research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Withanolides from Physalis angulata L.

crossmark logo

aS.Yunusov Institute of the Chemistry of Plant Substances Academy of Sciences, of Uzbekistan 100170, Mirzo Ulugbek Str., 77, Tashkent, Uzbekistan, and bTashkent Chemical-Technological Institute, of Uzbekistan 100011, A. Navoiy Str., 32, Tashkent, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 31 May 2021; accepted 9 July 2021; online 16 July 2021)

The compounds (17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide and (20R,22R)-5α,14α,20-Trihy­droxy-1-oxo-6α,7α-ep­oxy­witha-2-enolide were isolated from a chloro­form extract of the aerial parts of Physalis angulata L. (Solanaceae). Two products were isolated from the chromatographic separation extract. Compound I corresponds to physangulide B chloro­form monosolvate, C28H38O7·CHCl3, while compound II is 14α-hy­droxy­ixocarpanolide, C28H40O7. In the two mol­ecular structures, the conformation of the steroid part (rings A, B, C, D) does not differ. In both crystals, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds along the c-axis direction and form a two-dimensional network parallel to the ac plane. The absolute configuration was determined from X-ray diffraction data.

1. Chemical context

The genus Physalis belongs to the nightshade family of plants and is widely distributed in subtropical and tropical regions around the world. Some Physalis species are important in the diet because of their edible fruits. Phytochemical and pharmacological studies show that in plants of the genus Physalis, the main biological substances are withanolides (Huang et al., 2020[Huang, M., He, J. X., Hu, H. X., Zhang, K., Wang, X. N., Zhao, B. B., Lou, H. X., Ren, D. M. & Shen, T. (2020). J. Pharm. Pharmacol. 72, 649-669.]). The fruits of Physalis angulata L. are edible, traditionally collected from wild populations, but the plant is now widely cultivated. In different countries of the world the fruits, roots and leaves of Physalis angulata L. are used in folk medicine as a treatment for various diseases (Salgado & Arana, 2013[Salgado, E. R. & Arana, G. V. (2013). Bol. Latinoam. Caribe Plant. Med. Aromat. 12, 431-445.]). The main secondary metabolites of Physalis angulata are withanolides, which are highly variable in chemical structure and exhibit inter­esting pharmacological activity (Ray & Gupta, 1994[Ray, A. B. & Gupta, M. (1994). Withasteroids, a Growing Group of Naturally Occurring Steroidal Lactones. In Progress in the Chemistry of Organic Natural Products, vol 63, edited by W. Herz, G. W, Kirby, R. E. Moore, W. Steglich & C. Tamm,. pp. 1-106. New York: Springer Verlag.]; Figueiredo et al., 2020[Figueiredo, M. C. C., Passos, A. R., Hughes, F. M., Santos, K. S., Silva, A. L. & Soares, T. L. (2020). Sci. Hortic. (Amsterdam), 267, 109307.]; Sá et al., 2011[Sá, M. S., de Menezes, M. N., Krettli, A. U., Ribeiro, I. M., Tomassini, T. C., Ribeiro dos Santos, R., de Azevedo, W. F. Jr & Soares, M. B. (2011). J. Nat. Prod. 74, 2269-2272.]; Pinto et al., 2016[Pinto, L. A., Meira, C. S., Villarreal, C. F., Vannier-Santos, M. A., de Souza, C. V. C., Ribeiro, I. M., Tomassini, T. C., Galvão-Castro, B., Soares, M. B. & Grassi, M. F. (2016). Biomed. Pharmacother. 79, 129-134.]). The plant Physalis angulata is widespread in Uzbekistan and its reserves are sufficient for industrial use (Vasina et al., 1990[Vasina, O. E., Abdullaev, N. D. & Abubakirov, N. K. (1990). Chem. Nat. Compd. 26, 304-307.]).

[Scheme 1]

To study the chemical structure of withanolides, leaves of Physalis angulata collected in the Tashkent region were used. Isolation of withanolides from the leaves of Physalis angulata and separation of components into individual substances was carried out by column chromatography. The isolated compounds were identified as physangulide B chloro­form solvate (I) and 14α-hy­droxy­ixocarpanolide (II).

2. Structural commentary

The asymmetric unit of I, a chloro­form solvate of physangulide B, is shown in Fig. 1[link]. The use of Cu Kα radiation allowed the determination of the absolute configuration of the physangulide B mol­ecule. The Flack parameter refined to 0.014 (6). The chiral centres of the physangulide B mol­ecule have the following chirality: 4S, 5R, 6R, 8S, 9S,10R, 13S, 14S, 17S, 20R, 22R, 24R and 25S. The stereochemistry of physangulide B [systematic name (17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide] does not differ from that found for the acetyl derivative and confirms the absolute configuration proposed earlier for physangulide B (Maldonado et al., 2015[Maldonado, E., Hurtado, N. E., Pérez-Castorena, A. L. & Martínez, M. (2015). Steroids, 104, 72-78.]).

[Figure 1]
Figure 1
Mol­ecular structure of the chloro­form solvate of physangulide B (compound I), including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of withanolide II is shown in Fig. 2[link]. The Flack parameter refined to −0.1 (2) and allowed the absolute configuration of II to be confirmed. The chiral centres in the mol­ecule have the following chirality: 5R, 6S, 7S, 8S, 9S, 10R, 13R, 14R, 17S, 20R, 22R, 24S, 25R. According to the experimental data, the isolated compound is 14α-hy­droxy­ixocarpanolide [systematic name: (20R,22R)-5α,14α,20-trihy­droxy-1-oxo-6α,7α-ep­oxy­witha-2-enolide (Vasina et al., 1986[Vasina, O. E., Maslennikova, V. A., Abdullaev, N. D. & Abubakirov, N. K. (1986). Chem. Nat. Compd. 22, 560-565.]; Ray & Gupta, 1994[Ray, A. B. & Gupta, M. (1994). Withasteroids, a Growing Group of Naturally Occurring Steroidal Lactones. In Progress in the Chemistry of Organic Natural Products, vol 63, edited by W. Herz, G. W, Kirby, R. E. Moore, W. Steglich & C. Tamm,. pp. 1-106. New York: Springer Verlag.]).

[Figure 2]
Figure 2
Mol­ecular structure of the 14α-hy­droxy­ixocarpanolide (compound II), including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In both mol­ecules, ring C adopts a chair conformation and ring D an envelope conformation with atom C13 as the flap. Ring A exhibits a half–chair conformation, but differs slightly in the arrangement of atoms. The C1–C4 fragment is planar with r.m.s deviations of 0.0045 Å for I and 0.034 Å for II. The deviations of atoms C5 and C10 atoms from this plane are −0.225 (7) and 0.291 (7) Å, respectively, for I and −0.478 (7) and 0.280 (7) Å for II.

In the mol­ecule of I, atoms of ring B are located in one plane (with an r.m.s deviation of 0.0132 Å), except for C8 which deviates from the plane of the remaining atoms by 0.666 (4) Å. A similar envelope conformation for ring B is observed in II. Here, the C5–C9 atoms are located in one plane with an accuracy of 0.0643 Å, atom C10 being displaced from the plane through the remaining atoms by 0.696 (4) Å. This difference in the arrangement of atoms in planes is explained by the position of the ep­oxy bridge, which is located in the β-position for I and the α-position for II.

3. Supra­molecular features

In both crystal structures, inter­molecular hydrogen bonds of the O—H⋯O type are observed, which link the mol­ecules along the c-axis direction. In compound I, O—H⋯O and C—H⋯O hydrogen bonds are observed between mol­ecules of physangulide B (Table 1[link]). O4—H4⋯O26 and O25—H25⋯O56 hydrogen bonds are involved in the formation of an infinite chain along the c-axis (Fig. 3[link]). In addition, the chloro­form mol­ecule participates in a hydrogen bond with the oxygen atom O26 of the lactone fragment. A similar hydrogen bond with a solvate mol­ecule (methanol) is observed in the structure of the acetyl derivative of physangulide B (FUQKAF; Maldonado et al., 2015[Maldonado, E., Hurtado, N. E., Pérez-Castorena, A. L. & Martínez, M. (2015). Steroids, 104, 72-78.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O26i 0.79 (6) 2.10 (6) 2.819 (4) 151
O25—H25⋯O56ii 0.74 (5) 2.12 (5) 2.856 (4) 169
C23—H23A⋯O26iii 0.97 2.57 3.473 (4) 154
C1S—H1SA⋯O26 0.98 2.43 3.393 (6) 168
Symmetry codes: (i) x, y, z+1; (ii) [x, y, z-1]; (iii) x+1, y, z.
[Figure 3]
Figure 3
Hydrogen bonding in the crystal structure of I (the mol­ecules are cross-linked along the c axis).

Similar inter­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed in the structure of II (Table 2[link]). The formation of an infinite O20—H20⋯O5 hydrogen-bonded chain is shown in Fig. 4[link]. Paired hydrogen bonds are observed between mol­ecules, which extend along the c-axis direction.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20⋯O5i 0.76 (6) 2.22 (6) 2.973 (4) 173
C7—H7A⋯O26ii 0.98 2.59 3.367 (5) 136
Symmetry codes: (i) x, y, z+1; (ii) [x-1, y, z-1].
[Figure 4]
Figure 4
O20—H20⋯O5 hydrogen bonds in the crystal structure of compound II (the mol­ecules are cross-linked along the c axis).

4. Database survey

A search for related structures (A, B, C, D, E rings are connected according to the order of the studied compounds) in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in eleven hits. Of the structures found, the closest structure considering the connectivity and chirality of atoms is 17-(4-hy­droxy-4,5,7-trimethyl-3-oxo-2,6-dioxabi­cyclo­[3.2.1]oct-7-yl)-1-oxo-5,6-ep­oxy­androst-2-en-4-yl acetate methanol solvate (FUQKAF; Maldonado et al., 2015[Maldonado, E., Hurtado, N. E., Pérez-Castorena, A. L. & Martínez, M. (2015). Steroids, 104, 72-78.]). Structures with the 5β,6β-ep­oxy-4β-hy­droxy groups in the same location in the mol­ecule as the title compounds are 4,16,20,24-tetra­hydroxy-5,6:22,26-di­epoxy­ergost-2-ene-1,26-dione methanol solvate (GANFOS, Maldonado et al., 2011[Maldonado, E., Pérez-Castorena, A. L., Garcés, C. & Martínez, M. (2011). Steroids, 76, 724-728.]), (17R,20R,22R,24S,25R)-4β,17α,20β-trihy­droxy-5β,6β-ep­oxy-1-oxowitha-2-en-26,22-olide (Philadelphicalactone A, XIVYEG; Su et al., 2002[Su, B.-N., Misico, R., Park, E. J., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Pezzuto, J. M. & Kinghorn, A. D. (2002). Tetrahedron, 58, 3453-3466.]) and (17R,20S,22R)-4β-hy­droxy-1-oxo-5β,6β-ep­oxy-16α-acet­oxy­witha-2-enolide ethyl acetate clathrate (YISSOI; Alfonso et al., 1993[Alfonso, D., Bernardinelli, G. & Kapetanidis, I. (1993). Phytochemistry, 34, 517-521.]).

5. Synthesis and crystallization

Isolation of individual substances from the leaves of Physalis angulata

Collected dried leaves (4 kg) of Physalis angulata L. were poured into cold water and heated to boiling. The hot mass was squeezed out through a canvas. The plant was again poured into cold water, heated, and the hot mass was squeezed out through the canvas again. The water extract was distilled until the volume decreased to 3 L. Chloro­form (3 L) was poured into the received solution and substances were extracted. From the chloro­form layer, insoluble and soluble substances (25 g) were isolated. To the isolated dry mass, 0.5 L of chloro­form were added and the solution was filtered (the mass of the insoluble compounds was 5.8 g). From the filtrate after distillation, 19.2 g of compounds were isolated. The compounds isolated from the filtrate were loaded onto a column containing 0.5 kg of silica gel (Silica gel 60, 0.063-0.1 mm, Merck). The sums of substances were eluted with system 1 (chloro­form:methanol 99:1) to produce fractions 1–5, and eluted with system 2 (chloro­form:methanol 97:3) to produce fractions 5–9. The process was monitored by thin layer chromatography (Silica gel on TLC Al foils, fluorescent indicator 254 nm). Fractions 2–4 (6.8 g) and 6–8 (4.0 g) were shown by TLC to consist of individual substances.

The obtained fractions were purified by repeated chromatography. Rechromatography of fractions 2–4 containing physangulide B in system 3 (chloro­form:methanol 10:1) gave 5.96 g of the individual product. The RF in system 3 was 0.58, visualized as a crimson spot. The yield was 0.15%, based on the weight of the air-dry raw material. Rechromatography of fractions 6–8 in system 1 yielded 3.6 g of 14α-hy­droxy­ixocarpanolide, RF = 0.34 in system 2, visualized as a pink spot. The yield was 0.028%.

Physangulide B [(17S,20R,22R,24R,25S)-5β,6β:20,24-diep­oxy-4β,25-dihy­droxy-1-oxowith-2-en-26,22-olide]

C28H40O7 (methanol), m.p. 553–555 K, [α]20D = −56.0 (c = 0.21, CHCl3). UV spectrum, λCH3OHmax (logɛ 5600) 212 (4.00) nm. IR (FT–IR, νKBrmax, cm−1): 3411 (v br, O—H str), 2958 (m, Csycl—H str), 1706 (s, C=O str), 1676 (v s, C=O), 1457 (m), 1380 (m), 1272 (s), 1101 (s), 1085 (m), 1024 (m), 962 (m), 921 (w), 905 (w).

14α-hy­droxy­ixocarpanolide (5α,14α,20R-trihy­droxy-1-oxo-6α,7α-ep­oxywitha-2-enolide)

C28H40O7 (methanol), mp. 528–530 K, [α]20D = + 29.1 ±2 (c = 1.18, CHCl3). UV spectrum, λC2H5OHmax: 225 nm (ɛ 10370). IR (FT–IR, νKBrmax, cm−1): 3584–3477 (v br, O—H str), 2949 (m, Csycl—H str), 1754 (v s, C=O str), 1458 (w), 1388 (m), 1261 (s), 1182 (m), 1094 (v), 1034 (m), 910 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5Ueq(C) for methyl H atoms]. The hydrogen atoms on the O atoms were located in difference-Fourier maps and refined freely.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C28H38O7·CHCl3 C28H40O7
Mr 605.95 488.60
Crystal system, space group Monoclinic, P21 Triclinic, P1
Temperature (K) 290 290
a, b, c (Å) 7.3633 (15), 15.952 (3), 12.657 (3) 6.2374 (12), 9.5938 (19), 11.351 (2)
α, β, γ (°) 90, 94.14 (3), 90 112.81 (3), 96.49 (3), 93.13 (3)
V3) 1482.9 (5) 618.5 (2)
Z 2 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.17 0.76
Crystal size (mm) 0.50 × 0.34 × 0.31 0.42 × 0.28 × 0.21
 
Data collection
Diffractometer Rigaku Xcalibur, Ruby Rigaku Xcalibur, Ruby
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.316, 0.376 0.776, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 13820, 5743, 5622 4169, 2812, 2545
Rint 0.028 0.025
(sin θ/λ)max−1) 0.629 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.04 0.041, 0.110, 1.04
No. of reflections 5743 2812
No. of parameters 365 333
No. of restraints 1 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.34 0.17, −0.19
Absolute structure Flack x determined using 2401 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter 0.014 (6) −0.1 (2)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/8 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018). Program(s) used to solve structure: SHELXS7 (Sheldrick, 2008) for (II). For both structures, program(s) used to refine structure: SHELXL2014/8 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010)'.

(17S,20R,22R,24R,25S)-5β,6β:20,24-Diepoxy-4β,25-dihydroxy-1-oxowith-2-en-26,22-olide chloroform solvate (I) top
Crystal data top
C28H38O7·CHCl3Dx = 1.357 Mg m3
Mr = 605.95Melting point: 553(2) K
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.3633 (15) ÅCell parameters from 7825 reflections
b = 15.952 (3) Åθ = 5.5–76.0°
c = 12.657 (3) ŵ = 3.17 mm1
β = 94.14 (3)°T = 290 K
V = 1482.9 (5) Å3Prizmatic, colorless
Z = 20.50 × 0.34 × 0.31 mm
F(000) = 640
Data collection top
Rigaku Xcalibur, Ruby
diffractometer
5743 independent reflections
Radiation source: Enhance (Cu) X-ray Source5622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.2576 pixels mm-1θmax = 75.9°, θmin = 3.5°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1919
Tmin = 0.316, Tmax = 0.376l = 1315
13820 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.4392P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.41 e Å3
5743 reflectionsΔρmin = 0.34 e Å3
365 parametersAbsolute structure: Flack x determined using 2401 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.014 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5252 (5)0.9171 (2)0.5852 (2)0.0678 (9)
O21.0029 (3)0.76628 (14)0.21727 (16)0.0380 (5)
O31.1887 (3)0.60670 (14)0.22825 (16)0.0357 (4)
O40.5431 (5)0.8210 (2)0.9630 (2)0.0619 (8)
O251.0440 (4)0.6971 (2)0.02618 (18)0.0534 (7)
O260.7584 (3)0.7338 (2)0.1201 (2)0.0598 (7)
O560.7082 (3)0.70353 (16)0.84614 (16)0.0419 (5)
C10.5220 (5)0.8852 (2)0.6718 (3)0.0402 (7)
C20.3764 (5)0.9089 (3)0.7396 (3)0.0530 (9)
H2A0.30450.95510.72020.064*
C30.3425 (5)0.8679 (3)0.8265 (3)0.0513 (9)
H3A0.24630.88580.86460.062*
C40.4509 (5)0.7944 (2)0.8665 (3)0.0442 (7)
H4B0.36640.74940.88240.053*
C50.5835 (4)0.7603 (2)0.7888 (2)0.0322 (6)
C60.5780 (4)0.6705 (2)0.7655 (2)0.0352 (6)
H6A0.47500.63940.79120.042*
C70.6634 (4)0.63329 (18)0.6726 (2)0.0330 (6)
H7A0.57130.62640.61450.040*
H7B0.71160.57830.69150.040*
C80.8166 (4)0.68855 (17)0.63666 (19)0.0271 (5)
H8A0.91820.68860.69110.032*
C90.7496 (4)0.77894 (17)0.6166 (2)0.0277 (5)
H9A0.64840.77470.56220.033*
C100.6687 (4)0.82253 (18)0.7140 (2)0.0298 (5)
C110.8951 (5)0.83293 (19)0.5672 (3)0.0394 (7)
H11A0.84400.88770.54990.047*
H11B0.99720.84080.61910.047*
C120.9643 (5)0.79385 (19)0.4669 (3)0.0385 (7)
H12A0.86580.79220.41170.046*
H12B1.06070.82850.44200.046*
C131.0362 (3)0.70547 (18)0.4875 (2)0.0283 (5)
C140.8816 (4)0.65438 (16)0.53265 (19)0.0269 (5)
H14A0.77720.65880.48040.032*
C150.9460 (5)0.5629 (2)0.5285 (3)0.0420 (7)
H15A0.84320.52480.52090.050*
H15B1.02080.54830.59210.050*
C161.0582 (5)0.5598 (2)0.4299 (3)0.0401 (7)
H16A1.00150.52250.37670.048*
H16B1.18090.54020.44900.048*
C171.0614 (4)0.65077 (18)0.3875 (2)0.0292 (5)
H17A0.94760.65710.34310.035*
C181.2062 (4)0.7062 (3)0.5657 (3)0.0479 (8)
H18A1.17200.72210.63470.072*
H18B1.29290.74580.54220.072*
H18C1.25960.65130.56910.072*
C190.8116 (5)0.8745 (2)0.7823 (3)0.0434 (7)
H19A0.75900.89370.84510.065*
H19B0.84860.92190.74230.065*
H19C0.91570.84010.80160.065*
C201.2141 (4)0.6683 (2)0.3131 (2)0.0332 (6)
C211.4095 (4)0.6596 (3)0.3637 (3)0.0509 (9)
H21A1.49260.65450.30900.076*
H21B1.41760.61050.40780.076*
H21C1.44010.70820.40590.076*
C221.1939 (4)0.7507 (2)0.2501 (2)0.0371 (6)
H22A1.24870.79800.29020.045*
C231.2941 (4)0.7319 (2)0.1529 (3)0.0406 (7)
H23A1.42490.73030.16870.049*
H23B1.26450.77170.09640.049*
C241.2164 (4)0.6451 (2)0.1265 (2)0.0336 (6)
C251.0239 (4)0.6579 (2)0.0736 (2)0.0378 (6)
C260.9179 (4)0.7211 (2)0.1396 (2)0.0389 (7)
C270.9140 (6)0.5779 (3)0.0607 (3)0.0568 (9)
H27A0.97770.53840.01970.085*
H27B0.79750.59000.02510.085*
H27C0.89720.55450.12920.085*
C281.3367 (5)0.5895 (3)0.0646 (3)0.0470 (8)
H28A1.45410.58440.10210.070*
H28B1.35010.61380.00380.070*
H28C1.28220.53510.05600.070*
C1S0.6099 (7)0.9209 (3)0.2081 (4)0.0664 (11)
H1SA0.63330.86400.18320.080*
Cl10.4179 (2)0.96088 (8)0.13542 (10)0.0782 (4)
Cl20.5718 (2)0.91662 (10)0.34355 (10)0.0863 (4)
Cl30.8008 (3)0.98341 (14)0.18974 (14)0.1059 (5)
H40.605 (7)0.785 (4)0.989 (4)0.063 (15)*
H250.958 (7)0.692 (3)0.060 (4)0.051 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.085 (2)0.0663 (18)0.0546 (15)0.0371 (16)0.0221 (14)0.0254 (14)
O20.0421 (11)0.0384 (11)0.0345 (10)0.0095 (9)0.0089 (8)0.0018 (9)
O30.0427 (11)0.0366 (11)0.0287 (9)0.0043 (9)0.0091 (8)0.0020 (8)
O40.080 (2)0.075 (2)0.0318 (12)0.0277 (17)0.0112 (12)0.0065 (12)
O250.0432 (13)0.088 (2)0.0295 (11)0.0046 (13)0.0045 (10)0.0098 (12)
O260.0373 (12)0.091 (2)0.0506 (14)0.0193 (13)0.0029 (10)0.0003 (14)
O560.0490 (12)0.0505 (13)0.0262 (9)0.0114 (10)0.0030 (8)0.0049 (9)
C10.0474 (17)0.0348 (15)0.0387 (15)0.0085 (13)0.0053 (13)0.0011 (12)
C20.0483 (19)0.059 (2)0.053 (2)0.0247 (17)0.0064 (15)0.0003 (17)
C30.0397 (17)0.069 (2)0.0473 (18)0.0138 (17)0.0137 (14)0.0081 (16)
C40.0468 (17)0.0505 (19)0.0378 (16)0.0021 (15)0.0187 (13)0.0022 (13)
C50.0333 (13)0.0391 (15)0.0246 (12)0.0024 (12)0.0054 (10)0.0014 (11)
C60.0389 (14)0.0351 (14)0.0329 (13)0.0017 (12)0.0103 (11)0.0062 (11)
C70.0392 (15)0.0277 (13)0.0328 (13)0.0013 (11)0.0073 (11)0.0025 (10)
C80.0294 (12)0.0292 (13)0.0227 (11)0.0003 (10)0.0024 (9)0.0000 (9)
C90.0314 (13)0.0270 (13)0.0250 (12)0.0003 (10)0.0047 (9)0.0021 (9)
C100.0322 (13)0.0309 (13)0.0273 (12)0.0023 (11)0.0081 (10)0.0029 (10)
C110.0497 (18)0.0273 (14)0.0438 (16)0.0060 (13)0.0213 (13)0.0064 (12)
C120.0487 (17)0.0290 (14)0.0405 (16)0.0010 (12)0.0211 (13)0.0006 (11)
C130.0265 (12)0.0343 (14)0.0244 (11)0.0002 (10)0.0040 (9)0.0038 (10)
C140.0303 (12)0.0259 (13)0.0246 (11)0.0012 (10)0.0030 (9)0.0002 (9)
C150.059 (2)0.0291 (15)0.0398 (15)0.0091 (14)0.0154 (14)0.0044 (12)
C160.0487 (17)0.0335 (15)0.0393 (15)0.0095 (13)0.0118 (13)0.0007 (12)
C170.0288 (12)0.0326 (14)0.0260 (12)0.0038 (10)0.0008 (9)0.0025 (10)
C180.0309 (14)0.075 (2)0.0369 (15)0.0029 (16)0.0012 (11)0.0169 (16)
C190.0470 (17)0.0451 (17)0.0389 (15)0.0091 (14)0.0085 (13)0.0156 (13)
C200.0280 (12)0.0431 (16)0.0285 (12)0.0027 (11)0.0028 (10)0.0063 (11)
C210.0295 (14)0.083 (3)0.0400 (16)0.0072 (16)0.0036 (12)0.0052 (17)
C220.0344 (14)0.0407 (16)0.0369 (14)0.0052 (12)0.0073 (11)0.0061 (12)
C230.0353 (15)0.0499 (18)0.0379 (15)0.0082 (13)0.0112 (12)0.0015 (13)
C240.0305 (13)0.0444 (16)0.0267 (12)0.0014 (12)0.0067 (10)0.0012 (11)
C250.0340 (14)0.0517 (18)0.0284 (13)0.0010 (13)0.0072 (10)0.0006 (12)
C260.0361 (15)0.0492 (18)0.0322 (14)0.0049 (13)0.0071 (11)0.0087 (12)
C270.048 (2)0.066 (2)0.057 (2)0.0129 (18)0.0001 (16)0.0146 (19)
C280.0440 (17)0.060 (2)0.0383 (16)0.0092 (15)0.0133 (13)0.0056 (14)
C1S0.092 (3)0.048 (2)0.060 (2)0.014 (2)0.009 (2)0.0038 (19)
Cl10.1089 (10)0.0598 (6)0.0632 (6)0.0123 (6)0.0128 (6)0.0165 (5)
Cl20.1101 (10)0.0872 (9)0.0626 (6)0.0276 (8)0.0136 (6)0.0239 (6)
Cl30.1052 (11)0.1223 (14)0.0904 (10)0.0186 (10)0.0085 (8)0.0238 (9)
Geometric parameters (Å, º) top
O1—C11.211 (4)C13—C171.559 (4)
O2—C261.338 (4)C14—C151.536 (4)
O2—C221.459 (4)C14—H14A0.9800
O3—C241.454 (3)C15—C161.547 (4)
O3—C201.458 (3)C15—H15A0.9700
O4—C41.418 (5)C15—H15B0.9700
O4—H40.79 (6)C16—C171.547 (4)
O25—C251.427 (4)C16—H16A0.9700
O25—H250.74 (5)C16—H16B0.9700
O26—C261.200 (4)C17—C201.544 (4)
O56—C51.447 (4)C17—H17A0.9800
O56—C61.448 (4)C18—H18A0.9600
C1—C21.470 (5)C18—H18B0.9600
C1—C101.539 (4)C18—H18C0.9600
C2—C31.319 (6)C19—H19A0.9600
C2—H2A0.9300C19—H19B0.9600
C3—C41.486 (5)C19—H19C0.9600
C3—H3A0.9300C20—C221.538 (5)
C4—C51.536 (4)C20—C211.538 (4)
C4—H4B0.9800C21—H21A0.9600
C5—C61.463 (4)C21—H21B0.9600
C5—C101.537 (4)C21—H21C0.9600
C6—C71.496 (4)C22—C231.511 (4)
C6—H6A0.9800C22—H22A0.9800
C7—C81.526 (4)C23—C241.525 (5)
C7—H7A0.9700C23—H23A0.9700
C7—H7B0.9700C23—H23B0.9700
C8—C141.533 (3)C24—C281.511 (4)
C8—C91.539 (4)C24—C251.537 (4)
C8—H8A0.9800C25—C271.515 (5)
C9—C111.541 (4)C25—C261.554 (4)
C9—C101.570 (3)C27—H27A0.9600
C9—H9A0.9800C27—H27B0.9600
C10—C191.553 (4)C27—H27C0.9600
C11—C121.535 (4)C28—H28A0.9600
C11—H11A0.9700C28—H28B0.9600
C11—H11B0.9700C28—H28C0.9600
C12—C131.522 (4)C1S—Cl11.751 (5)
C12—H12A0.9700C1S—Cl31.753 (6)
C12—H12B0.9700C1S—Cl21.758 (5)
C13—C181.539 (4)C1S—H1SA0.9800
C13—C141.543 (4)
C26—O2—C22120.5 (2)C16—C15—H15B111.0
C24—O3—C20110.5 (2)H15A—C15—H15B109.0
C4—O4—H4112 (4)C15—C16—C17105.8 (2)
C25—O25—H25109 (4)C15—C16—H16A110.6
C5—O56—C660.70 (19)C17—C16—H16A110.6
O1—C1—C2118.9 (3)C15—C16—H16B110.6
O1—C1—C10121.9 (3)C17—C16—H16B110.6
C2—C1—C10119.2 (3)H16A—C16—H16B108.7
C3—C2—C1123.3 (3)C20—C17—C16114.3 (2)
C3—C2—H2A118.3C20—C17—C13121.9 (2)
C1—C2—H2A118.3C16—C17—C13103.8 (2)
C2—C3—C4123.1 (3)C20—C17—H17A105.1
C2—C3—H3A118.5C16—C17—H17A105.1
C4—C3—H3A118.5C13—C17—H17A105.1
O4—C4—C3105.7 (3)C13—C18—H18A109.5
O4—C4—C5111.8 (3)C13—C18—H18B109.5
C3—C4—C5114.3 (3)H18A—C18—H18B109.5
O4—C4—H4B108.3C13—C18—H18C109.5
C3—C4—H4B108.3H18A—C18—H18C109.5
C5—C4—H4B108.3H18B—C18—H18C109.5
O56—C5—C659.7 (2)C10—C19—H19A109.5
O56—C5—C4108.1 (2)C10—C19—H19B109.5
C6—C5—C4117.8 (3)H19A—C19—H19B109.5
O56—C5—C10116.2 (2)C10—C19—H19C109.5
C6—C5—C10121.1 (2)H19A—C19—H19C109.5
C4—C5—C10118.2 (3)H19B—C19—H19C109.5
O56—C6—C559.61 (19)O3—C20—C22101.0 (2)
O56—C6—C7113.8 (2)O3—C20—C21108.2 (2)
C5—C6—C7122.6 (2)C22—C20—C21110.2 (3)
O56—C6—H6A116.1O3—C20—C17105.5 (2)
C5—C6—H6A116.1C22—C20—C17115.1 (2)
C7—C6—H6A116.1C21—C20—C17115.5 (2)
C6—C7—C8111.5 (2)C20—C21—H21A109.5
C6—C7—H7A109.3C20—C21—H21B109.5
C8—C7—H7A109.3H21A—C21—H21B109.5
C6—C7—H7B109.3C20—C21—H21C109.5
C8—C7—H7B109.3H21A—C21—H21C109.5
H7A—C7—H7B108.0H21B—C21—H21C109.5
C7—C8—C14109.5 (2)O2—C22—C23108.6 (2)
C7—C8—C9110.8 (2)O2—C22—C20110.4 (2)
C14—C8—C9107.9 (2)C23—C22—C20102.6 (3)
C7—C8—H8A109.5O2—C22—H22A111.6
C14—C8—H8A109.5C23—C22—H22A111.6
C9—C8—H8A109.5C20—C22—H22A111.6
C8—C9—C11111.5 (2)C22—C23—C2499.3 (2)
C8—C9—C10114.9 (2)C22—C23—H23A111.9
C11—C9—C10112.6 (2)C24—C23—H23A111.9
C8—C9—H9A105.6C22—C23—H23B111.9
C11—C9—H9A105.6C24—C23—H23B111.9
C10—C9—H9A105.6H23A—C23—H23B109.6
C5—C10—C1109.0 (2)O3—C24—C28109.7 (3)
C5—C10—C19107.0 (2)O3—C24—C23105.2 (2)
C1—C10—C19106.1 (3)C28—C24—C23114.9 (3)
C5—C10—C9113.1 (2)O3—C24—C25104.9 (2)
C1—C10—C9108.2 (2)C28—C24—C25114.1 (3)
C19—C10—C9113.2 (2)C23—C24—C25107.1 (3)
C12—C11—C9113.0 (2)O25—C25—C27111.3 (3)
C12—C11—H11A109.0O25—C25—C24107.0 (2)
C9—C11—H11A109.0C27—C25—C24113.8 (3)
C12—C11—H11B109.0O25—C25—C26106.3 (3)
C9—C11—H11B109.0C27—C25—C26108.6 (3)
H11A—C11—H11B107.8C24—C25—C26109.6 (2)
C13—C12—C11111.5 (3)O26—C26—O2117.3 (3)
C13—C12—H12A109.3O26—C26—C25121.5 (3)
C11—C12—H12A109.3O2—C26—C25121.1 (3)
C13—C12—H12B109.3C25—C27—H27A109.5
C11—C12—H12B109.3C25—C27—H27B109.5
H12A—C12—H12B108.0H27A—C27—H27B109.5
C12—C13—C18111.1 (3)C25—C27—H27C109.5
C12—C13—C14107.2 (2)H27A—C27—H27C109.5
C18—C13—C14110.7 (2)H27B—C27—H27C109.5
C12—C13—C17116.1 (2)C24—C28—H28A109.5
C18—C13—C17112.8 (2)C24—C28—H28B109.5
C14—C13—C1798.0 (2)H28A—C28—H28B109.5
C8—C14—C15118.9 (2)C24—C28—H28C109.5
C8—C14—C13114.5 (2)H28A—C28—H28C109.5
C15—C14—C13104.6 (2)H28B—C28—H28C109.5
C8—C14—H14A106.0Cl1—C1S—Cl3110.3 (3)
C15—C14—H14A106.0Cl1—C1S—Cl2110.3 (3)
C13—C14—H14A106.0Cl3—C1S—Cl2109.7 (3)
C14—C15—C16104.0 (2)Cl1—C1S—H1SA108.8
C14—C15—H15A111.0Cl3—C1S—H1SA108.8
C16—C15—H15A111.0Cl2—C1S—H1SA108.8
C14—C15—H15B111.0
O1—C1—C2—C3168.0 (4)C18—C13—C14—C861.1 (3)
C10—C1—C2—C313.6 (6)C17—C13—C14—C8179.2 (2)
C1—C2—C3—C41.4 (7)C12—C13—C14—C15167.9 (2)
C2—C3—C4—O4113.0 (4)C18—C13—C14—C1570.8 (3)
C2—C3—C4—C510.3 (6)C17—C13—C14—C1547.4 (3)
C6—O56—C5—C4112.2 (3)C8—C14—C15—C16161.5 (3)
C6—O56—C5—C10112.2 (3)C13—C14—C15—C1632.3 (3)
O4—C4—C5—O5646.6 (4)C14—C15—C16—C173.4 (3)
C3—C4—C5—O56166.5 (3)C15—C16—C17—C20161.1 (3)
O4—C4—C5—C6111.2 (3)C15—C16—C17—C1326.1 (3)
C3—C4—C5—C6128.8 (3)C12—C13—C17—C2071.2 (3)
O4—C4—C5—C1088.0 (4)C18—C13—C17—C2058.6 (4)
C3—C4—C5—C1032.0 (4)C14—C13—C17—C20175.1 (2)
C5—O56—C6—C7115.1 (3)C12—C13—C17—C16158.1 (3)
C4—C5—C6—O5695.6 (3)C18—C13—C17—C1672.1 (3)
C10—C5—C6—O56104.1 (3)C14—C13—C17—C1644.4 (3)
O56—C5—C6—C7100.4 (3)C24—O3—C20—C2218.6 (3)
C4—C5—C6—C7164.0 (3)C24—O3—C20—C2197.2 (3)
C10—C5—C6—C73.8 (5)C24—O3—C20—C17138.7 (2)
O56—C6—C7—C843.7 (3)C16—C17—C20—O356.0 (3)
C5—C6—C7—C824.3 (4)C13—C17—C20—O3177.9 (2)
C6—C7—C8—C14172.2 (2)C16—C17—C20—C22166.4 (2)
C6—C7—C8—C953.3 (3)C13—C17—C20—C2267.5 (3)
C7—C8—C9—C11173.0 (2)C16—C17—C20—C2163.3 (4)
C14—C8—C9—C1153.1 (3)C13—C17—C20—C2162.7 (4)
C7—C8—C9—C1057.3 (3)C26—O2—C22—C2338.6 (4)
C14—C8—C9—C10177.2 (2)C26—O2—C22—C2073.1 (3)
O56—C5—C10—C1172.3 (2)O3—C20—C22—O275.4 (3)
C6—C5—C10—C1118.8 (3)C21—C20—C22—O2170.3 (2)
C4—C5—C10—C141.4 (4)C17—C20—C22—O237.6 (3)
O56—C5—C10—C1958.1 (3)O3—C20—C22—C2340.2 (3)
C6—C5—C10—C19126.9 (3)C21—C20—C22—C2374.1 (3)
C4—C5—C10—C1972.9 (3)C17—C20—C22—C23153.2 (2)
O56—C5—C10—C967.3 (3)O2—C22—C23—C2471.4 (3)
C6—C5—C10—C91.6 (4)C20—C22—C23—C2445.4 (3)
C4—C5—C10—C9161.8 (3)C20—O3—C24—C28133.8 (3)
O1—C1—C10—C5149.7 (4)C20—O3—C24—C239.7 (3)
C2—C1—C10—C532.0 (4)C20—O3—C24—C25103.1 (3)
O1—C1—C10—C1995.4 (4)C22—C23—C24—O334.1 (3)
C2—C1—C10—C1982.9 (4)C22—C23—C24—C28154.9 (3)
O1—C1—C10—C926.4 (5)C22—C23—C24—C2577.2 (3)
C2—C1—C10—C9155.4 (3)O3—C24—C25—O25178.9 (3)
C8—C9—C10—C528.7 (3)C28—C24—C25—O2560.9 (4)
C11—C9—C10—C5157.8 (2)C23—C24—C25—O2567.4 (3)
C8—C9—C10—C1149.5 (2)O3—C24—C25—C2757.7 (3)
C11—C9—C10—C181.3 (3)C28—C24—C25—C2762.4 (4)
C8—C9—C10—C1993.2 (3)C23—C24—C25—C27169.3 (3)
C11—C9—C10—C1935.9 (3)O3—C24—C25—C2664.1 (3)
C8—C9—C11—C1253.6 (3)C28—C24—C25—C26175.8 (3)
C10—C9—C11—C12175.6 (3)C23—C24—C25—C2647.4 (3)
C9—C11—C12—C1355.3 (4)C22—O2—C26—O26176.1 (3)
C11—C12—C13—C1865.2 (3)C22—O2—C26—C257.0 (4)
C11—C12—C13—C1455.9 (3)O25—C25—C26—O2672.9 (4)
C11—C12—C13—C17164.2 (3)C27—C25—C26—O2646.8 (4)
C7—C8—C14—C1555.9 (3)C24—C25—C26—O26171.7 (3)
C9—C8—C14—C15176.6 (3)O25—C25—C26—O2103.9 (3)
C7—C8—C14—C13179.6 (2)C27—C25—C26—O2136.4 (3)
C9—C8—C14—C1358.9 (3)C24—C25—C26—O211.5 (4)
C12—C13—C14—C860.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O26i0.79 (6)2.10 (6)2.819 (4)151
O25—H25···O56ii0.74 (5)2.12 (5)2.856 (4)169
C23—H23A···O26iii0.972.573.473 (4)154
C1S—H1SA···O260.982.433.393 (6)168
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y, z.
(20R,22R)-5α,14α,20-Trihydroxy-1-oxo-6α,7α-epoxywitha-2-enolide (II) top
Crystal data top
C28H40O7F(000) = 264
Mr = 488.60Dx = 1.312 Mg m3
Triclinic, P1Melting point: 528(3) K
a = 6.2374 (12) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.5938 (19) ÅCell parameters from 1941 reflections
c = 11.351 (2) Åθ = 4.3–75.5°
α = 112.81 (3)°µ = 0.76 mm1
β = 96.49 (3)°T = 290 K
γ = 93.13 (3)°Prizmatic, colorless
V = 618.5 (2) Å30.42 × 0.28 × 0.21 mm
Z = 1
Data collection top
Rigaku Xcalibur, Ruby
diffractometer
2812 independent reflections
Radiation source: Enhance (Cu) X-ray Source2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.2576 pixels mm-1θmax = 76.7°, θmin = 4.3°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1211
Tmin = 0.776, Tmax = 0.853l = 1410
4169 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0383P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.17 e Å3
2812 reflectionsΔρmin = 0.19 e Å3
333 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
3 restraintsAbsolute structure parameter: 0.1 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0734 (4)1.2216 (4)0.3845 (3)0.0674 (8)
O21.0070 (4)0.6040 (2)0.9120 (2)0.0441 (5)
O50.8575 (4)0.8791 (3)0.0969 (2)0.0524 (6)
O140.9050 (4)0.6585 (3)0.3671 (2)0.0468 (5)
O200.7306 (4)0.7378 (3)0.8118 (2)0.0444 (5)
O261.0412 (5)0.5281 (3)1.0706 (2)0.0591 (7)
O670.6045 (4)0.6709 (3)0.1319 (2)0.0555 (6)
C10.9157 (5)1.1689 (4)0.3017 (3)0.0431 (7)
C20.8775 (6)1.2312 (5)0.2017 (4)0.0551 (9)
H2A0.96241.31850.21080.066*
C30.7256 (6)1.1664 (5)0.0993 (4)0.0605 (10)
H3A0.71031.20950.03870.073*
C40.5794 (6)1.0290 (4)0.0768 (3)0.0534 (8)
H4A0.55700.96390.01460.064*
H4B0.43961.05890.10140.064*
C50.6713 (5)0.9395 (4)0.1537 (3)0.0417 (7)
C60.5077 (6)0.8077 (4)0.1384 (3)0.0472 (7)
H6A0.37250.79280.07980.057*
C70.4970 (5)0.7531 (4)0.2412 (3)0.0444 (7)
H7A0.35500.70540.24270.053*
C80.6366 (4)0.8339 (3)0.3704 (3)0.0346 (6)
H8A0.54140.89460.42900.042*
C90.8236 (5)0.9479 (3)0.3713 (3)0.0357 (6)
H9A0.93150.88780.32380.043*
C100.7426 (5)1.0460 (3)0.2988 (3)0.0358 (6)
C110.9330 (6)1.0353 (4)0.5127 (3)0.0535 (9)
H11A1.05771.10110.51400.064*
H11B0.83161.09940.56130.064*
C121.0074 (5)0.9316 (4)0.5799 (3)0.0490 (8)
H12A1.06530.99340.66940.059*
H12B1.12290.87690.53870.059*
C130.8206 (4)0.8163 (3)0.5748 (3)0.0343 (6)
C140.7262 (4)0.7268 (3)0.4299 (3)0.0360 (6)
C150.5738 (5)0.5985 (4)0.4314 (3)0.0471 (7)
H15A0.55070.51320.34810.056*
H15B0.43470.63290.45350.056*
C160.6930 (5)0.5546 (4)0.5361 (3)0.0451 (7)
H16A0.75000.45760.49660.054*
H16B0.59410.54570.59350.054*
C170.8822 (4)0.6823 (3)0.6131 (3)0.0353 (6)
H17A1.01340.64760.57560.042*
C180.6480 (6)0.9019 (4)0.6520 (3)0.0478 (7)
H18A0.53060.83030.64790.072*
H18B0.59400.97090.61610.072*
H18C0.71130.95790.74050.072*
C190.5529 (5)1.1315 (4)0.3550 (3)0.0459 (7)
H19A0.58911.18210.44720.069*
H19B0.42571.06050.33420.069*
H19C0.52501.20520.31890.069*
C200.9287 (5)0.7102 (3)0.7577 (3)0.0367 (6)
C211.0997 (5)0.8455 (4)0.8335 (3)0.0458 (7)
H21A1.04300.93750.83610.069*
H21B1.22740.83230.79210.069*
H21C1.13600.85170.92000.069*
C221.0006 (5)0.5651 (3)0.7731 (3)0.0378 (6)
H22A0.88540.48170.72650.045*
C231.2147 (6)0.5111 (4)0.7296 (3)0.0461 (7)
H23A1.31110.59800.73750.055*
H23B1.18770.44230.63920.055*
C241.3270 (5)0.4300 (3)0.8076 (3)0.0404 (6)
H24A1.43160.50620.87660.048*
C251.1654 (5)0.3683 (4)0.8731 (3)0.0430 (7)
H25A1.05080.30030.80570.052*
C261.0632 (5)0.5015 (4)0.9602 (3)0.0414 (7)
C271.2617 (7)0.2800 (5)0.9482 (4)0.0610 (9)
H27A1.15030.24630.98590.091*
H27B1.37420.34451.01530.091*
H27C1.32160.19350.89090.091*
C281.4558 (6)0.3074 (4)0.7249 (4)0.0525 (8)
H28A1.55250.27600.77970.079*
H28B1.53840.34740.67640.079*
H28C1.35760.22160.66660.079*
H50.858 (7)0.793 (6)0.113 (4)0.069 (13)*
H140.884 (8)0.628 (6)0.289 (5)0.069 (14)*
H200.768 (9)0.767 (7)0.884 (6)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (14)0.0798 (18)0.0761 (19)0.0157 (13)0.0101 (13)0.0506 (16)
O20.0575 (13)0.0457 (12)0.0372 (11)0.0172 (10)0.0157 (9)0.0214 (10)
O50.0675 (15)0.0570 (15)0.0387 (12)0.0261 (12)0.0205 (10)0.0197 (11)
O140.0572 (14)0.0504 (13)0.0346 (12)0.0207 (11)0.0123 (10)0.0153 (10)
O200.0445 (12)0.0573 (14)0.0371 (12)0.0169 (10)0.0125 (9)0.0218 (11)
O260.0718 (17)0.0731 (17)0.0456 (14)0.0210 (13)0.0187 (12)0.0335 (13)
O670.0801 (17)0.0401 (12)0.0352 (12)0.0108 (11)0.0037 (11)0.0057 (9)
C10.0428 (16)0.0457 (17)0.0456 (17)0.0093 (13)0.0078 (13)0.0222 (14)
C20.059 (2)0.058 (2)0.063 (2)0.0067 (16)0.0102 (17)0.0395 (19)
C30.070 (2)0.071 (2)0.059 (2)0.0197 (19)0.0074 (18)0.044 (2)
C40.065 (2)0.059 (2)0.0408 (17)0.0164 (17)0.0008 (15)0.0253 (16)
C50.0501 (17)0.0462 (17)0.0301 (14)0.0166 (14)0.0064 (12)0.0148 (13)
C60.0545 (18)0.0424 (17)0.0366 (15)0.0054 (13)0.0093 (13)0.0112 (13)
C70.0449 (16)0.0414 (17)0.0397 (16)0.0014 (13)0.0063 (13)0.0121 (13)
C80.0354 (14)0.0361 (14)0.0293 (14)0.0030 (11)0.0002 (11)0.0110 (11)
C90.0377 (14)0.0393 (15)0.0300 (13)0.0042 (11)0.0031 (10)0.0142 (12)
C100.0387 (14)0.0382 (14)0.0315 (13)0.0074 (11)0.0057 (10)0.0145 (11)
C110.070 (2)0.0465 (18)0.0395 (17)0.0196 (16)0.0160 (16)0.0223 (15)
C120.0541 (19)0.0528 (19)0.0384 (16)0.0158 (15)0.0106 (13)0.0238 (15)
C130.0405 (15)0.0327 (13)0.0299 (13)0.0017 (11)0.0014 (11)0.0141 (11)
C140.0381 (14)0.0351 (14)0.0305 (14)0.0032 (11)0.0030 (11)0.0090 (11)
C150.0500 (18)0.0387 (15)0.0466 (17)0.0078 (13)0.0078 (13)0.0161 (14)
C160.0537 (18)0.0377 (16)0.0410 (16)0.0037 (13)0.0007 (13)0.0153 (13)
C170.0382 (14)0.0354 (14)0.0321 (14)0.0030 (11)0.0067 (11)0.0128 (12)
C180.065 (2)0.0458 (17)0.0371 (16)0.0202 (15)0.0126 (14)0.0179 (14)
C190.0497 (18)0.0423 (16)0.0476 (18)0.0135 (14)0.0146 (14)0.0167 (14)
C200.0390 (14)0.0392 (14)0.0313 (14)0.0046 (11)0.0066 (11)0.0130 (12)
C210.0556 (19)0.0444 (16)0.0356 (15)0.0026 (14)0.0020 (13)0.0171 (13)
C220.0416 (15)0.0408 (15)0.0311 (14)0.0043 (12)0.0054 (11)0.0145 (12)
C230.0491 (17)0.0510 (18)0.0441 (17)0.0133 (14)0.0138 (13)0.0223 (15)
C240.0429 (15)0.0365 (14)0.0404 (15)0.0057 (12)0.0044 (12)0.0141 (12)
C250.0443 (15)0.0414 (16)0.0460 (17)0.0057 (12)0.0047 (13)0.0207 (14)
C260.0421 (15)0.0464 (17)0.0419 (16)0.0052 (13)0.0091 (12)0.0235 (14)
C270.075 (2)0.055 (2)0.068 (2)0.0181 (19)0.0158 (19)0.0374 (19)
C280.0481 (17)0.0475 (18)0.063 (2)0.0124 (14)0.0125 (15)0.0211 (16)
Geometric parameters (Å, º) top
O1—C11.214 (4)C13—C181.534 (4)
O2—C261.341 (4)C13—C141.555 (4)
O2—C221.468 (3)C13—C171.562 (4)
O5—C51.433 (4)C14—C151.520 (4)
O5—H50.92 (5)C15—C161.538 (5)
O14—C141.442 (4)C15—H15A0.9700
O14—H140.81 (5)C15—H15B0.9700
O20—C201.434 (4)C16—C171.561 (4)
O20—H200.76 (6)C16—H16A0.9700
O26—C261.204 (4)C16—H16B0.9700
O67—C71.448 (4)C17—C201.546 (4)
O67—C61.454 (4)C17—H17A0.9800
C1—C21.478 (5)C18—H18A0.9600
C1—C101.542 (4)C18—H18B0.9600
C2—C31.327 (6)C18—H18C0.9600
C2—H2A0.9300C19—H19A0.9600
C3—C41.480 (6)C19—H19B0.9600
C3—H3A0.9300C19—H19C0.9600
C4—C51.532 (4)C20—C211.530 (4)
C4—H4A0.9700C20—C221.552 (4)
C4—H4B0.9700C21—H21A0.9600
C5—C61.523 (5)C21—H21B0.9600
C5—C101.560 (4)C21—H21C0.9600
C6—C71.458 (5)C22—C231.523 (4)
C6—H6A0.9800C22—H22A0.9800
C7—C81.506 (4)C23—C241.527 (5)
C7—H7A0.9800C23—H23A0.9700
C8—C141.530 (4)C23—H23B0.9700
C8—C91.551 (4)C24—C281.526 (5)
C8—H8A0.9800C24—C251.539 (4)
C9—C101.542 (4)C24—H24A0.9800
C9—C111.546 (4)C25—C261.507 (5)
C9—H9A0.9800C25—C271.518 (5)
C10—C191.534 (4)C25—H25A0.9800
C11—C121.532 (5)C27—H27A0.9600
C11—H11A0.9700C27—H27B0.9600
C11—H11B0.9700C27—H27C0.9600
C12—C131.542 (4)C28—H28A0.9600
C12—H12A0.9700C28—H28B0.9600
C12—H12B0.9700C28—H28C0.9600
C26—O2—C22119.2 (2)C14—C15—H15A111.0
C5—O5—H5100 (3)C16—C15—H15A111.0
C14—O14—H14114 (3)C14—C15—H15B111.0
C20—O20—H20103 (4)C16—C15—H15B111.0
C7—O67—C660.3 (2)H15A—C15—H15B109.0
O1—C1—C2118.9 (3)C15—C16—C17107.5 (2)
O1—C1—C10123.8 (3)C15—C16—H16A110.2
C2—C1—C10117.1 (3)C17—C16—H16A110.2
C3—C2—C1122.0 (3)C15—C16—H16B110.2
C3—C2—H2A119.0C17—C16—H16B110.2
C1—C2—H2A119.0H16A—C16—H16B108.5
C2—C3—C4123.3 (3)C20—C17—C16113.2 (2)
C2—C3—H3A118.3C20—C17—C13119.4 (2)
C4—C3—H3A118.3C16—C17—C13103.1 (2)
C3—C4—C5112.1 (3)C20—C17—H17A106.8
C3—C4—H4A109.2C16—C17—H17A106.8
C5—C4—H4A109.2C13—C17—H17A106.8
C3—C4—H4B109.2C13—C18—H18A109.5
C5—C4—H4B109.2C13—C18—H18B109.5
H4A—C4—H4B107.9H18A—C18—H18B109.5
O5—C5—C6108.7 (3)C13—C18—H18C109.5
O5—C5—C4105.4 (3)H18A—C18—H18C109.5
C6—C5—C4110.6 (3)H18B—C18—H18C109.5
O5—C5—C10109.5 (2)C10—C19—H19A109.5
C6—C5—C10111.4 (2)C10—C19—H19B109.5
C4—C5—C10111.0 (3)H19A—C19—H19B109.5
O67—C6—C759.6 (2)C10—C19—H19C109.5
O67—C6—C5114.1 (3)H19A—C19—H19C109.5
C7—C6—C5121.6 (3)H19B—C19—H19C109.5
O67—C6—H6A116.3O20—C20—C21109.3 (3)
C7—C6—H6A116.3O20—C20—C17108.7 (2)
C5—C6—H6A116.3C21—C20—C17112.1 (2)
O67—C7—C660.0 (2)O20—C20—C22105.9 (2)
O67—C7—C8117.5 (3)C21—C20—C22110.1 (2)
C6—C7—C8120.6 (3)C17—C20—C22110.5 (2)
O67—C7—H7A115.7C20—C21—H21A109.5
C6—C7—H7A115.7C20—C21—H21B109.5
C8—C7—H7A115.7H21A—C21—H21B109.5
C7—C8—C14113.8 (2)C20—C21—H21C109.5
C7—C8—C9114.2 (2)H21A—C21—H21C109.5
C14—C8—C9109.8 (2)H21B—C21—H21C109.5
C7—C8—H8A106.1O2—C22—C23110.7 (2)
C14—C8—H8A106.1O2—C22—C20103.0 (2)
C9—C8—H8A106.1C23—C22—C20118.2 (2)
C10—C9—C11116.2 (2)O2—C22—H22A108.2
C10—C9—C8111.0 (2)C23—C22—H22A108.2
C11—C9—C8108.0 (2)C20—C22—H22A108.2
C10—C9—H9A107.1C22—C23—C24113.1 (3)
C11—C9—H9A107.1C22—C23—H23A109.0
C8—C9—H9A107.1C24—C23—H23A109.0
C19—C10—C9111.9 (2)C22—C23—H23B109.0
C19—C10—C1105.6 (2)C24—C23—H23B109.0
C9—C10—C1114.3 (2)H23A—C23—H23B107.8
C19—C10—C5110.1 (2)C28—C24—C23111.1 (3)
C9—C10—C5108.3 (2)C28—C24—C25112.6 (3)
C1—C10—C5106.5 (2)C23—C24—C25111.5 (3)
C12—C11—C9113.7 (3)C28—C24—H24A107.1
C12—C11—H11A108.8C23—C24—H24A107.1
C9—C11—H11A108.8C25—C24—H24A107.1
C12—C11—H11B108.8C26—C25—C27110.4 (3)
C9—C11—H11B108.8C26—C25—C24107.4 (2)
H11A—C11—H11B107.7C27—C25—C24115.1 (3)
C11—C12—C13112.1 (3)C26—C25—H25A107.9
C11—C12—H12A109.2C27—C25—H25A107.9
C13—C12—H12A109.2C24—C25—H25A107.9
C11—C12—H12B109.2O26—C26—O2118.0 (3)
C13—C12—H12B109.2O26—C26—C25125.7 (3)
H12A—C12—H12B107.9O2—C26—C25116.2 (3)
C18—C13—C12109.4 (3)C25—C27—H27A109.5
C18—C13—C14111.2 (2)C25—C27—H27B109.5
C12—C13—C14106.9 (2)H27A—C27—H27B109.5
C18—C13—C17111.2 (2)C25—C27—H27C109.5
C12—C13—C17117.4 (2)H27A—C27—H27C109.5
C14—C13—C17100.3 (2)H27B—C27—H27C109.5
O14—C14—C15107.0 (2)C24—C28—H28A109.5
O14—C14—C8109.7 (2)C24—C28—H28B109.5
C15—C14—C8119.1 (2)H28A—C28—H28B109.5
O14—C14—C13105.9 (2)C24—C28—H28C109.5
C15—C14—C13103.5 (2)H28A—C28—H28C109.5
C8—C14—C13110.8 (2)H28B—C28—H28C109.5
C14—C15—C16103.8 (2)
O1—C1—C2—C3171.0 (4)C9—C8—C14—O1452.5 (3)
C10—C1—C2—C312.6 (5)C7—C8—C14—C1546.7 (4)
C1—C2—C3—C41.1 (6)C9—C8—C14—C15176.2 (3)
C2—C3—C4—C520.5 (6)C7—C8—C14—C13166.4 (3)
C3—C4—C5—O568.1 (4)C9—C8—C14—C1364.1 (3)
C3—C4—C5—C6174.6 (3)C18—C13—C14—O14177.1 (2)
C3—C4—C5—C1050.3 (4)C12—C13—C14—O1457.8 (3)
C7—O67—C6—C5113.8 (3)C17—C13—C14—O1465.2 (3)
O5—C5—C6—O6727.8 (3)C18—C13—C14—C1570.5 (3)
C4—C5—C6—O67143.1 (3)C12—C13—C14—C15170.1 (3)
C10—C5—C6—O6792.9 (3)C17—C13—C14—C1547.2 (3)
O5—C5—C6—C795.8 (4)C18—C13—C14—C858.2 (3)
C4—C5—C6—C7148.9 (3)C12—C13—C14—C861.2 (3)
C10—C5—C6—C725.0 (4)C17—C13—C14—C8175.9 (2)
C6—O67—C7—C8111.3 (3)O14—C14—C15—C1674.2 (3)
C5—C6—C7—O67101.2 (3)C8—C14—C15—C16160.8 (3)
O67—C6—C7—C8106.1 (3)C13—C14—C15—C1637.3 (3)
C5—C6—C7—C84.9 (5)C14—C15—C16—C1713.0 (3)
O67—C7—C8—C1471.8 (3)C15—C16—C17—C20146.3 (3)
C6—C7—C8—C14141.6 (3)C15—C16—C17—C1316.0 (3)
O67—C7—C8—C955.4 (4)C18—C13—C17—C2046.5 (3)
C6—C7—C8—C914.4 (4)C12—C13—C17—C2080.5 (3)
C7—C8—C9—C1044.7 (3)C14—C13—C17—C20164.2 (2)
C14—C8—C9—C10173.9 (2)C18—C13—C17—C1679.9 (3)
C7—C8—C9—C11173.1 (3)C12—C13—C17—C16153.1 (3)
C14—C8—C9—C1157.7 (3)C14—C13—C17—C1637.8 (3)
C11—C9—C10—C1967.2 (3)C16—C17—C20—O2053.7 (3)
C8—C9—C10—C1956.7 (3)C13—C17—C20—O2067.9 (3)
C11—C9—C10—C152.9 (4)C16—C17—C20—C21174.6 (3)
C8—C9—C10—C1176.7 (2)C13—C17—C20—C2153.1 (3)
C11—C9—C10—C5171.4 (3)C16—C17—C20—C2262.1 (3)
C8—C9—C10—C564.8 (3)C13—C17—C20—C22176.3 (2)
O1—C1—C10—C1999.7 (4)C26—O2—C22—C2353.1 (3)
C2—C1—C10—C1976.5 (4)C26—O2—C22—C20179.6 (2)
O1—C1—C10—C923.8 (5)O20—C20—C22—O254.7 (3)
C2—C1—C10—C9160.0 (3)C21—C20—C22—O263.4 (3)
O1—C1—C10—C5143.3 (4)C17—C20—C22—O2172.2 (2)
C2—C1—C10—C540.5 (4)O20—C20—C22—C23177.1 (3)
O5—C5—C10—C19170.9 (3)C21—C20—C22—C2359.1 (3)
C6—C5—C10—C1968.9 (3)C17—C20—C22—C2365.4 (3)
C4—C5—C10—C1954.9 (3)O2—C22—C23—C2431.1 (4)
O5—C5—C10—C966.6 (3)C20—C22—C23—C24149.5 (3)
C6—C5—C10—C953.7 (3)C22—C23—C24—C28148.4 (3)
C4—C5—C10—C9177.5 (3)C22—C23—C24—C2521.9 (4)
O5—C5—C10—C156.8 (3)C28—C24—C25—C26175.2 (3)
C6—C5—C10—C1177.1 (3)C23—C24—C25—C2659.1 (3)
C4—C5—C10—C159.1 (3)C28—C24—C25—C2751.8 (4)
C10—C9—C11—C12179.3 (3)C23—C24—C25—C27177.5 (3)
C8—C9—C11—C1253.9 (4)C22—O2—C26—O26170.9 (3)
C9—C11—C12—C1355.1 (4)C22—O2—C26—C2513.8 (4)
C11—C12—C13—C1864.7 (3)C27—C25—C26—O266.5 (5)
C11—C12—C13—C1455.8 (3)C24—C25—C26—O26132.7 (3)
C11—C12—C13—C17167.4 (3)C27—C25—C26—O2168.4 (3)
C7—C8—C14—O1476.9 (3)C24—C25—C26—O242.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20···O5i0.76 (6)2.22 (6)2.973 (4)173
C7—H7A···O26ii0.982.593.367 (5)136
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

We are especially grateful to Dr Kambarali Turgunov for help in discussing the results.

References

First citationAlfonso, D., Bernardinelli, G. & Kapetanidis, I. (1993). Phytochemistry, 34, 517–521.  CSD CrossRef CAS Web of Science Google Scholar
First citationFigueiredo, M. C. C., Passos, A. R., Hughes, F. M., Santos, K. S., Silva, A. L. & Soares, T. L. (2020). Sci. Hortic. (Amsterdam), 267, 109307.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, M., He, J. X., Hu, H. X., Zhang, K., Wang, X. N., Zhao, B. B., Lou, H. X., Ren, D. M. & Shen, T. (2020). J. Pharm. Pharmacol. 72, 649–669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaldonado, E., Hurtado, N. E., Pérez-Castorena, A. L. & Martínez, M. (2015). Steroids, 104, 72–78.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMaldonado, E., Pérez-Castorena, A. L., Garcés, C. & Martínez, M. (2011). Steroids, 76, 724–728.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPinto, L. A., Meira, C. S., Villarreal, C. F., Vannier-Santos, M. A., de Souza, C. V. C., Ribeiro, I. M., Tomassini, T. C., Galvão-Castro, B., Soares, M. B. & Grassi, M. F. (2016). Biomed. Pharmacother. 79, 129–134.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRay, A. B. & Gupta, M. (1994). Withasteroids, a Growing Group of Naturally Occurring Steroidal Lactones. In Progress in the Chemistry of Organic Natural Products, vol 63, edited by W. Herz, G. W, Kirby, R. E. Moore, W. Steglich & C. Tamm,. pp. 1–106. New York: Springer Verlag.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSá, M. S., de Menezes, M. N., Krettli, A. U., Ribeiro, I. M., Tomassini, T. C., Ribeiro dos Santos, R., de Azevedo, W. F. Jr & Soares, M. B. (2011). J. Nat. Prod. 74, 2269–2272.  Web of Science PubMed Google Scholar
First citationSalgado, E. R. & Arana, G. V. (2013). Bol. Latinoam. Caribe Plant. Med. Aromat. 12, 431–445.  Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, B.-N., Misico, R., Park, E. J., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Pezzuto, J. M. & Kinghorn, A. D. (2002). Tetrahedron, 58, 3453–3466.  Web of Science CSD CrossRef CAS Google Scholar
First citationVasina, O. E., Abdullaev, N. D. & Abubakirov, N. K. (1990). Chem. Nat. Compd. 26, 304–307.  CrossRef Google Scholar
First citationVasina, O. E., Maslennikova, V. A., Abdullaev, N. D. & Abubakirov, N. K. (1986). Chem. Nat. Compd. 22, 560–565.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds