Download citation
Download citation
link to html
The complex trans-[RuNO(NH3)4F]SiF6 was synthesized in quantitative yield and the structure was characterized by X-ray diffraction and spectroscopic methods. The complex crystallizes in the non-centrosymmetric space group Pn. Hirshfeld surface analysis revealed that the dominant intermolecular inter­actions are of types H...F and F...O, which are likely to be responsible for the packing of the molecules in a non-centrosymmetric structure. Irradiation with blue light leads to the formation of Ru–ON (metastable state MS1) and Ru–η2-(NO) (metastable state MS2) bond isomers, as shown by IR and UV–Vis spectroscopy. The structural features of the MS1 isomer were elucidated by photocrystallography. The complex exhibits exceptionally good thermal stability of the metastable state MS1, such that it can be populated by light at 290–300 K, which is important for potential applications. The second harmonic (SH) emission can be generated by femtosecond-pulsed irradiation of the complex. The generated SH is rather efficient and stable under long-term exposure. Finally, since both metastable states and harmonic generation can be generated at room temperature, an attempt to drive the SH response by photoisomerization of the nitro­syl ligand was made and is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252061901357X/dk5089sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061901357X/dk5089Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205252061901357X/dk5089sup3.pdf
Additional table and figures

CCDC reference: 1910521

Computing details top

Data collection: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); cell refinement: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); data reduction: CrysAlis PRO 1.171.39.46 (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(I) top
Crystal data top
F6Si·FH12N5ORuF(000) = 349.9500
Mr = 360.27Dx = 2.487 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 6.7036 (4) ÅCell parameters from 4735 reflections
b = 7.4260 (4) Åθ = 2.7–32.8°
c = 10.1296 (7) ŵ = 1.85 mm1
β = 107.469 (6)°T = 100 K
V = 481.01 (5) Å3Block, yellow
Z = 20.16 × 0.10 × 0.09 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3165 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3066 reflections with I 2u(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4508 pixels mm-1θmax = 32.9°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1111
Tmin = 0.624, Tmax = 1.000l = 1314
8064 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0166P)2 + 0.2679P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.64 e Å3
3165 reflectionsΔρmin = 0.64 e Å3
141 parametersAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876-881.
2 restraintsAbsolute structure parameter: 0.02 (2)
16 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.85252 (13)0.16577 (9)0.50274 (11)0.00629 (19)
Ru10.366141 (14)0.67200 (2)0.491860 (12)0.00485 (5)
N10.3164 (3)0.9338 (3)0.4128 (2)0.0085 (4)
H1a0.231 (3)0.9918 (9)0.4510 (16)0.0102 (5)*
H1b0.258 (3)0.9293 (3)0.3215 (3)0.0102 (5)*
H1c0.4381 (5)0.9916 (9)0.4323 (18)0.0102 (5)*
F10.1250 (2)0.6094 (2)0.33755 (14)0.0097 (3)
N40.1534 (3)0.7105 (4)0.6028 (2)0.0090 (4)
H4a0.2225 (3)0.730 (3)0.6914 (5)0.0108 (5)*
H4b0.074 (2)0.6127 (11)0.5957 (18)0.0108 (5)*
H4c0.073 (2)0.8050 (18)0.5687 (14)0.0108 (5)*
N50.5865 (3)0.7186 (3)0.6266 (2)0.0072 (4)
N20.5482 (3)0.6287 (4)0.3587 (2)0.0091 (4)
H2a0.625 (2)0.5298 (16)0.3846 (13)0.0110 (5)*
H2b0.632 (2)0.7227 (13)0.3625 (17)0.0110 (5)*
H2c0.4649 (3)0.615 (3)0.2725 (4)0.0110 (5)*
F60.6219 (2)0.2236 (2)0.38840 (15)0.0089 (3)
F40.9695 (2)0.2098 (3)0.38167 (16)0.0128 (3)
F50.8149 (2)0.0500 (2)0.45111 (15)0.0121 (3)
F20.7277 (2)0.1265 (3)0.62083 (16)0.0132 (3)
F71.0819 (2)0.1142 (2)0.61521 (16)0.0136 (3)
N30.3747 (3)0.3995 (3)0.5456 (2)0.0092 (4)
H3a0.424 (3)0.3884 (3)0.6372 (2)0.0110 (5)*
H3b0.458 (2)0.3404 (6)0.5067 (17)0.0110 (5)*
H3c0.2463 (6)0.3537 (7)0.5159 (18)0.0110 (5)*
F30.8835 (2)0.3861 (2)0.55483 (15)0.0120 (3)
O10.7392 (2)0.7420 (3)0.71316 (18)0.0132 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0057 (3)0.0054 (2)0.0071 (4)0.0003 (3)0.0010 (3)0.0000 (3)
Ru10.00486 (7)0.00460 (7)0.00479 (8)0.00002 (8)0.00102 (5)0.00048 (9)
N10.0095 (9)0.0067 (9)0.0099 (10)0.0001 (7)0.0038 (8)0.0004 (8)
F10.0122 (7)0.0089 (8)0.0059 (7)0.0015 (6)0.0004 (6)0.0010 (6)
N40.0092 (10)0.0095 (10)0.0090 (11)0.0019 (9)0.0041 (8)0.0006 (9)
N50.0057 (9)0.0080 (10)0.0080 (10)0.0008 (8)0.0022 (7)0.0005 (8)
N20.0098 (10)0.0103 (10)0.0075 (11)0.0002 (9)0.0029 (8)0.0012 (9)
F60.0067 (6)0.0113 (8)0.0078 (7)0.0010 (6)0.0007 (5)0.0010 (6)
F40.0106 (7)0.0165 (8)0.0140 (9)0.0011 (7)0.0076 (6)0.0028 (7)
F50.0138 (7)0.0062 (7)0.0147 (8)0.0006 (5)0.0018 (5)0.0020 (6)
F20.0172 (8)0.0145 (8)0.0100 (8)0.0019 (7)0.0070 (6)0.0031 (7)
F70.0099 (7)0.0125 (8)0.0136 (8)0.0017 (6)0.0037 (6)0.0029 (7)
N30.0081 (9)0.0103 (10)0.0093 (10)0.0010 (8)0.0029 (8)0.0014 (8)
F30.0153 (7)0.0061 (7)0.0123 (8)0.0001 (6)0.0003 (6)0.0014 (6)
O10.0099 (8)0.0156 (10)0.0121 (9)0.0017 (7)0.0002 (7)0.0017 (8)
Geometric parameters (Å, º) top
Si1—F61.6854 (17)N1—H1b0.8900
Si1—F41.6745 (19)N1—H1c0.8900
Si1—F51.6808 (17)N4—H4a0.8900
Si1—F21.678 (2)N4—H4b0.8900
Si1—F71.6603 (16)N4—H4c0.8900
Si1—F31.7123 (17)N5—O11.143 (2)
Ru1—N12.091 (2)N2—H2a0.8900
Ru1—F11.9378 (13)N2—H2b0.8900
Ru1—N42.083 (2)N2—H2c0.8900
Ru1—N51.7191 (19)N3—H3a0.8900
Ru1—N22.098 (2)N3—H3b0.8900
Ru1—N32.092 (2)N3—H3c0.8900
N1—H1a0.8900
F4—Si1—F688.95 (9)N3—Ru1—N592.18 (10)
F5—Si1—F690.46 (9)N3—Ru1—N292.48 (9)
F5—Si1—F491.02 (10)H1a—N1—Ru1109.5
F2—Si1—F689.05 (8)H1b—N1—Ru1109.5
F2—Si1—F4177.85 (10)H1b—N1—H1a109.5
F2—Si1—F589.78 (9)H1c—N1—Ru1109.5
F7—Si1—F6178.52 (10)H1c—N1—H1a109.5
F7—Si1—F490.39 (9)H1c—N1—H1b109.5
F7—Si1—F590.87 (8)H4a—N4—Ru1109.5
F7—Si1—F291.60 (9)H4b—N4—Ru1109.5
F3—Si1—F688.27 (8)H4b—N4—H4a109.5
F3—Si1—F489.94 (9)H4c—N4—Ru1109.5
F3—Si1—F5178.39 (9)H4c—N4—H4a109.5
F3—Si1—F289.22 (10)H4c—N4—H4b109.5
F3—Si1—F790.42 (9)O1—N5—Ru1175.9 (2)
F1—Ru1—N185.14 (7)H2a—N2—Ru1109.5
N4—Ru1—N191.30 (9)H2b—N2—Ru1109.5
N4—Ru1—F185.85 (7)H2b—N2—H2a109.5
N5—Ru1—N196.74 (10)H2c—N2—Ru1109.5
N5—Ru1—F1177.16 (10)H2c—N2—H2a109.5
N5—Ru1—N496.21 (9)H2c—N2—H2b109.5
N2—Ru1—N187.30 (9)H3a—N3—Ru1109.5
N2—Ru1—F187.14 (7)H3b—N3—Ru1109.5
N2—Ru1—N4172.94 (8)H3b—N3—H3a109.5
N2—Ru1—N590.82 (9)H3c—N3—Ru1109.5
N3—Ru1—N1171.08 (7)H3c—N3—H3a109.5
N3—Ru1—F185.94 (7)H3c—N3—H3b109.5
N3—Ru1—N487.83 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1b···F2i0.892.02 (1)2.872 (3)159 (2)
Symmetry code: (i) x+1/2, y1, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds