10—C10A—C10B177.6 (2)
O2—C3—N4—C51.9 (4)C3—N4—C10B—C10A148.8 (2)
C2—C3—N4—C5178.7 (2)C5—N4—C10B—C10A32.6 (3)
C3—N4—C5—C6125.4 (2)C3—N4—C10B—S126.3 (2)
C10B—N4—C5—C656.1 (3)C5—N4—C10B—S1155.14 (18)
N4—C5—C6—C6A49.7 (3)C6A—C10A—C10B—N44.2 (3)
C5—C6—C6A—C10A25.3 (3)C10—C10A—C10B—N4178.81 (18)
C5—C6—C6A—C7153.4 (2)C6A—C10A—C10B—S1122.2 (2)
C10A—C6A—C7—C80.9 (4)C10—C10A—C10B—S160.8 (2)
C6—C6A—C7—C8179.6 (2)O1—S1—C10B—N474.42 (16)
C6A—C7—C8—O3179.3 (3)C2—S1—C10B—N432.08 (14)
C6A—C7—C8—C90.5 (4)O1—S1—C10B—C10A49.07 (17)
O3—C8—C9—O40.0 (3)C2—S1—C10B—C10A155.56 (16)
C7—C8—C9—O4179.9 (2)C7—C8—O3—C110.6 (6)
O3—C8—C9—C10179.8 (2)C9—C8—O3—C11179.6 (4)
C7—C8—C9—C100.4 (4)C10—C9—O4—C120.3 (5)
O4—C9—C10—C10A179.4 (2)C8—C9—O4—C12179.9 (3)
C8—C9—C10—C10A0.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.373.332 (3)169
C10—H10···O1ii0.932.413.116 (3)132
C11—H11B···O4iii0.962.543.370 (4)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
(IIb) 8,9-Dimethoxy-10b-methyl-1-oxo-6,10b-dihydro-5H- thiazolo[2,3-a]isoquinolin-3-one top
Crystal data top
C14H17NO4SDx = 1.411 Mg m3
Mr = 295.35Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 47 reflections
a = 15.9407 (15) Åθ = 15.0–29.9°
b = 9.1737 (10) ŵ = 2.20 mm1
c = 19.015 (2) ÅT = 293 K
V = 2780.7 (5) Å3Prism, colourless
Z = 80.33 × 0.31 × 0.20 mm
F(000) = 1248
Data collection top
Kuma KM-4
diffractometer
2252 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 70.1°, θmin = 4.7°
ω/2θ scansh = 019
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.509, Tmax = 0.645l = 230
2643 measured reflections2 standard reflections every 100 reflections
2643 independent reflections intensity decay: 7.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.9585P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2643 reflectionsΔρmax = 0.20 e Å3
185 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00190 (15)
Crystal data top
C14H17NO4SV = 2780.7 (5) Å3
Mr = 295.35Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 15.9407 (15) ŵ = 2.20 mm1
b = 9.1737 (10) ÅT = 293 K
c = 19.015 (2) Å0.33 × 0.31 × 0.20 mm
Data collection top
Kuma KM-4
diffractometer
2252 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.509, Tmax = 0.6452 standard reflections every 100 reflections
2643 measured reflections intensity decay: 7.1%
2643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2643 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25137 (3)0.12856 (4)0.44033 (2)0.04041 (15)
C20.27792 (12)0.0366 (2)0.52145 (9)0.0490 (4)
H2A0.29670.10660.55630.059*
H2B0.22930.01410.53990.059*
C30.34702 (11)0.07046 (18)0.50522 (8)0.0425 (4)
N40.38423 (9)0.03797 (15)0.44348 (7)0.0405 (3)
C50.44589 (12)0.1309 (2)0.40989 (10)0.0498 (4)
H5A0.45180.22110.43610.060*
H5B0.49990.08240.40880.060*
C60.41712 (12)0.16321 (19)0.33598 (10)0.0484 (4)
H6A0.36840.22640.33750.058*
H6B0.46130.21390.31080.058*
C6A0.39521 (10)0.02449 (17)0.29758 (9)0.0392 (4)
C70.40452 (11)0.01801 (18)0.22430 (9)0.0424 (4)
H70.42290.10020.20020.051*
C80.38709 (11)0.10700 (17)0.18743 (8)0.0389 (4)
C90.35971 (10)0.23192 (17)0.22336 (8)0.0383 (4)
C100.35043 (10)0.22667 (17)0.29556 (8)0.0387 (4)
H100.33200.30890.31970.046*
C10A0.36851 (10)0.09837 (17)0.33281 (8)0.0366 (4)
C10B0.36221 (10)0.10128 (16)0.41171 (8)0.0355 (3)
O10.19727 (8)0.02683 (15)0.40025 (7)0.0543 (3)
O20.36523 (9)0.17314 (15)0.54328 (7)0.0576 (4)
O30.39587 (8)0.12164 (12)0.11634 (6)0.0466 (3)
C110.44023 (15)0.0080 (2)0.08183 (10)0.0596 (5)
H11A0.49500.00180.10240.089*
H11B0.44570.03090.03280.089*
H11C0.41000.08190.08700.089*
O40.34611 (9)0.35200 (13)0.18269 (6)0.0505 (3)
C120.33515 (15)0.48769 (19)0.21733 (10)0.0584 (5)
H12A0.28550.48410.24580.088*
H12B0.32970.56380.18300.088*
H12C0.38290.50700.24660.088*
C130.41274 (12)0.2247 (2)0.44441 (9)0.0481 (4)
H13A0.40570.22320.49450.072*
H13B0.39340.31630.42620.072*
H13C0.47100.21240.43310.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (2)0.0409 (3)0.0376 (2)0.00452 (17)0.00164 (16)0.00195 (16)
C20.0569 (10)0.0526 (11)0.0375 (8)0.0017 (8)0.0029 (8)0.0041 (8)
C30.0529 (9)0.0384 (8)0.0362 (8)0.0039 (7)0.0076 (7)0.0024 (7)
N40.0484 (8)0.0352 (7)0.0379 (7)0.0050 (6)0.0008 (6)0.0047 (6)
C50.0541 (10)0.0458 (10)0.0495 (10)0.0157 (8)0.0005 (8)0.0081 (8)
C60.0615 (11)0.0364 (9)0.0474 (10)0.0130 (8)0.0063 (8)0.0048 (7)
C6A0.0426 (8)0.0335 (8)0.0415 (8)0.0037 (7)0.0024 (7)0.0050 (7)
C70.0520 (9)0.0347 (8)0.0405 (8)0.0054 (7)0.0078 (7)0.0037 (7)
C80.0445 (8)0.0385 (8)0.0336 (8)0.0012 (7)0.0039 (6)0.0012 (6)
C90.0447 (8)0.0335 (8)0.0366 (8)0.0041 (7)0.0018 (6)0.0026 (6)
C100.0465 (9)0.0330 (8)0.0367 (8)0.0057 (7)0.0036 (7)0.0000 (6)
C10A0.0380 (8)0.0364 (8)0.0355 (8)0.0021 (6)0.0007 (6)0.0031 (6)
C10B0.0392 (8)0.0315 (8)0.0359 (8)0.0018 (6)0.0016 (6)0.0023 (6)
O10.0487 (7)0.0589 (8)0.0554 (7)0.0098 (6)0.0085 (6)0.0051 (6)
O20.0729 (9)0.0512 (7)0.0488 (7)0.0016 (7)0.0076 (6)0.0174 (6)
O30.0655 (8)0.0411 (6)0.0332 (6)0.0104 (6)0.0087 (5)0.0005 (5)
C110.0849 (14)0.0506 (11)0.0434 (10)0.0167 (10)0.0151 (9)0.0049 (9)
O40.0808 (9)0.0349 (6)0.0360 (6)0.0125 (6)0.0041 (6)0.0061 (5)
C120.0902 (15)0.0355 (9)0.0495 (10)0.0145 (10)0.0054 (10)0.0024 (8)
C130.0559 (10)0.0418 (10)0.0465 (9)0.0076 (8)0.0104 (8)0.0025 (7)
Geometric parameters (Å, º) top
S1—O11.4817 (13)C8—O31.3656 (19)
S1—C21.8083 (18)C8—C91.404 (2)
S1—C10B1.8656 (16)C9—O41.3632 (19)
C2—C31.508 (3)C9—C101.382 (2)
C2—H2A0.9700C10—C10A1.404 (2)
C2—H2B0.9700C10—H100.9300
C3—O21.223 (2)C10A—C10B1.504 (2)
C3—N41.349 (2)C10B—C131.522 (2)
N4—C51.450 (2)O3—C111.420 (2)
N4—C10B1.4560 (19)C11—H11A0.9600
C5—C61.508 (3)C11—H11B0.9600
C5—H5A0.9700C11—H11C0.9600
C5—H5B0.9700O4—C121.419 (2)
C6—C6A1.508 (2)C12—H12A0.9600
C6—H6A0.9700C12—H12B0.9600
C6—H6B0.9700C12—H12C0.9600
C6A—C10A1.379 (2)C13—H13A0.9600
C6A—C71.403 (2)C13—H13B0.9600
C7—C81.373 (2)C13—H13C0.9600
C7—H70.9300
O1—S1—C2106.33 (8)O4—C9—C10125.08 (14)
O1—S1—C10B108.47 (7)O4—C9—C8115.66 (14)
C2—S1—C10B87.97 (8)C10—C9—C8119.23 (14)
C3—C2—S1107.47 (12)C9—C10—C10A120.58 (15)
C3—C2—H2A110.2C9—C10—H10119.7
S1—C2—H2A110.2C10A—C10—H10119.7
C3—C2—H2B110.2C6A—C10A—C10120.24 (15)
S1—C2—H2B110.2C6A—C10A—C10B121.33 (14)
H2A—C2—H2B108.5C10—C10A—C10B118.35 (14)
O2—C3—N4125.52 (17)N4—C10B—C10A112.47 (13)
O2—C3—C2123.65 (16)N4—C10B—C13110.83 (13)
N4—C3—C2110.83 (14)C10A—C10B—C13112.66 (14)
C3—N4—C5123.49 (14)N4—C10B—S1103.00 (10)
C3—N4—C10B116.68 (14)C10A—C10B—S1110.89 (11)
C5—N4—C10B119.78 (13)C13—C10B—S1106.40 (11)
N4—C5—C6108.67 (14)C8—O3—C11115.86 (13)
N4—C5—H5A110.0O3—C11—H11A109.5
C6—C5—H5A110.0O3—C11—H11B109.5
N4—C5—H5B110.0H11A—C11—H11B109.5
C6—C5—H5B110.0O3—C11—H11C109.5
H5A—C5—H5B108.3H11A—C11—H11C109.5
C5—C6—C6A110.85 (15)H11B—C11—H11C109.5
C5—C6—H6A109.5C9—O4—C12117.72 (13)
C6A—C6—H6A109.5O4—C12—H12A109.5
C5—C6—H6B109.5O4—C12—H12B109.5
C6A—C6—H6B109.5H12A—C12—H12B109.5
H6A—C6—H6B108.1O4—C12—H12C109.5
C10A—C6A—C7118.74 (15)H12A—C12—H12C109.5
C10A—C6A—C6121.75 (15)H12B—C12—H12C109.5
C7—C6A—C6119.49 (15)C10B—C13—H13A109.5
C8—C7—C6A121.44 (15)C10B—C13—H13B109.5
C8—C7—H7119.3H13A—C13—H13B109.5
C6A—C7—H7119.3C10B—C13—H13C109.5
O3—C8—C7124.55 (14)H13A—C13—H13C109.5
O3—C8—C9115.68 (14)H13B—C13—H13C109.5
C7—C8—C9119.76 (15)
O1—S1—C2—C379.00 (14)C6—C6A—C10A—C10B1.7 (2)
C10B—S1—C2—C329.66 (13)C9—C10—C10A—C6A0.5 (2)
S1—C2—C3—O2161.58 (15)C9—C10—C10A—C10B176.45 (15)
S1—C2—C3—N417.68 (18)C3—N4—C10B—C10A151.01 (14)
O2—C3—N4—C56.9 (3)C5—N4—C10B—C10A31.3 (2)
C2—C3—N4—C5172.37 (16)C3—N4—C10B—C1381.88 (18)
O2—C3—N4—C10B170.73 (16)C5—N4—C10B—C1395.81 (18)
C2—C3—N4—C10B10.0 (2)C3—N4—C10B—S131.57 (16)
C3—N4—C5—C6125.39 (17)C5—N4—C10B—S1150.75 (14)
C10B—N4—C5—C657.1 (2)C6A—C10A—C10B—N42.0 (2)
N4—C5—C6—C6A51.3 (2)C10—C10A—C10B—N4178.86 (14)
C5—C6—C6A—C10A27.2 (2)C6A—C10A—C10B—C13124.18 (17)
C5—C6—C6A—C7150.84 (17)C10—C10A—C10B—C1352.7 (2)
C10A—C6A—C7—C80.5 (3)C6A—C10A—C10B—S1116.69 (15)
C6—C6A—C7—C8178.55 (16)C10—C10A—C10B—S166.41 (17)
C6A—C7—C8—O3179.03 (16)O1—S1—C10B—N473.00 (11)
C6A—C7—C8—C90.3 (3)C2—S1—C10B—N433.54 (11)
O3—C8—C9—O40.5 (2)O1—S1—C10B—C10A47.53 (13)
C7—C8—C9—O4178.29 (16)C2—S1—C10B—C10A154.07 (12)
O3—C8—C9—C10179.07 (15)O1—S1—C10B—C13170.36 (11)
C7—C8—C9—C100.2 (3)C2—S1—C10B—C1383.10 (12)
O4—C9—C10—C10A178.06 (16)C7—C8—O3—C1111.9 (3)
C8—C9—C10—C10A0.3 (2)C9—C8—O3—C11166.88 (16)
C7—C6A—C10A—C100.5 (2)C10—C9—O4—C1211.0 (3)
C6—C6A—C10A—C10178.57 (16)C8—C9—O4—C12167.44 (17)
C7—C6A—C10A—C10B176.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.972.563.410 (2)147
C10—H10···O1ii0.932.563.482 (2)170
C11—H11C···O2iii0.962.503.377 (3)152
C13—H13B···O1ii0.962.463.386 (2)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1/2, z1/2.

Experimental details

(IIa)(IIb)
Crystal data
Chemical formulaC13H15NO4SC14H17NO4S
Mr281.32295.35
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)293293
a, b, c (Å)19.967 (2), 7.5484 (9), 9.1666 (13)15.9407 (15), 9.1737 (10), 19.015 (2)
α, β, γ (°)90, 102.967 (11), 9090, 90, 90
V3)1346.3 (3)2780.7 (5)
Z48
Radiation typeCu KαCu Kα
µ (mm1)2.242.20
Crystal size (mm)0.50 × 0.33 × 0.220.33 × 0.31 × 0.20
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM-4
diffractometer
Absorption correctionPsi-scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.455, 0.6110.509, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
2735, 2556, 2119 2643, 2643, 2252
Rint0.0440.000
(sin θ/λ)max1)0.6100.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.04 0.033, 0.098, 1.06
No. of reflections25562643
No. of parameters174185
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.330.20, 0.23

Computer programs: KM-4 Software (Kuma, 1991), KM-4 Software, SHELXS7 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (IIa) top
S1—O11.4836 (18)C3—N41.342 (3)
S1—C21.809 (2)N4—C10B1.449 (3)
S1—C10B1.851 (2)N4—C51.454 (3)
C3—O21.231 (3)
O1—S1—C2106.37 (11)C3—N4—C10B117.02 (18)
O1—S1—C10B107.90 (10)C3—N4—C5124.59 (19)
C2—S1—C10B87.79 (11)C10B—N4—C5118.37 (18)
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.972.373.332 (3)169
C10—H10···O1ii0.932.413.116 (3)132
C11—H11B···O4iii0.962.543.370 (4)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (IIb) top
S1—O11.4817 (13)C3—N41.349 (2)
S1—C21.8083 (18)N4—C51.450 (2)
S1—C10B1.8656 (16)N4—C10B1.4560 (19)
C3—O21.223 (2)
O1—S1—C2106.33 (8)C3—N4—C5123.49 (14)
O1—S1—C10B108.47 (7)C3—N4—C10B116.68 (14)
C2—S1—C10B87.97 (8)C5—N4—C10B119.78 (13)
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.972.563.410 (2)147
C10—H10···O1ii0.932.563.482 (2)170
C11—H11C···O2iii0.962.503.377 (3)152
C13—H13B···O1ii0.962.463.386 (2)161
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds