Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Cu/Zn disorder in the kesterite Cu2ZnSnS4 derivatives used for thin film based solar cells is an important issue for photovoltaic performances. Unfortunately, Cu and Zn cannot be distinguished by conventional laboratory X-ray diffraction. This paper reports on a resonant diffraction investigation of a Cu2ZnSnS4 single crystal from a quenched powdered sample. The full disorder of Cu and Zn in the z = 1/4 atomic plane is shown. The structure, namely disordered kesterite, is then described in the I\bar 42m space group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520614003138/dk5022sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520614003138/dk5022Isup2.hkl
Contains datablock I

CCDC reference: 986377

Experimental top

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Computing details top

Data collection: unknown; cell refinement: unknown; data reduction: unknown; program(s) used to solve structure: unknown; molecular graphics: unknown.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
(I) top
Crystal data top
Cu2S4SnZnZ = 2
Mr = 439.4F(000) = 404
Tetragonal, I42mDx = 4.553 Mg m3
Hall symbol: I -4 2? radiation, λ = 0.66842 Å
a = 5.4353 (1) ŵ = 12.84 mm1
c = 10.8464 (3) ÅT = 293 K
V = 320.43 (1) Å30.08 × 0.05 × 0.05 mm
Data collection top
Radiation source: synchrotronRint = 0.088
Absorption correction: empirical (using intensity measurements)
?
θmax = 34.7°, θmin = 3.5°
Tmin = 0.91, Tmax = 1.10h = 68
5275 measured reflectionsk = 99
449 independent reflectionsl = 1818
449 reflections with I > 2σ(I)
Refinement top
Refinement on F22 constraints
R[F2 > 2σ(F2)] = 0.029Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.074(Δ/σ)max = 0.004
S = 1.60Δρmax = 1.39 e Å3
449 reflectionsΔρmin = 2.17 e Å3
15 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1900 (150)
Crystal data top
Cu2S4SnZnZ = 2
Mr = 439.4? radiation, λ = 0.66842 Å
Tetragonal, I42mµ = 12.84 mm1
a = 5.4353 (1) ÅT = 293 K
c = 10.8464 (3) Å0.08 × 0.05 × 0.05 mm
V = 320.43 (1) Å3
Data collection top
Absorption correction: empirical (using intensity measurements)
?
449 independent reflections
Tmin = 0.91, Tmax = 1.10449 reflections with I > 2σ(I)
5275 measured reflectionsRint = 0.088
Refinement top
R[F2 > 2σ(F2)] = 0.02915 parameters
wR(F2) = 0.0740 restraints
S = 1.60Δρmax = 1.39 e Å3
449 reflectionsΔρmin = 2.17 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu_2a0000.01903 (16)
Cu_4d00.50.250.01688 (13)0.5
Zn_4d00.50.250.01688 (13)0.5
Sn_2b000.50.01077 (9)
S0.75608 (10)0.24393 (10)0.12788 (5)0.0112 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu_2a0.0194 (2)0.0194 (2)0.0183 (3)000
Cu_4d0.0170 (2)0.0170 (2)0.0166 (3)000
Zn_4d0.0170 (2)0.0170 (2)0.0166 (3)000
Sn_2b0.01111 (15)0.01111 (15)0.01008 (17)000
S0.0114 (3)0.0114 (3)0.0108 (4)0.00056 (18)0.00023 (13)0.00023 (13)
Geometric parameters (Å, º) top
Cu_2a—Si2.3322 (6)Zn_4d—Si2.3344 (5)
Cu_2a—Sii2.3322 (6)Zn_4d—Sv2.3344 (5)
Cu_2a—Siii2.3322 (6)Zn_4d—Svi2.3344 (5)
Cu_2a—Siv2.3322 (6)Zn_4d—Svii2.3344 (5)
Cu_4d—Zn_4d0Sn_2b—Sviii2.4080 (6)
Cu_4d—Si2.3344 (5)Sn_2b—Six2.4080 (6)
Cu_4d—Sv2.3344 (5)Sn_2b—Sx2.4080 (6)
Cu_4d—Svi2.3344 (5)Sn_2b—Svii2.4080 (6)
Cu_4d—Svii2.3344 (5)
Si—Cu_2a—Sii107.01 (2)Sv—Zn_4d—Svii108.781 (19)
Si—Cu_2a—Siii110.713 (19)Svi—Zn_4d—Svii110.86 (2)
Si—Cu_2a—Siv110.713 (19)Sviii—Sn_2b—Six109.658 (19)
Sii—Cu_2a—Siii110.713 (19)Sviii—Sn_2b—Sx109.378 (18)
Sii—Cu_2a—Siv110.713 (19)Sviii—Sn_2b—Svii109.378 (18)
Siii—Cu_2a—Siv107.01 (2)Six—Sn_2b—Sx109.378 (18)
Zn_4d—Cu_4d—Si0Six—Sn_2b—Svii109.378 (18)
Zn_4d—Cu_4d—Sv0Sx—Sn_2b—Svii109.658 (19)
Zn_4d—Cu_4d—Svi0Cu_2axi—S—Cu_4dxi110.70 (2)
Zn_4d—Cu_4d—Svii0Cu_2axi—S—Cu_4dxii110.70 (2)
Si—Cu_4d—Sv110.86 (2)Cu_2axi—S—Zn_4dxi110.70 (2)
Si—Cu_4d—Svi108.781 (19)Cu_2axi—S—Zn_4dxii110.70 (2)
Si—Cu_4d—Svii108.781 (19)Cu_2axi—S—Sn_2bxiii108.34 (2)
Sv—Cu_4d—Svi108.781 (19)Cu_4dxi—S—Cu_4dxii110.81 (2)
Sv—Cu_4d—Svii108.781 (19)Cu_4dxi—S—Zn_4dxi0.0 (5)
Svi—Cu_4d—Svii110.86 (2)Cu_4dxi—S—Zn_4dxii110.81 (2)
Cu_4d—Zn_4d—Si0Cu_4dxi—S—Sn_2bxiii108.09 (2)
Cu_4d—Zn_4d—Sv0Cu_4dxii—S—Zn_4dxi110.81 (2)
Cu_4d—Zn_4d—Svi0Cu_4dxii—S—Zn_4dxii0.0 (5)
Cu_4d—Zn_4d—Svii0Cu_4dxii—S—Sn_2bxiii108.09 (2)
Si—Zn_4d—Sv110.86 (2)Zn_4dxi—S—Zn_4dxii110.81 (2)
Si—Zn_4d—Svi108.781 (19)Zn_4dxi—S—Sn_2bxiii108.09 (2)
Si—Zn_4d—Svii108.781 (19)Zn_4dxii—S—Sn_2bxiii108.09 (2)
Sv—Zn_4d—Svi108.781 (19)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) y, x+1, z; (iv) y, x1, z; (v) x+1, y+1, z; (vi) y1/2, x+3/2, z+1/2; (vii) y+1/2, x1/2, z+1/2; (viii) x1/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) y1/2, x+1/2, z+1/2; (xi) x+1, y, z; (xii) x+1/2, y1/2, z+1/2; (xiii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaCu2S4SnZn
Mr439.4
Crystal system, space groupTetragonal, I42m
Temperature (K)293
a, c (Å)5.4353 (1), 10.8464 (3)
V3)320.43 (1)
Z2
Radiation type?, λ = 0.66842 Å
µ (mm1)12.84
Crystal size (mm)0.08 × 0.05 × 0.05
Data collection
Diffractometer?
Absorption correctionEmpirical (using intensity measurements)
Tmin, Tmax0.91, 1.10
No. of measured, independent and
observed [I > 2σ(I)] reflections
5275, 449, 449
Rint0.088
(sin θ/λ)max1)0.851
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.60
No. of reflections449
No. of parameters15
Δρmax, Δρmin (e Å3)1.39, 2.17

Computer programs: unknown.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds