research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {N1,N3-bis­­[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl­­idene]-2,2-di­methyl­propane-1,3-di­amine}­bis­­(thio­cyanato)­iron(II)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, bDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania, and cThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, Dushanbe, 734025, Tajikistan
*Correspondence e-mail: mlseredyuk@gmail.com, voruch@eml.ru

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 19 April 2021; accepted 24 April 2021; online 30 April 2021)

The unit cell of the title compound, [FeII(NCS)2(C19H32N8)], consists of two charge-neutral complex mol­ecules. In the complex mol­ecule, the tetra­dentate ligand N1,N3-bis­[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine coordinates to the FeII ion through the N atoms of the 1,2,3-triazole and aldimine groups. Two thio­cyanate anions, also coordinated through their N atoms, complete the coordination sphere of the central Fe ion. In the crystal, neighbouring mol­ecules are linked through weak C—H⋯C/S/N inter­actions into a three-dimensional network. The inter­mol­ecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 50.8%, H⋯C/C⋯H 14.3%, H⋯S/S⋯H 20.5% and H⋯N/N⋯H 12.1%. The average Fe—N bond distance is 2.170 Å, indicating the high-spin state of the FeII ion, which does not change upon cooling, as demonstrated by low-temperature magnetic susceptibility measurements. DFT calculations of energy frameworks at the B3LYP/6–31 G(d,p) theory level were performed to account for the inter­actions involved in the crystal structure.

1. Chemical context

An inter­esting class of coordination compounds exhibiting spin-state switching between low- and high-spin states is represented by FeII complexes based on Schiff bases derived from N-substituted 1,2,3-triazole aldehydes (Hagiwara et al., 2014[Hagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950-952.], 2016[Hagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132-17140.], 2020[Hagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866-9880.]; Hora & Hagiwara, 2017[Hora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.]). In all of the charge-neutral mononuclear complexes of this kind described so far, the thio­cyanate anions occupy the axial position in the coord­ination sphere and thus are in a trans-configuration (Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]; Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]).

[Scheme 1]

Having inter­est in functional 3d metal complexes formed by polydentate ligands (Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.], 2012[Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.], 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.], 2016[Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627-39635.]; Valverde-Muñoz et al., 2020[Valverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632-18638.]), we report here a continuation of our ongoing exploration of new FeII cis-complexes with thio­cyanate anions and tetra­dentate ligands N1,N3-bis­[(1-R-1H-1,2,3-triazol-4-yl)methyl­ene]-2,2-di­methyl­propane-1,3-di­amine, and report below structural and magnetic investigations of a new complex with R = tert-butyl.

2. Structural commentary

The FeII ion of the title complex has a distorted trigonal–prismatic N6 coordination environment formed by the four N atoms of the tetra­dentate Schiff-base ligand and the two NCS counter-ions (Fig. 1[link]). The average bond length, <Fe—N> = 2.170 (4) Å, is typical for high-spin complexes with an [FeN6] chromophore (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The N—Fe—N′ angle between the cis-aligned thio­cyanate N atoms is 91.91 (8)°. The average trigonal distortion parameters, Σ = Σ112(|90 – φi|), where φi is the angle N—Fe—N′ (Drew et al., 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), Θ = Σ124(|60 – θi|), where θi is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.]) are 127.8 and 438.2°, respectively. The values reveal a great deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0), and are significantly larger than those of similar [FeN6] high-spin trans-complexes (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.]). With the aid of continuous shape measurements (CShM), the closest shape of a coordination polyhedron and its distortion can be determined numerically (Kershaw Cook et al., 2015[Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289-290, 2-12.]). The calculated CShM value relative to ideal Oh symmetry is 3.829, while it is 6.709 relative to the ideal D3h trigonal–prismatic symmetry. Hence, the polyhedron is closer to the former geometry, but is still appreciably distorted, as indicated by the calculated value (for an ideal polyhedron CShM = 0). The volume of the [FeN6] coordination polyhedron is 12.60 Å3.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

In the lattice, neighbouring complex mol­ecules form a three-dimensional supra­molecular network (Fig. 2[link]) through the weak C—H⋯X hydrogen bonds (Table 1[link]). No strong hydrogen bonding or stacking inter­actions are observed between the complex mol­ecules in the crystal lattice.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯C21i 0.97 2.84 3.786 (4) 166
C5—H5⋯S1ii 0.93 2.99 3.718 (4) 137
C7—H7⋯S1i 0.93 2.90 3.764 (4) 155
C13—H13⋯S1iii 0.93 2.99 3.724 (4) 137
C13—H13⋯C20iii 0.93 2.75 3.558 (4) 146
C15—H15⋯S1iii 0.93 2.84 3.573 (4) 137
C17—H17A⋯S2iv 0.96 2.94 3.873 (4) 166
C17—H17B⋯S2v 0.96 2.94 3.850 (4) 158
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) x+1, y, z; (iii) [-x, -y+1, -z+1]; (iv) [x, y-1, z]; (v) [-x, -y+1, -z].
[Figure 2]
Figure 2
The packing of mol­ecules into the three-dimensional network held together by weak C—H⋯C/S bonding (dashed cyan lines).

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]), with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed colour scale of −0.1141 (red) to 1.9978 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illus­trated in Fig. 3[link]. The Hirshfeld surfaces mapped over dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯S/S⋯H, and H⋯N/N⋯H contacts, and the two-dimensional fingerprint plots are presented in Fig. 4[link], associated with their relative contributions to the Hirshfeld surface. At 50.8%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 14.3%, and the H⋯S/S⋯H contacts contribute 20.5% to the Hirshfeld surface, both resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.1% contribution to the Hirshfeld surface.

[Figure 3]
Figure 3
Two projections of dnorm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii.
[Figure 4]
Figure 4
(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function dnorm plotted onto the surface for the different inter­actions.

5. Energy frameworks

The energy frameworks, calculated using the wave function at the B3LYP/6-3G(d,p) level of theory for the title compound, including the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot), are shown in Fig. 5[link]a. The cylindrical radii, adjusted to the same scale factor of 80, are proportional to the relative strength of the corresponding energies (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]; Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). It can be seen that the major contribution to the inter­molecular inter­actions is from Coulomb forces (Eele), reflecting dipole–dipole inter­actions of the asymmetric complex cis-mol­ecules in the lattice. According to the calculations, the most repulsive inter­action is due to the anion-to-anion alignment of neighbouring complex mol­ecules (Etot = 65.3 kJ mol−1) while the ligand-to-anion alignment gives the most attractive one (Etot = −223.9 kJ mol−1) (Fig. 5[link]b). The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (Etot) are given in the Supporting Information.

[Figure 5]
Figure 5
(a) The calculated energy frameworks, showing the electrostatic potential forces (Eele), the dispersion forces (Edis) and the total energy diagrams (Etot). Yellow coloured tubes correspond to the repulsive inter­actions; (b) the strongest repulsive and attractive inter­actions between neighbouring complex mol­ecules.

6. Magnetic properties

Variable-temperature magnetic susceptibility measurements were performed on single crystals (10 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum inter­ference device (SQUID) susceptometer operating at 1 T. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound is shown in Fig. 6[link] in the form of χMT versus T (χM is the molar magnetic susceptibility and T is the temperature). At 300 K, the χMT value is close to 3.51 cm3 K mol−1, and on cooling the value remains constant down to 30 K. The decrease of χMT below 30 K is attributed to the zero-field splitting of the high-spin (S = 2) FeII centres (Kahn, 1993[Kahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.]), which corroborates with the observed long average Fe—N bond length and the large geometric distortion of the coordination polyhedron of the central FeII ion.

[Figure 6]
Figure 6
χMT versus T plot for the title compound.

7. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals five similar FeII thio­cyanate complexes, derivatives of a 1,3-di­amine and N-substituted 1,2,3-triazole aldehydes: DURXEV, ADAQUU, ADAREF and solvatomorphs ADAROP and ADARUV (Hagiwara et al., 2017[Hagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006-6019.], Hagiwara & Okada, 2016[Hagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815-818.]). These complexes show hysteretic spin crossover with variation of the Fe—N distances in the range 1.931–1.959 Å for the low-spin state and 2.154–2.169 Å for the high-spin state of the FeII ions. The reported pseudo-trigonal–prismatic complexes with an [FeN6] chromophore are formed by structurally hindered rigid hexa­dentate ligands favouring trigonal geometry of the central FeII ion: CABLOH (Voloshin et al., 2001[Voloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721-2733.]), BUNSAF (El Hajj et al., 2009[El Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416-10423.]), OWIHAE (Seredyuk et al., 2011[Seredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965-976.]), OTANOO (Stock et al., 2016[Stock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254-5265.]). The recently reported by us cis-complexes CUWQAP and IQEFAO have similar strongly distorted coordination environment of the central FeII ion (Znovjyak et al., 2020[Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661-1664.], 2021[Znovjyak, K., Seredyuk, M., Malinkin, S. O., Golenya, I. A., Sliva, T. Y., Shova, S. & Mulloev, N. U. (2021). Acta Cryst. E77, 495-499.]). Table 2[link] collates the distortion parameters Σ, Θ and CShM for the pseudo-trigonal-prismatic complexes mentioned above.

Table 2
Comparison of the distortion parameters (Å, °) for the indicated FeII complexes

  <Fe—N> Σ Θ CShM (Oh) CShM (D3h)
Title compound 2.170 127.8 438.2 3.829 6.709
IQEFAO 2.167 127.40 481.9 4.269 5.671
CUWQAP 2.186 149.38 453.2 6.285 4.008
CABLOH 1.899 178.16 725.74 12.735 0.525
BUNSAF 2.218 201.07 703.65 13.084 1.887
OWIHAE 2.202 206.57 894.48 16.909 0.602
OTANOOa 2.191 183.24 697.3 12.065 1.098
Note: (a) Parameters averaged over five independent complex cations.

8. Synthesis and crystallization

The synthesis of the title compound is identical to that reported by us recently for similar thio­cyanate complexes (Znovjyak et al., 2020[Znovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661-1664.], 2021[Znovjyak, K., Seredyuk, M., Malinkin, S. O., Golenya, I. A., Sliva, T. Y., Shova, S. & Mulloev, N. U. (2021). Acta Cryst. E77, 495-499.]). The ligand of the title compound was obtained in situ by condensation of 2,2-dimethyl-1,3-propanedi­amine (24 µL, 0.20 mmol) with 1-tert-butyl-1H-1,2,3-triazole-4-carbaldehyde (63 mg, 0.45 mmol) in boiling methanol (5 ml) over 5 min and subsequently reacted with [Fe(py)4(NCS)2] (100 mg, 0.20 mmol) and ascorbic acid (11 mg, 0.06 mmol) in boiling methanol (5 ml). The formed yellow solution was slowly cooled to ambient temperature. Yellow–orange crystals then precipitated and were subsequently filtered off. Elemental analysis calculated (%) for C21H32FeN10S2: C, 46.32; H, 5.92; N, 25.72; S, 11.78. Found: C, 46.40; H, 6.10; N, 26.18; S, 11.80. IR v (cm−1, KBr): 1611 (C=N), 2071, 2116 (NCS).

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C19H32N8)]
Mr 544.53
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 250
a, b, c (Å) 9.4768 (5), 10.8151 (5), 15.2493 (7)
α, β, γ (°) 102.267 (4), 102.813 (4), 103.291 (4)
V3) 1424.90 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.70
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.865, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10732, 5016, 4188
Rint 0.025
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections 5016
No. of parameters 315
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.40
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

{N1,N3-Bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methylidene]-2,2-dimethylpropane-1,3-diamine}bis(thiocyanato)iron(II) top
Crystal data top
[Fe(NCS)2(C19H32N8)]Z = 2
Mr = 544.53F(000) = 572
Triclinic, P1Dx = 1.269 Mg m3
a = 9.4768 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8151 (5) ÅCell parameters from 3729 reflections
c = 15.2493 (7) Åθ = 2.0–26.8°
α = 102.267 (4)°µ = 0.70 mm1
β = 102.813 (4)°T = 250 K
γ = 103.291 (4)°Prism, orange
V = 1424.90 (13) Å30.4 × 0.2 × 0.2 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos
diffractometer
4188 reflections with I > 2σ(I)
Detector resolution: 16.1593 pixels mm-1Rint = 0.025
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1011
Tmin = 0.865, Tmax = 1.000k = 1212
10732 measured reflectionsl = 1818
5016 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.545P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5016 reflectionsΔρmax = 0.46 e Å3
315 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.23066 (4)0.71954 (3)0.39637 (2)0.03412 (12)
S10.02770 (8)0.91016 (6)0.59945 (5)0.04605 (18)
S20.18981 (11)0.99900 (8)0.18833 (5)0.0709 (3)
N10.4279 (2)0.81942 (18)0.51741 (13)0.0362 (5)
N20.4378 (2)0.70935 (19)0.34658 (14)0.0382 (5)
N30.4618 (2)0.6739 (2)0.26556 (14)0.0422 (5)
N40.6061 (2)0.73984 (19)0.27554 (14)0.0397 (5)
N50.2174 (2)0.57207 (18)0.47997 (13)0.0347 (4)
N60.1170 (2)0.52968 (18)0.29454 (13)0.0359 (5)
N70.0625 (2)0.48742 (19)0.20347 (14)0.0399 (5)
N80.0220 (2)0.35431 (18)0.18153 (13)0.0386 (5)
N90.0762 (3)0.7799 (2)0.46068 (16)0.0504 (6)
N100.2124 (2)0.8439 (2)0.31141 (15)0.0466 (5)
C10.3934 (4)0.7358 (3)0.74168 (19)0.0664 (9)
H1A0.4889650.7958850.7806430.100*
H1B0.3755910.6554890.7602430.100*
H1C0.3142390.7755460.7483190.100*
C20.5250 (3)0.6455 (3)0.6288 (2)0.0570 (7)
H2A0.5226050.6212960.5640420.086*
H2B0.5136950.5683660.6513210.086*
H2C0.6199220.7095440.6645600.086*
C30.3958 (3)0.7047 (2)0.63914 (16)0.0427 (6)
C40.4194 (3)0.8373 (2)0.61365 (16)0.0405 (6)
H4A0.3361160.8728210.6207070.049*
H4B0.5120650.9003300.6561640.049*
C50.5577 (3)0.8462 (2)0.50359 (17)0.0406 (6)
H50.6443840.8945290.5521990.049*
C60.5647 (3)0.7985 (2)0.40914 (16)0.0370 (6)
C70.6733 (3)0.8177 (2)0.36351 (17)0.0430 (6)
H70.7722260.8725820.3879560.052*
C80.6700 (3)0.7264 (3)0.19420 (18)0.0487 (7)
C90.5645 (4)0.6141 (4)0.1149 (2)0.1047 (15)
H9A0.5503730.5341960.1341090.157*
H9B0.6063400.6043490.0628760.157*
H9C0.4689010.6313630.0967370.157*
C100.6890 (6)0.8558 (4)0.1695 (3)0.1240 (18)
H10A0.5929280.8733930.1552270.186*
H10B0.7273680.8508110.1160840.186*
H10C0.7587850.9257180.2216220.186*
C110.8222 (4)0.7048 (5)0.2252 (3)0.1079 (15)
H11A0.8874770.7792950.2757550.162*
H11B0.8654390.6951360.1737730.162*
H11C0.8108790.6261520.2459080.162*
C120.2433 (3)0.6048 (2)0.58150 (16)0.0436 (6)
H12A0.2353900.5239250.6004210.052*
H12B0.1634020.6398510.5965480.052*
C130.1634 (3)0.4524 (2)0.43216 (17)0.0388 (6)
H130.1555510.3841250.4606600.047*
C140.1140 (3)0.4256 (2)0.33115 (16)0.0343 (5)
C150.0539 (3)0.3127 (2)0.25822 (17)0.0416 (6)
H150.0385980.2257920.2613040.050*
C160.0388 (3)0.2749 (3)0.08089 (17)0.0479 (7)
C170.1268 (4)0.1368 (3)0.0764 (2)0.0696 (9)
H17A0.0609080.0969720.1105710.104*
H17B0.1668850.0845330.0122880.104*
H17C0.2083680.1413010.1035200.104*
C180.0941 (4)0.2720 (4)0.0434 (2)0.0891 (12)
H18A0.1468770.3602010.0454940.134*
H18B0.0594470.2175580.0202130.134*
H18C0.1610080.2363460.0807410.134*
C190.1432 (5)0.3412 (3)0.0304 (2)0.0919 (13)
H19A0.2260920.3410660.0569650.138*
H19B0.1814300.2937430.0348080.138*
H19C0.0881050.4307160.0371740.138*
C200.0333 (3)0.8349 (2)0.51828 (18)0.0367 (6)
C210.2028 (3)0.9064 (2)0.25931 (17)0.0390 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0342 (2)0.03043 (19)0.0383 (2)0.01036 (15)0.01232 (16)0.00759 (15)
S10.0547 (4)0.0404 (4)0.0486 (4)0.0136 (3)0.0264 (3)0.0117 (3)
S20.0981 (7)0.0621 (5)0.0433 (4)0.0113 (5)0.0066 (4)0.0230 (4)
N10.0387 (12)0.0299 (10)0.0377 (11)0.0076 (9)0.0129 (9)0.0052 (9)
N20.0317 (11)0.0383 (11)0.0399 (12)0.0052 (9)0.0124 (9)0.0040 (9)
N30.0318 (11)0.0451 (12)0.0424 (12)0.0044 (9)0.0111 (10)0.0040 (10)
N40.0324 (11)0.0432 (12)0.0388 (12)0.0054 (9)0.0116 (9)0.0059 (10)
N50.0328 (11)0.0337 (11)0.0369 (11)0.0075 (9)0.0115 (9)0.0087 (9)
N60.0359 (11)0.0324 (10)0.0390 (12)0.0085 (9)0.0124 (9)0.0090 (9)
N70.0447 (12)0.0340 (11)0.0402 (12)0.0093 (9)0.0125 (10)0.0104 (9)
N80.0447 (12)0.0324 (11)0.0361 (11)0.0068 (9)0.0119 (9)0.0082 (9)
N90.0538 (14)0.0530 (14)0.0625 (15)0.0297 (12)0.0297 (12)0.0242 (12)
N100.0500 (14)0.0437 (12)0.0516 (14)0.0159 (11)0.0188 (11)0.0181 (11)
C10.079 (2)0.072 (2)0.0385 (16)0.0090 (17)0.0176 (15)0.0089 (15)
C20.0541 (18)0.0564 (18)0.0582 (18)0.0216 (14)0.0080 (15)0.0133 (15)
C30.0466 (15)0.0469 (15)0.0328 (13)0.0131 (12)0.0118 (12)0.0075 (11)
C40.0392 (14)0.0411 (14)0.0360 (13)0.0102 (11)0.0125 (11)0.0006 (11)
C50.0345 (14)0.0369 (13)0.0413 (14)0.0027 (11)0.0086 (11)0.0031 (11)
C60.0312 (13)0.0359 (13)0.0377 (13)0.0042 (10)0.0091 (11)0.0046 (11)
C70.0322 (14)0.0458 (15)0.0391 (14)0.0006 (11)0.0081 (11)0.0022 (12)
C80.0420 (15)0.0608 (17)0.0390 (14)0.0065 (13)0.0173 (12)0.0078 (13)
C90.079 (3)0.138 (4)0.056 (2)0.011 (2)0.0318 (19)0.025 (2)
C100.209 (6)0.103 (3)0.096 (3)0.043 (3)0.095 (4)0.051 (3)
C110.063 (2)0.195 (5)0.072 (2)0.055 (3)0.034 (2)0.014 (3)
C120.0479 (15)0.0437 (15)0.0394 (14)0.0078 (12)0.0188 (12)0.0114 (12)
C130.0397 (14)0.0334 (13)0.0429 (14)0.0056 (11)0.0123 (11)0.0147 (11)
C140.0328 (13)0.0313 (12)0.0388 (13)0.0076 (10)0.0121 (11)0.0096 (10)
C150.0528 (16)0.0313 (13)0.0401 (14)0.0090 (12)0.0134 (12)0.0121 (11)
C160.0617 (18)0.0425 (15)0.0342 (14)0.0104 (13)0.0118 (13)0.0069 (12)
C170.094 (3)0.0498 (17)0.0418 (16)0.0047 (17)0.0119 (16)0.0000 (14)
C180.088 (3)0.103 (3)0.059 (2)0.004 (2)0.039 (2)0.006 (2)
C190.117 (3)0.079 (2)0.057 (2)0.032 (2)0.017 (2)0.0112 (18)
C200.0338 (13)0.0346 (13)0.0487 (15)0.0130 (11)0.0141 (12)0.0202 (12)
C210.0364 (14)0.0363 (13)0.0354 (14)0.0057 (11)0.0075 (11)0.0003 (12)
Geometric parameters (Å, º) top
Fe1—N12.182 (2)C4—H4B0.9700
Fe1—N22.2733 (19)C5—H50.9300
Fe1—N52.2422 (19)C5—C61.445 (3)
Fe1—N62.1619 (19)C6—C71.367 (3)
Fe1—N92.082 (2)C7—H70.9300
Fe1—N102.066 (2)C8—C91.489 (4)
S1—C201.623 (3)C8—C101.507 (4)
S2—C211.628 (3)C8—C111.502 (4)
N1—C41.462 (3)C9—H9A0.9600
N1—C51.273 (3)C9—H9B0.9600
N2—N31.300 (3)C9—H9C0.9600
N2—C61.361 (3)C10—H10A0.9600
N3—N41.347 (3)C10—H10B0.9600
N4—C71.345 (3)C10—H10C0.9600
N4—C81.491 (3)C11—H11A0.9600
N5—C121.463 (3)C11—H11B0.9600
N5—C131.264 (3)C11—H11C0.9600
N6—N71.307 (3)C12—H12A0.9700
N6—C141.356 (3)C12—H12B0.9700
N7—N81.348 (3)C13—H130.9300
N8—C151.338 (3)C13—C141.451 (3)
N8—C161.498 (3)C14—C151.370 (3)
N9—C201.156 (3)C15—H150.9300
N10—C211.149 (3)C16—C171.513 (4)
C1—H1A0.9600C16—C181.498 (4)
C1—H1B0.9600C16—C191.519 (4)
C1—H1C0.9600C17—H17A0.9600
C1—C31.535 (3)C17—H17B0.9600
C2—H2A0.9600C17—H17C0.9600
C2—H2B0.9600C18—H18A0.9600
C2—H2C0.9600C18—H18B0.9600
C2—C31.529 (4)C18—H18C0.9600
C3—C41.545 (3)C19—H19A0.9600
C3—C121.531 (3)C19—H19B0.9600
C4—H4A0.9700C19—H19C0.9600
N1—Fe1—N273.16 (7)N4—C7—H7127.5
N1—Fe1—N578.59 (7)C6—C7—H7127.5
N5—Fe1—N2102.76 (7)N4—C8—C10106.5 (2)
N6—Fe1—N1141.68 (7)N4—C8—C11107.9 (2)
N6—Fe1—N286.29 (7)C9—C8—N4109.4 (2)
N6—Fe1—N574.84 (7)C9—C8—C10111.6 (3)
N9—Fe1—N195.38 (8)C9—C8—C11111.7 (3)
N9—Fe1—N2164.79 (8)C11—C8—C10109.5 (3)
N9—Fe1—N584.21 (8)C8—C9—H9A109.5
N9—Fe1—N6108.70 (8)C8—C9—H9B109.5
N10—Fe1—N1108.35 (8)C8—C9—H9C109.5
N10—Fe1—N282.59 (8)H9A—C9—H9B109.5
N10—Fe1—N5172.39 (8)H9A—C9—H9C109.5
N10—Fe1—N6100.36 (8)H9B—C9—H9C109.5
N10—Fe1—N991.91 (8)C8—C10—H10A109.5
C4—N1—Fe1122.55 (15)C8—C10—H10B109.5
C5—N1—Fe1118.20 (16)C8—C10—H10C109.5
C5—N1—C4118.5 (2)H10A—C10—H10B109.5
N3—N2—Fe1135.06 (16)H10A—C10—H10C109.5
N3—N2—C6110.07 (19)H10B—C10—H10C109.5
C6—N2—Fe1110.64 (15)C8—C11—H11A109.5
N2—N3—N4106.56 (18)C8—C11—H11B109.5
N3—N4—C8120.84 (19)C8—C11—H11C109.5
C7—N4—N3110.97 (19)H11A—C11—H11B109.5
C7—N4—C8128.1 (2)H11A—C11—H11C109.5
C12—N5—Fe1124.97 (15)H11B—C11—H11C109.5
C13—N5—Fe1115.10 (16)N5—C12—C3115.17 (19)
C13—N5—C12119.2 (2)N5—C12—H12A108.5
N7—N6—Fe1135.88 (15)N5—C12—H12B108.5
N7—N6—C14109.98 (18)C3—C12—H12A108.5
C14—N6—Fe1113.70 (15)C3—C12—H12B108.5
N6—N7—N8106.35 (18)H12A—C12—H12B107.5
N7—N8—C16119.69 (19)N5—C13—H13121.3
C15—N8—N7111.10 (19)N5—C13—C14117.4 (2)
C15—N8—C16129.1 (2)C14—C13—H13121.3
C20—N9—Fe1158.0 (2)N6—C14—C13118.2 (2)
C21—N10—Fe1175.3 (2)N6—C14—C15107.5 (2)
H1A—C1—H1B109.5C15—C14—C13134.2 (2)
H1A—C1—H1C109.5N8—C15—C14105.1 (2)
H1B—C1—H1C109.5N8—C15—H15127.5
C3—C1—H1A109.5C14—C15—H15127.5
C3—C1—H1B109.5N8—C16—C17108.3 (2)
C3—C1—H1C109.5N8—C16—C19107.8 (2)
H2A—C2—H2B109.5C17—C16—C19110.0 (3)
H2A—C2—H2C109.5C18—C16—N8107.2 (2)
H2B—C2—H2C109.5C18—C16—C17110.8 (3)
C3—C2—H2A109.5C18—C16—C19112.5 (3)
C3—C2—H2B109.5C16—C17—H17A109.5
C3—C2—H2C109.5C16—C17—H17B109.5
C1—C3—C4106.4 (2)C16—C17—H17C109.5
C2—C3—C1109.7 (2)H17A—C17—H17B109.5
C2—C3—C4111.0 (2)H17A—C17—H17C109.5
C2—C3—C12110.4 (2)H17B—C17—H17C109.5
C12—C3—C1106.8 (2)C16—C18—H18A109.5
C12—C3—C4112.4 (2)C16—C18—H18B109.5
N1—C4—C3110.89 (19)C16—C18—H18C109.5
N1—C4—H4A109.5H18A—C18—H18B109.5
N1—C4—H4B109.5H18A—C18—H18C109.5
C3—C4—H4A109.5H18B—C18—H18C109.5
C3—C4—H4B109.5C16—C19—H19A109.5
H4A—C4—H4B108.1C16—C19—H19B109.5
N1—C5—H5121.4C16—C19—H19C109.5
N1—C5—C6117.1 (2)H19A—C19—H19B109.5
C6—C5—H5121.4H19A—C19—H19C109.5
N2—C6—C5117.0 (2)H19B—C19—H19C109.5
N2—C6—C7107.4 (2)N9—C20—S1179.2 (2)
C7—C6—C5135.5 (2)N10—C21—S2178.1 (2)
N4—C7—C6105.0 (2)
Fe1—N1—C4—C372.0 (2)N7—N6—C14—C150.0 (3)
Fe1—N1—C5—C64.9 (3)N7—N8—C15—C141.3 (3)
Fe1—N2—N3—N4154.24 (17)N7—N8—C16—C17159.3 (2)
Fe1—N2—C6—C520.5 (3)N7—N8—C16—C1881.1 (3)
Fe1—N2—C6—C7161.09 (17)N7—N8—C16—C1940.3 (3)
Fe1—N5—C12—C355.6 (3)C1—C3—C4—N1178.3 (2)
Fe1—N5—C13—C141.4 (3)C1—C3—C12—N5174.3 (2)
Fe1—N6—N7—N8172.44 (16)C2—C3—C4—N159.1 (3)
Fe1—N6—C14—C139.3 (3)C2—C3—C12—N566.5 (3)
Fe1—N6—C14—C15173.69 (16)C4—N1—C5—C6165.5 (2)
N1—C5—C6—N211.6 (3)C4—C3—C12—N558.0 (3)
N1—C5—C6—C7170.7 (3)C5—N1—C4—C397.9 (3)
N2—N3—N4—C70.1 (3)C5—C6—C7—N4178.3 (3)
N2—N3—N4—C8177.5 (2)C6—N2—N3—N40.4 (3)
N2—C6—C7—N40.4 (3)C7—N4—C8—C9171.2 (3)
N3—N2—C6—C5178.9 (2)C7—N4—C8—C1068.0 (4)
N3—N2—C6—C70.5 (3)C7—N4—C8—C1149.5 (4)
N3—N4—C7—C60.2 (3)C8—N4—C7—C6177.0 (2)
N3—N4—C8—C911.8 (4)C12—N5—C13—C14169.1 (2)
N3—N4—C8—C10108.9 (3)C12—C3—C4—N165.1 (3)
N3—N4—C8—C11133.5 (3)C13—N5—C12—C3134.8 (2)
N5—C13—C14—N65.3 (3)C13—C14—C15—N8175.5 (3)
N5—C13—C14—C15178.7 (3)C14—N6—N7—N80.8 (2)
N6—N7—N8—C151.3 (3)C15—N8—C16—C1725.7 (4)
N6—N7—N8—C16177.2 (2)C15—N8—C16—C1894.0 (3)
N6—C14—C15—N80.7 (3)C15—N8—C16—C19144.7 (3)
N7—N6—C14—C13177.0 (2)C16—N8—C15—C14176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···C21i0.972.843.786 (4)166
C5—H5···S1ii0.932.993.718 (4)137
C7—H7···S1i0.932.903.764 (4)155
C13—H13···S1iii0.932.993.724 (4)137
C13—H13···C20iii0.932.753.558 (4)146
C15—H15···S1iii0.932.843.573 (4)137
C17—H17A···S2iv0.962.943.873 (4)166
C17—H17B···S2v0.962.943.850 (4)158
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z.
Comparison of the distortion parameters (Å, °) for indicated FeII complexes top
<Fe—N>ΣΘCShM (Oh)CShM (D3h)
Title compound2.170127.8438.23.8296.709
IQEFAO2.167127.40481.94.2695.671
CUWQAP2.186149.38453.26.2854.008
CABLOH1.899178.16725.7412.7350.525
BUNSAF2.218201.07703.6513.0841.887
OWIHAE2.202206.57894.4816.9090.602
OTANOOa2.191183.24697.312.0651.098
Note: (a) Parameters averaged over five independent complex cations.
 

Acknowledgements

Author contributions are as follows: Conceptualization, NUM and MS; methodology, KZ; formal analysis, NUM; synthesis, SOM; magnetic measurements, IAG; single-crystal measurements, SS; writing (original draft), NUM and MS; writing (review and editing of the manuscript), NUM, MS, KZ, SOM, IOG, TYS and SS; visualization and DFT calculations, VMA; funding acquisition, KZ.

References

First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationEl Hajj, F., Sebki, G., Patinec, V., Marchivie, M., Triki, S., Handel, H., Yefsah, S., Tripier, R., Gómez-García, C. J. & Coronado, E. (2009). Inorg. Chem. 48, 10416–10423.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHagiwara, H., Masuda, T., Ohno, T., Suzuki, M., Udagawa, T. & Murai, K.-I. (2017). Cryst. Growth Des. 17, 6006–6019.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Okada, S. & Sunatsuki, Y. (2014). Chem. Lett. 43, 950–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Minoura, R., Udagawa, T., Mibu, K. & Okabayashi, J. (2020). Inorg. Chem. 59, 9866–9880.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHagiwara, H. & Okada, S. (2016). Chem. Commun. 52, 815–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagiwara, H., Tanaka, T. & Hora, S. (2016). Dalton Trans. 45, 17132–17140.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHora, S. & Hagiwara, H. (2017). Inorganics, 5, 49.  Web of Science CrossRef Google Scholar
First citationKahn, O. (1993). Molecular Magnetism. New York: Wiley-VCH.  Google Scholar
First citationKershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  Web of Science CrossRef Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J. & Gütlich, P. (2011). Z. Anorg. Allg. Chem. 637, 965–976.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStock, P., Deck, E., Hohnstein, S., Korzekwa, J., Meyer, K., Heinemann, F. W., Breher, F. & Hörner, G. (2016). Inorg. Chem. 55, 5254–5265.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationValverde-Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638.  Google Scholar
First citationVoloshin, Y. Z., Varzatskii, O. A., Stash, A. I., Belsky, V. K., Bubnov, Y. N., Vorontsov, I. I., Potekhin, K. A., Antipin, M. Y. & Polshin, E. V. (2001). Polyhedron, 20, 2721–2733.  Web of Science CSD CrossRef CAS Google Scholar
First citationZnovjyak, K., Seredyuk, M., Malinkin, S. O., Golenya, I. A., Sliva, T. Y., Shova, S. & Mulloev, N. U. (2021). Acta Cryst. E77, 495–499.  CrossRef IUCr Journals Google Scholar
First citationZnovjyak, K., Seredyuk, M., Malinkin, S. O., Shova, S. & Soliev, L. (2020). Acta Cryst. E76, 1661–1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds