research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of Λ(δλλ)-[Co(en)3]I3(I)2

CROSSMARK_Color_square_no_text.svg

aUniversity of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame IN 46556, USA
*Correspondence e-mail: alappin1@nd.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes Mérida, Venezuela (Received 2 March 2021; accepted 15 March 2021; online 31 March 2021)

The structure of tris­(ethane-1,2-di­amine-κ2N,N')cobalt(III) bis­(iodide) triiodide, [Co(C2H8N2)3]I3(I)2, at 120 K has ortho­rhom­bic (P212121) symmetry. The di­amine nitro­gen atoms form N—H⋯I hydrogen bonds throughout the lattice, resulting in a three-dimensional network, which involves the iodide and all atoms in the triiodide anions.

1. Chemical context

Significant information on the hydrogen bonding and other inter­actions that contribute to the chiral discriminations between metal-ion complexes has been obtained from the crystal structures of compounds containing a chiral complex cation and a chiral complex anion (Warren et al., 1994[Warren, R. M. L., Haller, K. J., Tatehata, A. & Lappin, A. G. (1994). Inorg. Chem. 33, 227-232.]; Marusak & Lappin, 1989[Marusak, R. A. & Lappin, A. G. (1989). J. Phys. Chem. 93, 6856-6859.]). For example, a comparison of the compounds Λ-[Co(en)3]Δ-[Co(en)(ox)2]I2·3H2O and Δ-[Co(en)3]Δ-[Co(en)(ox)2]I2·H2O reveals the importance of different helicities projected along the C3 and C2 axes of [Co(en)3]3+ in discriminating with the pseudo-C3 face of the Δ-[Co(en)(ox)2] anion (Lappin et al., 1993[Lappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498-4504.]).

[Scheme 1]

As part of a study involving potential effects of non-chiral counter-ions, an attempt was made to grow crystals with [Co(en)3]I3 and Na[Co(edta)]. However, in the presence of I, the mildly oxidizing [Co(edta)] was reduced and an unexpected product, [Co(en)3]I3(I)2 was obtained. The structure of the corresponding cobalt(II) complex, [Co(en)3]I3I, has been reported (Du et al., 2007[Du, J.-M., Zhang, Z.-J., Lin, H.-M., Li, W. & Guo, G.-C. (2007). Acta Cryst. E63, m3206.]). The larger cobalt(II) complex supports an lel3 geometry of the bidentate ligands around the cobalt center. The Co—N bond distances in [Co(en)3]2+ average 2.28 Å, significantly longer than the 1.97 Å average in [Co(en)3]3+ and consistent with the sluggish redox exchange between the complexes (Jolley et al., 1990[Jolley, W. H., Stranks, D. R. & Swaddle, T. W. (1990). Inorg. Chem. 29, 385-389.]). In [Co(en)3]I3I, the I ions are located along the quasi-C2 axis of the [Co(en)3]2+ complex ion with close hydrogen-bond contacts from N—H protons of 2.91 Å. The terminal iodine atoms of the I3 ions likewise form hydrogen bonds with N—H protons at 2.93 Å, resulting in an alternating chain of linear I3 ions at 90° to one another down the c-axis direction.

2. Structural commentary

The complex, [Co(en)3](I3)(I)2 crystallizes as dark-red, rod-like crystals. The asymmetric unit of the primitive, acentric, ortho­rhom­bic space group P212121 consists of one [Co(en)3]3+ cation, two iodide anions and a triiodide anion (Fig. 1[link]). The correct enanti­omorph of the space group was determined by comparison of intensities of Friedel pairs of reflections, yielding a Flack x parameter of 0.017 (9) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) and a Hooft y parameter of 0.006 (8) (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). Values close to zero indicate the correct enanti­omorph of the space group. This determination allows an accurate assessment of the configuration of the cobalt cation.

[Figure 1]
Figure 1
Labeling scheme for [Co(en)3]I3(I)2 with ellipsoids at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.

The cobalt center is located in a slightly distorted octa­hedral environment by the nitro­gen atoms of three ethyl­ene di­amine ligands (see Table 1[link] for details). The ligands adopt a Λ(δλλ) lel ob ob (lelob2) geometry about the cobalt center, Fig. 1[link]. Bond distances and angles within the mol­ecules are unexceptional.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 1.964 (3) Co1—N3 1.968 (3)
Co1—N5 1.967 (3) Co1—N6 1.969 (3)
Co1—N4 1.968 (3) Co1—N2 1.982 (3)
       
N1—Co1—N5 91.86 (14) N4—Co1—N6 91.39 (13)
N1—Co1—N4 175.38 (14) N3—Co1—N6 91.83 (13)
N5—Co1—N4 91.64 (14) N1—Co1—N2 85.20 (13)
N1—Co1—N3 91.25 (13) N5—Co1—N2 91.96 (14)
N5—Co1—N3 175.65 (14) N4—Co1—N2 91.68 (13)
N4—Co1—N3 85.42 (14) N3—Co1—N2 91.34 (15)
N1—Co1—N6 91.91 (13) N6—Co1—N2 175.76 (13)
N5—Co1—N6 85.02 (13)    

The amine hydrogen atoms were initially located from a difference-Fourier map and were refined freely. All of the amine hydrogen atoms are involved in hydrogen bonds to nearby iodine/triiodide moieties, Fig. 2[link]. This inter­connectivity results in a three-dimensional hydrogen-bonded network throughout the entire structure.

[Figure 2]
Figure 2
View down the b axis of [Co(en)3]I3(I)2 showing the herringbone pattern, with ellipsoids at the 50% probability level.

3. Supra­molecular features

The iodide ion I(1) is hydrogen bonded to N—H protons from N4 on one [Co(en)3]3+ ion at 2.77 Å, bridging to N—H protons on N4 and N5 from the two ligands with a λ-configuration on an adjacent cation with distances of 2.90 (5) and 2.95 (5) Å (Fig. 2[link], Table 2[link]). The pairwise inter­actions create a hydrogen-bonded chain along the crystallographic a-axis direction, forming a layer with the complex cations separated by channels formed by I3 ions in an alternating herringbone pattern punctuated by I2 ions. The iodide I2 forms a hydrogen-bonded network bridging the layers with N—H protons from three separate cations at 2.79 (5), 2.80 (5) and 2.83 (5) Å. The I3 ion has a close N—H contact with N6 at 2.89 (5) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯I2 0.87 (5) 2.83 (5) 3.598 (3) 149 (4)
N1—H1D⋯I2i 0.87 (5) 2.79 (5) 3.616 (3) 158 (4)
N2—H2C⋯I3ii 0.89 (5) 3.04 (5) 3.823 (3) 149 (4)
N2—H2D⋯I1iii 0.80 (5) 3.02 (5) 3.756 (4) 154 (4)
N3—H3C⋯I2iv 0.97 (5) 3.25 (5) 4.111 (3) 149 (4)
N3—H3C⋯I5iv 0.97 (5) 3.08 (5) 3.586 (3) 114 (3)
N3—H3D⋯I1iii 0.76 (5) 3.18 (5) 3.805 (4) 142 (5)
N4—H4C⋯I1 0.92 (5) 2.77 (5) 3.630 (3) 155 (4)
N4—H4D⋯I1v 0.90 (5) 2.90 (5) 3.715 (3) 152 (4)
N5—H5C⋯I1v 0.89 (5) 2.95 (5) 3.765 (3) 154 (4)
N5—H5C⋯I3ii 0.89 (5) 3.25 (5) 3.639 (3) 109 (3)
N5—H5D⋯I4ii 0.89 (5) 3.05 (5) 3.611 (3) 123 (4)
N6—H6C⋯I5 0.91 (5) 2.89 (5) 3.674 (3) 145 (4)
N6—H6D⋯I2iv 0.95 (5) 2.80 (5) 3.684 (3) 157 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

4. Database survey

A survey of Co(en)3 coupled with iodine reveals 23 structures in the Cambridge Structural Database (CSD v5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Predominantly these are Co(III) complexes. There are three reports of Co(en)3I3 (EDANEC, Matsuki et al., 2001[Matsuki, R., Shiro, M., Asahi, T. & Asai, H. (2001). Acta Cryst. E57, m448-m450.]; ENCOIH, Whuler et al., 1980[Whuler, A., Spinat, P. & Brouty, C. (1980). Acta Cryst. B36, 1086-1091.]; FIXLAI, Grant et al., 2019[Grant, G. J., Noll, B. C. & Lee, J. P. (2019). Z. Anorg. Allg. Chem. 645, 1011-1014.]). EDANEC and FIXLAI are structural analyses of the Λ- and Δ-isomers, respectively. The structure determination by Whuler et al. is of the racemic cation species. A mixed Cl/I species was reported by Huang and co-workers (FAXMEX, Zhang et al., 2005[Zhang, Z.-J., Zheng, F.-K., Fu, M.-L., Guo, G.-C. & Huang, J.-S. (2005). Acta Cryst. E61, m89-m91.]). All of these reports also contain water of crystallization. There is one report of Co(en)3 that has both an iodide and a triodide pair of counter-ions that crystallizes in the tetra­gonal space group I[\overline{4}]2d (HIQYUC, Du et al., 2007[Du, J.-M., Zhang, Z.-J., Lin, H.-M., Li, W. & Guo, G.-C. (2007). Acta Cryst. E63, m3206.]). However, that report is of the CoII complex, Co(en)3(I3)I.

5. Synthesis and crystallization

Crystals were obtained from an attempt to co-crystallize optically active [Co(en)3]3+ and the mildly oxidizing [Co(edta)] from Λ-[Co(en)3]I3 and Na[Co(edta)]. After storage at 283 K for two weeks, the deep-purple coloration of the [Co(edta)] ion had disappeared and dark-red well-formed crystals were recovered.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The structure was solved by dual-space methods (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and refined routinely (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Amine hydrogen atoms were refined freely and methyl­ene hydrogen atoms were refined as riding on the carbon to which they are bonded with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Co(C2H8N2)3]I3(I)2
Mr 873.74
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 8.7508 (12), 8.8333 (12), 25.982 (4)
V3) 2008.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.54
Crystal size (mm) 0.28 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa X8 APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.603, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 35617, 5024, 5023
Rint 0.022
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.028, 1.33
No. of reflections 5024
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.66
Absolute structure Flack x determined using 2136 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.017 (9)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker-Nonius AXS Inc. Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Tris(ethane-1,2-diamine-κ2N,N')cobalt(III) bis(iodide) triiodide top
Crystal data top
[Co(C2H8N2)3]I3(I)2Dx = 2.890 Mg m3
Mr = 873.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9680 reflections
a = 8.7508 (12) Åθ = 2.4–28.4°
b = 8.8333 (12) ŵ = 8.54 mm1
c = 25.982 (4) ÅT = 120 K
V = 2008.4 (5) Å3Rod, dark red
Z = 40.28 × 0.15 × 0.10 mm
F(000) = 1576
Data collection top
Bruker Kappa X8 APEXII
diffractometer
5024 independent reflections
Radiation source: fine-focus sealed tube5023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.6°
combination of ω and φ–scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.603, Tmax = 1.000l = 3334
35617 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.012H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.028 w = 1/[σ2(Fo2) + (0.0073P)2 + 1.9769P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.001
5024 reflectionsΔρmax = 0.39 e Å3
199 parametersΔρmin = 0.66 e Å3
0 restraintsAbsolute structure: Flack x determined using 2136 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.017 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32971 (3)0.22384 (3)0.55282 (2)0.01429 (5)
I20.69407 (3)0.30959 (2)0.22059 (2)0.01325 (5)
I30.13267 (3)0.17300 (3)0.01437 (2)0.01367 (5)
I40.05242 (3)0.28734 (2)0.09775 (2)0.01107 (5)
I50.22245 (3)0.40722 (3)0.18675 (2)0.01307 (5)
Co10.32630 (5)0.30665 (5)0.36719 (2)0.00693 (8)
N10.4364 (4)0.4391 (3)0.31911 (13)0.0111 (6)
H1C0.466 (6)0.383 (5)0.2936 (18)0.013*
H1D0.380 (6)0.513 (5)0.3077 (18)0.013*
N20.4337 (4)0.4219 (4)0.42174 (12)0.0119 (6)
H2C0.374 (6)0.453 (5)0.4473 (19)0.014*
H2D0.500 (6)0.370 (5)0.4332 (19)0.014*
N30.4917 (4)0.1557 (3)0.36466 (13)0.0121 (6)
H3C0.484 (6)0.087 (5)0.3358 (18)0.015*
H3D0.571 (6)0.189 (6)0.3664 (19)0.015*
N40.2318 (4)0.1713 (4)0.41825 (12)0.0122 (6)
H4C0.248 (5)0.217 (5)0.4497 (19)0.015*
H4D0.129 (6)0.168 (5)0.4168 (18)0.015*
N50.1500 (4)0.4446 (3)0.36922 (12)0.0114 (6)
H5C0.094 (6)0.419 (5)0.3963 (19)0.014*
H5D0.173 (6)0.543 (5)0.3687 (18)0.014*
N60.2158 (4)0.2066 (3)0.31060 (12)0.0109 (5)
H6C0.261 (5)0.236 (5)0.2807 (19)0.013*
H6D0.227 (5)0.100 (5)0.3128 (18)0.013*
C10.5641 (4)0.5172 (4)0.34653 (16)0.0154 (7)
H1A0.5958610.6088780.3273830.018*
H1B0.6533170.4489130.3496780.018*
C20.5050 (5)0.5596 (4)0.39899 (16)0.0158 (7)
H2A0.5899270.5954290.4210340.019*
H2B0.4285600.6418040.3960780.019*
C30.4761 (4)0.0485 (4)0.40885 (15)0.0129 (7)
H3A0.5218990.0926640.4402760.016*
H3B0.5289800.0479570.4010930.016*
C40.3078 (5)0.0210 (4)0.41678 (15)0.0146 (7)
H4A0.2661240.0407060.3882420.018*
H4B0.2904510.0337830.4495080.018*
C50.0500 (4)0.4213 (4)0.32313 (15)0.0135 (7)
H5A0.0892730.4799600.2934870.016*
H5B0.0555570.4550930.3305950.016*
C60.0521 (4)0.2540 (4)0.31111 (15)0.0135 (7)
H6A0.0050540.1968830.3376470.016*
H6B0.0044150.2345980.2771890.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.00933 (10)0.02215 (11)0.01140 (10)0.00063 (9)0.00073 (9)0.00018 (9)
I20.01308 (11)0.01112 (9)0.01555 (11)0.00011 (8)0.00068 (9)0.00056 (8)
I30.01745 (12)0.01416 (10)0.00939 (10)0.00078 (8)0.00012 (9)0.00136 (8)
I40.01061 (10)0.01122 (9)0.01138 (10)0.00010 (8)0.00211 (8)0.00068 (8)
I50.01294 (11)0.01450 (10)0.01176 (11)0.00060 (8)0.00106 (9)0.00081 (8)
Co10.0067 (2)0.00784 (19)0.00628 (19)0.00032 (16)0.00029 (17)0.00003 (15)
N10.0095 (14)0.0099 (13)0.0139 (15)0.0003 (11)0.0011 (13)0.0024 (11)
N20.0109 (15)0.0144 (14)0.0104 (14)0.0011 (12)0.0008 (12)0.0011 (11)
N30.0116 (15)0.0110 (13)0.0138 (15)0.0019 (11)0.0024 (13)0.0024 (11)
N40.0083 (14)0.0189 (14)0.0095 (14)0.0023 (12)0.0009 (12)0.0023 (12)
N50.0108 (15)0.0130 (14)0.0104 (14)0.0028 (11)0.0015 (12)0.0024 (11)
N60.0156 (14)0.0080 (12)0.0091 (13)0.0005 (11)0.0008 (12)0.0004 (10)
C10.0100 (17)0.0149 (16)0.0212 (19)0.0073 (14)0.0008 (16)0.0043 (14)
C20.0150 (18)0.0125 (16)0.020 (2)0.0049 (14)0.0044 (16)0.0013 (14)
C30.0147 (18)0.0117 (15)0.0124 (17)0.0021 (13)0.0000 (14)0.0048 (13)
C40.0187 (19)0.0112 (14)0.0140 (17)0.0041 (14)0.0003 (15)0.0048 (12)
C50.0103 (16)0.0175 (16)0.0127 (17)0.0016 (13)0.0033 (14)0.0019 (13)
C60.0100 (16)0.0178 (16)0.0126 (16)0.0042 (13)0.0018 (14)0.0011 (13)
Geometric parameters (Å, º) top
I3—I42.8875 (4)N5—H5C0.89 (5)
I4—I52.9464 (4)N5—H5D0.89 (5)
Co1—N11.964 (3)N6—C61.493 (5)
Co1—N51.967 (3)N6—H6C0.91 (5)
Co1—N41.968 (3)N6—H6D0.95 (5)
Co1—N31.968 (3)C1—C21.505 (6)
Co1—N61.969 (3)C1—H1A0.9900
Co1—N21.982 (3)C1—H1B0.9900
N1—C11.494 (5)C2—H2A0.9900
N1—H1C0.87 (5)C2—H2B0.9900
N1—H1D0.87 (5)C3—C41.507 (5)
N2—C21.490 (5)C3—H3A0.9900
N2—H2C0.89 (5)C3—H3B0.9900
N2—H2D0.80 (5)C4—H4A0.9900
N3—C31.495 (5)C4—H4B0.9900
N3—H3C0.97 (5)C5—C61.511 (5)
N3—H3D0.76 (5)C5—H5A0.9900
N4—C41.486 (5)C5—H5B0.9900
N4—H4C0.92 (5)C6—H6A0.9900
N4—H4D0.90 (5)C6—H6B0.9900
N5—C51.498 (5)
I3—I4—I5176.193 (11)Co1—N5—H5D115 (3)
N1—Co1—N591.86 (14)H5C—N5—H5D113 (4)
N1—Co1—N4175.38 (14)C6—N6—Co1109.8 (2)
N5—Co1—N491.64 (14)C6—N6—H6C110 (3)
N1—Co1—N391.25 (13)Co1—N6—H6C107 (3)
N5—Co1—N3175.65 (14)C6—N6—H6D112 (3)
N4—Co1—N385.42 (14)Co1—N6—H6D111 (3)
N1—Co1—N691.91 (13)H6C—N6—H6D107 (4)
N5—Co1—N685.02 (13)N1—C1—C2106.8 (3)
N4—Co1—N691.39 (13)N1—C1—H1A110.4
N3—Co1—N691.83 (13)C2—C1—H1A110.4
N1—Co1—N285.20 (13)N1—C1—H1B110.4
N5—Co1—N291.96 (14)C2—C1—H1B110.4
N4—Co1—N291.68 (13)H1A—C1—H1B108.6
N3—Co1—N291.34 (15)N2—C2—C1107.5 (3)
N6—Co1—N2175.76 (13)N2—C2—H2A110.2
C1—N1—Co1109.8 (2)C1—C2—H2A110.2
C1—N1—H1C114 (3)N2—C2—H2B110.2
Co1—N1—H1C107 (3)C1—C2—H2B110.2
C1—N1—H1D104 (3)H2A—C2—H2B108.5
Co1—N1—H1D113 (3)N3—C3—C4107.2 (3)
H1C—N1—H1D110 (4)N3—C3—H3A110.3
C2—N2—Co1109.5 (2)C4—C3—H3A110.3
C2—N2—H2C107 (3)N3—C3—H3B110.3
Co1—N2—H2C114 (3)C4—C3—H3B110.3
C2—N2—H2D108 (4)H3A—C3—H3B108.5
Co1—N2—H2D108 (3)N4—C4—C3107.3 (3)
H2C—N2—H2D109 (5)N4—C4—H4A110.3
C3—N3—Co1109.7 (2)C3—C4—H4A110.3
C3—N3—H3C101 (3)N4—C4—H4B110.3
Co1—N3—H3C113 (3)C3—C4—H4B110.3
C3—N3—H3D106 (4)H4A—C4—H4B108.5
Co1—N3—H3D115 (4)N5—C5—C6107.0 (3)
H3C—N3—H3D111 (5)N5—C5—H5A110.3
C4—N4—Co1109.7 (2)C6—C5—H5A110.3
C4—N4—H4C110 (3)N5—C5—H5B110.3
Co1—N4—H4C106 (3)C6—C5—H5B110.3
C4—N4—H4D114 (3)H5A—C5—H5B108.6
Co1—N4—H4D114 (3)N6—C6—C5106.7 (3)
H4C—N4—H4D102 (4)N6—C6—H6A110.4
C5—N5—Co1110.6 (2)C5—C6—H6A110.4
C5—N5—H5C106 (3)N6—C6—H6B110.4
Co1—N5—H5C107 (3)C5—C6—H6B110.4
C5—N5—H5D105 (3)H6A—C6—H6B108.6
Co1—N1—C1—C239.6 (3)N3—C3—C4—N449.3 (4)
Co1—N2—C2—C137.5 (4)Co1—N5—C5—C636.0 (3)
N1—C1—C2—N249.9 (4)Co1—N6—C6—C540.5 (3)
Co1—N3—C3—C437.5 (3)N5—C5—C6—N649.1 (4)
Co1—N4—C4—C338.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···I20.87 (5)2.83 (5)3.598 (3)149 (4)
N1—H1D···I2i0.87 (5)2.79 (5)3.616 (3)158 (4)
N2—H2C···I3ii0.89 (5)3.04 (5)3.823 (3)149 (4)
N2—H2D···I1iii0.80 (5)3.02 (5)3.756 (4)154 (4)
N3—H3C···I2iv0.97 (5)3.25 (5)4.111 (3)149 (4)
N3—H3C···I5iv0.97 (5)3.08 (5)3.586 (3)114 (3)
N3—H3D···I1iii0.76 (5)3.18 (5)3.805 (4)142 (5)
N4—H4C···I10.92 (5)2.77 (5)3.630 (3)155 (4)
N4—H4D···I1v0.90 (5)2.90 (5)3.715 (3)152 (4)
N5—H5C···I1v0.89 (5)2.95 (5)3.765 (3)154 (4)
N5—H5C···I3ii0.89 (5)3.25 (5)3.639 (3)109 (3)
N5—H5D···I4ii0.89 (5)3.05 (5)3.611 (3)123 (4)
N6—H6C···I50.91 (5)2.89 (5)3.674 (3)145 (4)
N6—H6D···I2iv0.95 (5)2.80 (5)3.684 (3)157 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x1/2, y+1/2, z+1.
 

References

First citationBruker (2015). APEX3 and SAINT. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDu, J.-M., Zhang, Z.-J., Lin, H.-M., Li, W. & Guo, G.-C. (2007). Acta Cryst. E63, m3206.  CrossRef IUCr Journals Google Scholar
First citationGrant, G. J., Noll, B. C. & Lee, J. P. (2019). Z. Anorg. Allg. Chem. 645, 1011–1014.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJolley, W. H., Stranks, D. R. & Swaddle, T. W. (1990). Inorg. Chem. 29, 385–389.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498–4504.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarusak, R. A. & Lappin, A. G. (1989). J. Phys. Chem. 93, 6856–6859.  CrossRef CAS Google Scholar
First citationMatsuki, R., Shiro, M., Asahi, T. & Asai, H. (2001). Acta Cryst. E57, m448–m450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarren, R. M. L., Haller, K. J., Tatehata, A. & Lappin, A. G. (1994). Inorg. Chem. 33, 227–232.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhuler, A., Spinat, P. & Brouty, C. (1980). Acta Cryst. B36, 1086–1091.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationZhang, Z.-J., Zheng, F.-K., Fu, M.-L., Guo, G.-C. & Huang, J.-S. (2005). Acta Cryst. E61, m89–m91.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds