research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural investigation of N-[2-(4-fluoro-3-phen­­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide and N-[2-(4-fluoro-3-phen­­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­­oxy­benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhauri, Bhopal 462066, India, and bRallis India Ltd, Bangalore 560091, Karnataka, India
*Correspondence e-mail: dchopra@iiserb.ac.in

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 2 February 2021; accepted 16 February 2021; online 19 February 2021)

The compound N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide, C21H16FN3O3S, crystallizes in the monoclinic centrosymmetric space group P21/c and its mol­ecular conformation is stabilized via an intra­molecular N—H⋯O hydrogen bond. The corresponding para-meth­oxy derivative, namely, N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­oxy­benzamide, C22H18FN3O4S, crystallizes in the monoclinic centrosymmetric space group C2/c. The supra­molecular network mainly comprises N—H⋯O, N—H⋯S and C—H⋯O hydrogen bonds, which contribute towards the formation of the crystal structures for the two mol­ecules. The different inter­molecular inter­actions have been further analysed using Hirshfeld surface analysis and fingerprint plots.

1. Chemical context

Substituted thio­semicarbazides (TSCs) constitute an important class of organic compounds with the general formula R–(C=O)–NH–NH–(C=S)–R′ and find application in the synthesis of five- and six-membered heterocyclic compounds (Gazieva & Kravchenko, 2012[Gazieva, G. A. & Kravchenko, A. N. (2012). Russ. Chem. Rev. 81, 494-523.]) and transition-metal complexes (Campbell, 1975[Campbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279-319.]). The chemical diversity of thio­semicarbazides, and their synthesis, including their role in biological applications, is nicely summarized in a recent review article (Acharya et al., 2021[Acharya, P. T., Bhavsar, Z. A., Jethava, D., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.]). Di­benzoyl­ated TSCs have been synthesized and explored for their anti­bacterial activity (Qandil et al., 2006[Qandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta. Pharm. Sci. 48, 95-107.]). Furthermore, mol­ecular modelling studies establish the relevance of both geometry and electron-density distribution in the observed anti­bacterial activity (Paneth et al., 2016[Paneth, A., Stączek, P., Plech, T., Strzelczyk, A., Dzitko, K., Wujec, M., Kuśmierz, E., Kosikowska, U., Grzegorczyk, A. & Paneth, P. (2016). J. Enzyme Inhib. Med. Chem. 31, 14-22.]). Piperidin-4-yl-based TSCs have been examined for cytotoxicity in breast cancer cell lines in addition to being possible potential topoisomerase inhibitors (Siwek et al., 2014[Siwek, A., Bielawska, A., Maciorkowska, E., Lepiarczyk, M., Bielawski, K., Trotsko, N. & Wujec, M. (2014). J. Enzyme Inhib. Med. Chem. 29, 243-248.]). 1-(2-Hy­droxy­benzo­yl)-thio­semicarbazides have been observed to exhibit anti­microbial activity and structure–activity relationship (SARs) studies establish that the 2-hy­droxy­benzoyl group plays an important role in enzyme inhibition, in addition to these exhibiting low cytotoxicity (Ameryckx et al., 2018[Ameryckx, A., Thabault, L., Pochet, L., Leimanis, S., Poupaert, J. H., Wouters, J., Joris, B., Van Bambeke, F. & Frédérick, R. (2018). Eur. J. Med. Chem. 159, 324-338.]). Furthermore, triazole-substituted benzoyl­thio­semicarbazides have been synthesized and their effect on the inhibition of corrosion on mild steel has been investigated (Yan et al., 2018[Yan, Y., Dai, L., Zhang, L., Zhong, S., Zhou, H., Wu, L. & Cai, L. (2018). Res. Chem. Intermed. 44, 3437-3454.]). Keeping in mind the above-mentioned applications of substituted TSCs, we have performed the synthesis and crystal structure analysis of two compounds, namely N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]benzamide (A1) and N-[2-(4-fluoro-3-phen­oxy­benzo­yl)hydrazinecarbo­thio­yl]-4-meth­oxy­benzamide (A2) in the current study. The mol­ecular conformations have been studied with respect to the various flexible bonds and the occurrence of various inter­molecular inter­actions that contribute towards the stability of the mol­ecules in the crystalline lattice has been investigated in detail via an investigation of the crystal packing and qu­anti­tative insights from Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

Compound A1 crystallizes in the centrosymmetric monoclinic P21/c space group and A2 crystallizes in the centrosymmetric monoclinic C2/c space group. The mol­ecular structure comprises one fluoro-substituted phen­oxy­benzoyl ring, a rigid and planar (C=O)—NH—NH—(C=S) moiety and a benzamide ring. The bond lengths and bond angles are in accordance with the magnitudes in the literature. The mol­ecular conformations of A1 (Fig. 1[link]) and A2 (Fig. 2[link]) are both conformationally locked via the presence of an N—H⋯O hydrogen bond (involving H2N and O3), the N2⋯O3 distance being 2.555 (2) and 2.589 (4) Å in A1 and A2, respectively. The mol­ecular structure possesses four conformational degrees of freedom due to the free rotation with respect to the N1—N2, C7—O1, O1—C1 and C15—C16 single bonds. The torsion angles C13—N1—N2—C14, C8—C7—O1—C1, C7—O1—C1—C2 and N3—C15—C16—C21 are 163.27 (16)/-143.5 (4)°, 97.3 (2)/149.6 (5)°, 167.18 (18)/148.1 (4)° and −160.26 (15)/-174.7 (3)° in A1/A2, respectively.

[Figure 1]
Figure 1
Ellipsoid plot of A1 drawn with 50% ellipsoidal probability. The cyan line indicates the intra­molecular N—H⋯O hydrogen bond.
[Figure 2]
Figure 2
Ellipsoid plot of A2 drawn with 50% ellipsoidal probability. The cyan line indicates the intra­molecular N—H⋯O hydrogen bond.

3. Supra­molecular features

In the crystal structure of A1, the mol­ecules are primarily assembled through the presence of N3—H3N⋯O2 and C18—H18⋯O3 hydrogen bonds (Table 1[link]), forming mol­ecular chains along the c-axis direction utilizing the c-glide as the symmetry element (Fig. 3[link]). Adjacent layers are held together via C20—H20⋯O1 and C19—H19⋯S1 hydrogen bonds. The crystal packing of A2 (Fig. 4[link]) primarily consists of N1—H1⋯O2 hydrogen bonds (Table 2[link]), forming mol­ecular chains along the b-axis direction. Two such adjacent layers are held via N3—H3N⋯S1 and C17—H17⋯S1 hydrogen bonds. In addition S1⋯C17 contacts (S⋯π type), [3.384 (4) Å, 174.9 (1)°, −x + 1, y + 1, −z + [{1\over 2}]] chalcogen-centered contacts are also present in the crystal packing (Fig. 4[link]). Inter­molecular contacts involving chalcogens are well-recognized in the literature [Pramanik & Chopra, 2020[Pramanik, S. & Chopra, D. (2020). J. Indian Inst. Sci. 100, 43-59.]]. Furthermore, additional C21—H21⋯O3 hydrogen bonds form centrosymmetric dimers and provide additional stability to the crystal packing.

Table 1
Hydrogen-bond geometry (Å, °) for A1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.86 1.88 2.555 (2) 135
C18—H18⋯O3i 0.93 2.45 3.218 (2) 141
N3—H3N⋯O2i 0.86 2.28 3.067 (2) 152
C19—H19⋯S1ii 0.93 2.98 3.778 (2) 145
C20—H20⋯O1iii 0.93 2.77 3.510 (3) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for A2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.86 1.92 2.589 (4) 134
N3—H3N⋯S1i 0.86 2.80 3.615 (3) 159
C17—H17⋯S1i 0.93 2.69 3.614 (4) 174
N1—H1⋯O2ii 0.86 2.15 2.915 (4) 148
C21—H21⋯O3iii 0.93 2.57 3.399 (4) 148
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+1, -y-1, -z].
[Figure 3]
Figure 3
Crystal packing of A1 showing the formation of the crystal structure primarily via N—H⋯O and C—H⋯O inter­molecular inter­actions.
[Figure 4]
Figure 4
Crystal packing of A2 showing the formation of the crystal structure primarily via N—H⋯O, N—H⋯S, C—H⋯S and S⋯C inter­molecular inter­actions.

4. Database survey

A search for the di­benzoyl­thio­semicarbazide skeleton, Ph–(C=O)–NH–NH–(C=S)–NH–(C=O)–Ph was carried out in the Cambridge Structural Database (CSD version 5.40, updates of Aug 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) . No hits were obtained. Thus, further systematic studies related to the investigation of the role of differently substituted thio­semicarbazide mol­ecules towards the crystal packing, including a detailed investigation of polymorphism in this class of compounds, is of relevance.

5. Hirshfeld surface analysis and fingerprint plots

The relevance of different inter­molecular inter­actions can be established via Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). These surfaces, along with the two-dimensional fingerprint plots, were evaluated using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia, Perth.]). The surfaces mapped over dnorm for A1, Fig. 5[link](a), and A2, Fig. 5[link](b) and 5(c), show the important hydrogen bonds. The red and blue spots correspond to inter­molecular inter­actions that are less or greater than the sum of the van der Waals radii. The fingerprint plots depict the individual contributions of the different inter­actions. The fingerprint plots for A1/A2 (Figs. 6[link] and 7[link]) show that the greatest contributions are from H⋯H (31.3/32%) contacts, followed by C⋯H/H⋯C (23.2/23.2%), O⋯H/H⋯O (14.3/16.7%), S⋯H/H⋯S (7/5.7%), S⋯C/C⋯S (4.9/2.8%) and F⋯H/H⋯F (8.8/6.9%) contacts. The O⋯H/H⋯O contribution is slightly higher in the case of A2 (16.7%) due to the presence of an additional meth­oxy group in the mol­ecule. Further inter­actions, involving F⋯H/H⋯F, contributing around 7–9% (A1: 8.8% and A2: 6.9%) and S⋯H (A1: 7.0% and A2: 5.7%) correspond to the presence of highly directional inter­actions, involving fluorine and sulfur in A2, and are important; this is clearly illustrated in the fingerprint plot (Fig. 7[link]). The percentage contribution of S⋯C/C⋯S contacts in A2 is 2.8% lower than in A1. However, the relevance of this contact is greater in A2 on account of the presence of the highly directional C—S⋯π inter­molecular contact and this feature is also clearly visible in the 2D fingerprint plot (Fig. 7[link]).

[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm for (a) A1, (b) A2 depicting N—H⋯O hydrogen bonds and (c) A2 depicting C—S⋯π inter­actions.
[Figure 6]
Figure 6
The fingerprint plots for A1 showing the different contributions derived from the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, H⋯F/F⋯H,S⋯H/S⋯H and C⋯S/S⋯C contacts.
[Figure 7]
Figure 7
The fingerprint plots for A2 showing the different contributions derived from the H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, H⋯F/F⋯H,S⋯H/S⋯H and C⋯S/S⋯C contacts.

6. Synthesis and Crystallization

The title compounds were synthesized in accordance with the procedure reported in the literature (Mohan, 2006[Mohan, T. P. (2006). PhD Thesis, Mangalore University, Mangalore, Karnataka, India.]). Crystallization was performed in 5.0 ml beakers at room temperature via the slow evaporation method from methanol solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in idealized positions (N—H = 0.86 Å, C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

  A1 A2
Crystal data
Chemical formula C21H16FN3O3S C22H18FN3O4S
Mr 409.43 439.45
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 18.3849 (13), 7.7063 (6), 13.9216 (10) 47.298 (3), 4.8054 (3), 18.4939 (10)
β (°) 100.136 (5) 100.429 (6)
V3) 1941.6 (2) 4134.0 (4)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.20
Crystal size (mm) 0.27 × 0.20 × 0.14 0.25 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 31160, 4460, 2753 9841, 2188, 1751
Rint 0.043 0.062
θmax (°) 27.7 20.9
(sin θ/λ)max−1) 0.653 0.503
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.04 0.046, 0.122, 1.06
No. of reflections 4460 2188
No. of parameters 262 281
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.17 0.20, −0.16
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]benzamide (A1) top
Crystal data top
C21H16FN3O3SF(000) = 848
Mr = 409.43Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.3849 (13) ÅCell parameters from 10485 reflections
b = 7.7063 (6) Åθ = 2.2–28.6°
c = 13.9216 (10) ŵ = 0.20 mm1
β = 100.136 (5)°T = 298 K
V = 1941.6 (2) Å3Plates, colorless
Z = 40.27 × 0.20 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2753 reflections with I > 2σ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 27.7°, θmin = 2.3°
h = 2321
31160 measured reflectionsk = 1010
4460 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.1773P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4460 reflectionsΔρmax = 0.15 e Å3
262 parametersΔρmin = 0.17 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.35731 (8)0.0786 (2)0.88306 (10)0.0603 (4)
H2N0.3981460.1088840.8657930.072*
O20.35727 (7)0.08997 (19)0.69344 (9)0.0715 (4)
N10.30299 (8)0.0015 (2)0.81656 (10)0.0635 (4)
H10.2674950.0539980.8355840.076*
C150.47522 (9)0.2198 (2)1.01326 (12)0.0544 (4)
N30.40609 (7)0.18548 (18)1.03435 (9)0.0538 (4)
H3N0.3985700.2162291.0911720.065*
C190.63953 (10)0.4486 (3)1.22873 (13)0.0637 (5)
H190.6758150.5004991.2747310.076*
C130.30627 (10)0.0143 (2)0.72070 (12)0.0546 (4)
C110.24397 (10)0.0680 (2)0.65341 (12)0.0548 (4)
O30.48982 (7)0.18773 (19)0.93243 (8)0.0737 (4)
C120.23455 (10)0.0202 (2)0.55602 (12)0.0587 (5)
H120.2676550.0564220.5352420.070*
C180.58177 (10)0.3634 (3)1.25799 (13)0.0651 (5)
H180.5794760.3557761.3240570.078*
C160.53052 (9)0.2979 (2)1.09115 (11)0.0509 (4)
C70.17640 (11)0.0857 (3)0.48974 (13)0.0650 (5)
C170.52695 (10)0.2888 (2)1.19000 (12)0.0589 (5)
H170.4875720.2324361.2103290.071*
O10.16903 (8)0.0470 (2)0.39147 (9)0.0815 (4)
C200.64377 (11)0.4571 (3)1.13081 (13)0.0683 (5)
H200.6830890.5145031.1109430.082*
C140.34729 (9)0.1066 (2)0.97367 (11)0.0524 (4)
C10.13186 (10)0.1053 (3)0.35731 (13)0.0658 (5)
C100.19555 (10)0.1858 (3)0.68345 (14)0.0678 (5)
H100.2024400.2210530.7483150.081*
C210.59024 (10)0.3814 (3)1.06281 (12)0.0610 (5)
H210.5939400.3859980.9970840.073*
C80.12811 (11)0.1982 (3)0.52212 (15)0.0755 (6)
F10.07018 (8)0.2577 (2)0.45739 (10)0.1157 (5)
C90.13740 (12)0.2507 (3)0.61757 (16)0.0828 (6)
H90.1047040.3293620.6375260.099*
C60.09068 (11)0.2008 (3)0.41052 (15)0.0756 (6)
H60.0861510.1669590.4733270.091*
C40.06114 (16)0.3971 (4)0.2770 (2)0.1119 (9)
H40.0364670.4953050.2493630.134*
C20.13978 (13)0.1537 (3)0.26449 (15)0.0849 (7)
H20.1690360.0893530.2294770.102*
C30.10316 (18)0.3001 (4)0.2249 (2)0.1101 (9)
H30.1070280.3336050.1618700.132*
C50.05585 (13)0.3485 (4)0.3694 (2)0.0958 (7)
H50.0283650.4157920.4054260.115*
S10.26986 (3)0.05350 (8)1.01272 (3)0.07183 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0605 (9)0.0788 (10)0.0420 (8)0.0123 (8)0.0097 (7)0.0069 (7)
O20.0662 (8)0.0981 (10)0.0499 (7)0.0220 (7)0.0097 (6)0.0030 (7)
N10.0659 (10)0.0808 (11)0.0435 (8)0.0197 (8)0.0090 (7)0.0051 (8)
C150.0558 (10)0.0637 (11)0.0457 (9)0.0021 (8)0.0147 (8)0.0033 (8)
N30.0539 (8)0.0702 (10)0.0381 (7)0.0016 (7)0.0100 (6)0.0055 (7)
C190.0562 (11)0.0809 (13)0.0525 (10)0.0022 (10)0.0053 (8)0.0055 (10)
C130.0590 (11)0.0618 (11)0.0425 (9)0.0026 (9)0.0076 (8)0.0010 (8)
C110.0566 (10)0.0612 (11)0.0457 (9)0.0014 (9)0.0070 (8)0.0016 (8)
O30.0684 (8)0.1078 (11)0.0495 (7)0.0126 (7)0.0229 (6)0.0201 (7)
C120.0637 (11)0.0683 (12)0.0444 (9)0.0035 (9)0.0107 (8)0.0032 (8)
C180.0610 (11)0.0937 (14)0.0408 (9)0.0028 (10)0.0095 (8)0.0040 (9)
C160.0512 (10)0.0590 (10)0.0433 (8)0.0056 (8)0.0104 (7)0.0012 (8)
C70.0693 (12)0.0775 (13)0.0450 (10)0.0071 (10)0.0012 (9)0.0073 (9)
C170.0540 (10)0.0781 (12)0.0467 (9)0.0011 (9)0.0149 (8)0.0006 (9)
O10.0998 (11)0.0991 (11)0.0421 (7)0.0170 (9)0.0026 (7)0.0105 (7)
C200.0595 (11)0.0891 (14)0.0576 (11)0.0121 (10)0.0136 (9)0.0041 (10)
C140.0585 (11)0.0573 (10)0.0409 (8)0.0019 (8)0.0076 (8)0.0015 (8)
C10.0568 (11)0.0850 (14)0.0496 (10)0.0092 (10)0.0068 (9)0.0020 (10)
C100.0663 (12)0.0775 (13)0.0573 (11)0.0110 (10)0.0048 (9)0.0084 (10)
C210.0609 (11)0.0792 (13)0.0443 (9)0.0033 (10)0.0134 (8)0.0014 (9)
C80.0648 (13)0.0863 (15)0.0666 (13)0.0101 (11)0.0126 (10)0.0100 (11)
F10.0972 (10)0.1390 (12)0.0957 (9)0.0334 (9)0.0246 (8)0.0135 (9)
C90.0714 (13)0.0906 (15)0.0824 (15)0.0234 (12)0.0023 (11)0.0080 (13)
C60.0658 (13)0.0965 (17)0.0625 (12)0.0016 (11)0.0058 (10)0.0011 (12)
C40.101 (2)0.112 (2)0.116 (2)0.0046 (17)0.0013 (18)0.034 (2)
C20.0881 (16)0.1073 (18)0.0569 (12)0.0178 (14)0.0063 (11)0.0009 (13)
C30.128 (2)0.122 (2)0.0745 (16)0.0238 (19)0.0032 (16)0.0288 (17)
C50.0718 (15)0.1026 (19)0.111 (2)0.0045 (14)0.0110 (14)0.0038 (16)
S10.0630 (3)0.1025 (4)0.0515 (3)0.0143 (3)0.0141 (2)0.0031 (3)
Geometric parameters (Å, º) top
N2—C141.3242 (19)C7—O11.383 (2)
N2—N11.3718 (19)C17—H170.9300
N2—H2N0.8600O1—C11.399 (2)
O2—C131.220 (2)C20—C211.370 (3)
N1—C131.350 (2)C20—H200.9300
N1—H10.8600C14—S11.6617 (17)
C15—O31.2272 (18)C1—C61.364 (3)
C15—N31.379 (2)C1—C21.377 (3)
C15—C161.478 (2)C10—C91.374 (3)
N3—C141.389 (2)C10—H100.9300
N3—H3N0.8600C21—H210.9300
C19—C181.370 (3)C8—F11.349 (2)
C19—C201.381 (2)C8—C91.371 (3)
C19—H190.9300C9—H90.9300
C13—C111.488 (2)C6—C51.380 (3)
C11—C121.386 (2)C6—H60.9300
C11—C101.387 (2)C4—C51.360 (4)
C12—C71.379 (3)C4—C31.370 (4)
C12—H120.9300C4—H40.9300
C18—C171.381 (2)C2—C31.378 (4)
C18—H180.9300C2—H20.9300
C16—C211.389 (2)C3—H30.9300
C16—C171.391 (2)C5—H50.9300
C7—C81.372 (3)
C14—N2—N1120.44 (14)C21—C20—C19120.23 (17)
C14—N2—H2N119.8C21—C20—H20119.9
N1—N2—H2N119.8C19—C20—H20119.9
C13—N1—N2118.79 (14)N2—C14—N3115.25 (14)
C13—N1—H1120.6N2—C14—S1122.85 (13)
N2—N1—H1120.6N3—C14—S1121.90 (12)
O3—C15—N3120.99 (16)C6—C1—C2121.6 (2)
O3—C15—C16121.44 (15)C6—C1—O1123.55 (18)
N3—C15—C16117.57 (13)C2—C1—O1114.8 (2)
C15—N3—C14127.02 (13)C9—C10—C11120.14 (18)
C15—N3—H3N116.5C9—C10—H10119.9
C14—N3—H3N116.5C11—C10—H10119.9
C18—C19—C20119.86 (17)C20—C21—C16120.58 (16)
C18—C19—H19120.1C20—C21—H21119.7
C20—C19—H19120.1C16—C21—H21119.7
O2—C13—N1120.86 (16)F1—C8—C9119.7 (2)
O2—C13—C11123.81 (15)F1—C8—C7118.42 (19)
N1—C13—C11115.33 (15)C9—C8—C7121.84 (18)
C12—C11—C10119.51 (17)C8—C9—C10119.28 (19)
C12—C11—C13116.91 (16)C8—C9—H9120.4
C10—C11—C13123.57 (16)C10—C9—H9120.4
C7—C12—C11120.40 (18)C1—C6—C5118.7 (2)
C7—C12—H12119.8C1—C6—H6120.6
C11—C12—H12119.8C5—C6—H6120.6
C19—C18—C17120.41 (16)C5—C4—C3119.4 (3)
C19—C18—H18119.8C5—C4—H4120.3
C17—C18—H18119.8C3—C4—H4120.3
C21—C16—C17118.81 (16)C1—C2—C3118.1 (2)
C21—C16—C15117.16 (14)C1—C2—H2120.9
C17—C16—C15124.01 (15)C3—C2—H2120.9
C8—C7—C12118.78 (17)C4—C3—C2121.1 (2)
C8—C7—O1120.31 (18)C4—C3—H3119.4
C12—C7—O1120.81 (18)C2—C3—H3119.4
C18—C17—C16120.09 (16)C4—C5—C6121.0 (3)
C18—C17—H17120.0C4—C5—H5119.5
C16—C17—H17120.0C6—C5—H5119.5
C7—O1—C1118.30 (15)
C14—N2—N1—C13163.27 (16)N1—N2—C14—S10.5 (2)
O3—C15—N3—C143.4 (3)C15—N3—C14—N27.4 (2)
C16—C15—N3—C14177.17 (15)C15—N3—C14—S1173.17 (14)
N2—N1—C13—O21.4 (3)C7—O1—C1—C612.8 (3)
N2—N1—C13—C11178.11 (15)C7—O1—C1—C2167.18 (18)
O2—C13—C11—C1215.9 (3)C12—C11—C10—C91.9 (3)
N1—C13—C11—C12163.59 (16)C13—C11—C10—C9177.23 (19)
O2—C13—C11—C10164.89 (19)C19—C20—C21—C161.1 (3)
N1—C13—C11—C1015.6 (3)C17—C16—C21—C201.5 (3)
C10—C11—C12—C71.7 (3)C15—C16—C21—C20179.92 (17)
C13—C11—C12—C7177.53 (17)C12—C7—C8—F1178.13 (18)
C20—C19—C18—C171.2 (3)O1—C7—C8—F15.5 (3)
O3—C15—C16—C2119.2 (3)C12—C7—C8—C91.9 (3)
N3—C15—C16—C21160.26 (15)O1—C7—C8—C9174.4 (2)
O3—C15—C16—C17159.26 (18)F1—C8—C9—C10178.4 (2)
N3—C15—C16—C1721.3 (3)C7—C8—C9—C101.7 (4)
C11—C12—C7—C80.2 (3)C11—C10—C9—C80.3 (3)
C11—C12—C7—O1176.13 (16)C2—C1—C6—C50.5 (3)
C19—C18—C17—C160.8 (3)O1—C1—C6—C5179.55 (18)
C21—C16—C17—C180.6 (3)C6—C1—C2—C31.7 (3)
C15—C16—C17—C18179.02 (17)O1—C1—C2—C3178.36 (19)
C8—C7—O1—C197.3 (2)C5—C4—C3—C20.4 (4)
C12—C7—O1—C186.4 (2)C1—C2—C3—C41.3 (4)
C18—C19—C20—C210.3 (3)C3—C4—C5—C61.6 (4)
N1—N2—C14—N3179.95 (15)C1—C6—C5—C41.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.861.882.555 (2)135
C18—H18···O3i0.932.453.218 (2)141
N3—H3N···O2i0.862.283.067 (2)152
C19—H19···S1ii0.932.983.778 (2)145
C20—H20···O1iii0.932.773.510 (3)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+5/2; (iii) x+1, y+1/2, z+3/2.
N-[2-(4-Fluoro-3-phenoxybenzoyl)hydrazinecarbothioyl]-4-methoxybenzamide (A2) top
Crystal data top
C22H18FN3O4SF(000) = 1824
Mr = 439.45Dx = 1.412 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 47.298 (3) ÅCell parameters from 9864 reflections
b = 4.8054 (3) Åθ = 2.3–21.0°
c = 18.4939 (10) ŵ = 0.20 mm1
β = 100.429 (6)°T = 298 K
V = 4134.0 (4) Å3Plates, colorless
Z = 80.25 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1751 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 20.9°, θmin = 2.3°
h = 4638
9841 measured reflectionsk = 44
2188 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0421P)2 + 7.4575P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2188 reflectionsΔρmax = 0.20 e Å3
281 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46155 (2)0.5067 (2)0.20257 (5)0.0570 (4)
O30.48485 (5)0.1767 (5)0.05581 (13)0.0564 (7)
O20.40193 (5)0.2064 (6)0.06269 (16)0.0693 (8)
N30.49466 (6)0.1596 (6)0.14319 (15)0.0476 (8)
H3N0.5084580.2440090.1714250.057*
O40.61871 (6)0.3864 (7)0.15455 (17)0.0846 (9)
N20.44651 (6)0.1428 (6)0.09635 (17)0.0548 (8)
H2N0.4505100.0223830.0653140.066*
F10.28801 (5)0.3872 (7)0.11032 (16)0.1091 (10)
C160.53329 (7)0.1387 (7)0.11626 (18)0.0431 (9)
N10.41856 (7)0.2174 (7)0.09631 (18)0.0636 (9)
H10.4145880.3868400.1055550.076*
C130.39757 (8)0.0319 (9)0.0822 (2)0.0514 (10)
C110.36866 (8)0.1329 (8)0.0915 (2)0.0516 (10)
C140.46729 (8)0.2578 (7)0.14456 (18)0.0438 (9)
O10.29250 (6)0.0013 (8)0.01236 (19)0.1023 (12)
C210.54221 (8)0.3385 (8)0.0720 (2)0.0547 (10)
H210.5288670.4167110.0343490.066*
C150.50265 (8)0.0588 (7)0.10183 (19)0.0441 (9)
C190.59029 (8)0.3153 (9)0.1383 (2)0.0576 (10)
C200.57034 (9)0.4253 (8)0.0820 (2)0.0603 (11)
H200.5758940.5581200.0507370.072*
C170.55367 (9)0.0281 (8)0.1725 (2)0.0601 (11)
H170.5482500.1075880.2031900.072*
C120.34481 (8)0.0178 (9)0.0473 (2)0.0638 (11)
H120.3471920.1198510.0135480.077*
C180.58180 (9)0.1171 (10)0.1835 (2)0.0678 (12)
H180.5951470.0425430.2216740.081*
C100.36521 (9)0.3291 (9)0.1432 (2)0.0663 (11)
H100.3811750.4057030.1734170.080*
C70.31751 (9)0.1059 (10)0.0528 (2)0.0710 (12)
C80.31463 (9)0.3024 (10)0.1041 (3)0.0714 (12)
C90.33763 (11)0.4125 (10)0.1500 (3)0.0804 (14)
H90.3349550.5420170.1855000.096*
C10.29108 (10)0.0900 (12)0.0591 (3)0.0824 (15)
C220.62909 (10)0.5808 (11)0.1078 (3)0.0994 (17)
H22A0.6196230.7563180.1103270.149*
H22B0.6494390.6042670.1233940.149*
H22C0.6252280.5132640.0581660.149*
C20.27240 (11)0.3041 (13)0.0798 (3)0.1014 (17)
H20.2629320.3863890.0453530.122*
C50.30114 (16)0.0664 (17)0.1801 (4)0.120 (2)
H50.3107760.0124040.2146590.144*
C40.28168 (18)0.2822 (19)0.1998 (4)0.128 (3)
H40.2782820.3485770.2478240.153*
C60.30602 (11)0.0306 (13)0.1075 (3)0.1001 (17)
H60.3190710.1731450.0925980.120*
C30.26762 (14)0.3964 (17)0.1492 (5)0.131 (2)
H30.2545530.5398960.1628680.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0682 (7)0.0481 (6)0.0553 (6)0.0142 (5)0.0124 (5)0.0014 (5)
O30.0554 (16)0.0545 (17)0.0589 (16)0.0012 (14)0.0092 (13)0.0131 (14)
O20.0576 (17)0.0393 (18)0.109 (2)0.0029 (14)0.0092 (15)0.0124 (16)
N30.0473 (19)0.0409 (18)0.0556 (18)0.0008 (16)0.0119 (14)0.0034 (16)
O40.0587 (19)0.094 (2)0.098 (2)0.0215 (18)0.0072 (16)0.0099 (19)
N20.047 (2)0.0453 (19)0.074 (2)0.0059 (17)0.0161 (17)0.0125 (17)
F10.0701 (18)0.141 (3)0.127 (2)0.0232 (18)0.0454 (15)0.0117 (19)
C160.051 (2)0.036 (2)0.045 (2)0.0000 (19)0.0154 (19)0.0032 (18)
N10.050 (2)0.036 (2)0.107 (3)0.0023 (18)0.0183 (18)0.0086 (18)
C130.052 (3)0.039 (3)0.062 (2)0.003 (2)0.0088 (19)0.003 (2)
C110.047 (2)0.044 (2)0.065 (2)0.001 (2)0.013 (2)0.002 (2)
C140.050 (2)0.036 (2)0.047 (2)0.000 (2)0.0138 (19)0.0088 (18)
O10.0447 (18)0.159 (3)0.104 (3)0.010 (2)0.0170 (17)0.039 (2)
C210.055 (3)0.053 (3)0.058 (2)0.001 (2)0.0142 (19)0.006 (2)
C150.052 (2)0.039 (2)0.045 (2)0.000 (2)0.018 (2)0.0040 (19)
C190.053 (3)0.057 (3)0.063 (3)0.008 (2)0.010 (2)0.005 (2)
C200.065 (3)0.052 (3)0.068 (3)0.007 (2)0.022 (2)0.011 (2)
C170.063 (3)0.060 (3)0.059 (2)0.005 (2)0.015 (2)0.011 (2)
C120.051 (3)0.064 (3)0.079 (3)0.003 (2)0.020 (2)0.014 (2)
C180.056 (3)0.080 (3)0.064 (3)0.008 (2)0.002 (2)0.013 (2)
C100.060 (3)0.066 (3)0.075 (3)0.004 (2)0.017 (2)0.010 (3)
C70.059 (3)0.082 (3)0.074 (3)0.001 (3)0.017 (2)0.003 (3)
C80.053 (3)0.084 (3)0.084 (3)0.012 (3)0.031 (3)0.001 (3)
C90.089 (4)0.073 (3)0.088 (3)0.003 (3)0.039 (3)0.017 (3)
C10.050 (3)0.104 (4)0.088 (4)0.017 (3)0.000 (3)0.024 (3)
C220.077 (3)0.097 (4)0.129 (4)0.028 (3)0.031 (3)0.010 (4)
C20.073 (3)0.121 (5)0.106 (4)0.014 (4)0.005 (3)0.023 (4)
C50.118 (5)0.142 (6)0.099 (5)0.046 (5)0.015 (4)0.027 (5)
C40.128 (6)0.151 (7)0.091 (5)0.056 (5)0.015 (5)0.018 (5)
C60.082 (4)0.117 (5)0.101 (4)0.013 (3)0.015 (3)0.001 (4)
C30.100 (5)0.158 (7)0.125 (6)0.022 (5)0.006 (5)0.039 (6)
Geometric parameters (Å, º) top
S1—C141.661 (4)C20—H200.9300
O3—C151.223 (4)C17—C181.377 (5)
O2—C131.229 (4)C17—H170.9300
N3—C141.383 (4)C12—C71.380 (5)
N3—C151.391 (4)C12—H120.9300
N3—H3N0.8600C18—H180.9300
O4—C191.367 (4)C10—C91.392 (6)
O4—C221.419 (5)C10—H100.9300
N2—C141.322 (4)C7—C81.362 (6)
N2—N11.369 (4)C8—C91.360 (6)
N2—H2N0.8600C9—H90.9300
F1—C81.348 (4)C1—C21.365 (7)
C16—C211.377 (5)C1—C61.365 (7)
C16—C171.390 (5)C22—H22A0.9600
C16—C151.476 (5)C22—H22B0.9600
N1—C131.325 (5)C22—H22C0.9600
N1—H10.8600C2—C31.338 (8)
C13—C111.490 (5)C2—H20.9300
C11—C101.373 (5)C5—C41.390 (9)
C11—C121.383 (5)C5—C61.401 (8)
O1—C71.375 (5)C5—H50.9300
O1—C11.383 (5)C4—C31.359 (9)
C21—C201.374 (5)C4—H40.9300
C21—H210.9300C6—H60.9300
C19—C181.374 (5)C3—H30.9300
C19—C201.378 (5)
C14—N3—C15128.0 (3)C11—C12—H12119.8
C14—N3—H3N116.0C19—C18—C17120.5 (4)
C15—N3—H3N116.0C19—C18—H18119.8
C19—O4—C22117.7 (3)C17—C18—H18119.8
C14—N2—N1119.4 (3)C11—C10—C9119.4 (4)
C14—N2—H2N120.3C11—C10—H10120.3
N1—N2—H2N120.3C9—C10—H10120.3
C21—C16—C17117.8 (3)C8—C7—O1116.6 (4)
C21—C16—C15118.1 (3)C8—C7—C12118.5 (4)
C17—C16—C15124.1 (3)O1—C7—C12124.9 (4)
C13—N1—N2120.9 (3)F1—C8—C9118.9 (4)
C13—N1—H1119.6F1—C8—C7118.8 (4)
N2—N1—H1119.6C9—C8—C7122.3 (4)
O2—C13—N1121.7 (3)C8—C9—C10119.3 (4)
O2—C13—C11122.9 (4)C8—C9—H9120.4
N1—C13—C11115.4 (4)C10—C9—H9120.4
C10—C11—C12120.0 (4)C2—C1—C6121.5 (5)
C10—C11—C13122.1 (4)C2—C1—O1115.1 (5)
C12—C11—C13117.9 (4)C6—C1—O1123.4 (5)
N2—C14—N3115.4 (3)O4—C22—H22A109.5
N2—C14—S1123.2 (3)O4—C22—H22B109.5
N3—C14—S1121.4 (3)H22A—C22—H22B109.5
C7—O1—C1121.6 (4)O4—C22—H22C109.5
C20—C21—C16121.7 (4)H22A—C22—H22C109.5
C20—C21—H21119.2H22B—C22—H22C109.5
C16—C21—H21119.2C3—C2—C1120.4 (7)
O3—C15—N3120.7 (3)C3—C2—H2119.8
O3—C15—C16122.3 (3)C1—C2—H2119.8
N3—C15—C16116.9 (3)C4—C5—C6119.0 (7)
O4—C19—C18115.0 (4)C4—C5—H5120.5
O4—C19—C20125.6 (4)C6—C5—H5120.5
C18—C19—C20119.3 (4)C3—C4—C5120.3 (7)
C21—C20—C19119.9 (4)C3—C4—H4119.9
C21—C20—H20120.0C5—C4—H4119.9
C19—C20—H20120.0C1—C6—C5118.2 (6)
C18—C17—C16120.8 (4)C1—C6—H6120.9
C18—C17—H17119.6C5—C6—H6120.9
C16—C17—H17119.6C2—C3—C4120.6 (7)
C7—C12—C11120.5 (4)C2—C3—H3119.7
C7—C12—H12119.8C4—C3—H3119.7
C14—N2—N1—C13143.5 (4)C13—C11—C12—C7179.2 (4)
N2—N1—C13—O26.2 (6)O4—C19—C18—C17180.0 (4)
N2—N1—C13—C11173.9 (3)C20—C19—C18—C170.2 (6)
O2—C13—C11—C10147.9 (4)C16—C17—C18—C190.7 (6)
N1—C13—C11—C1032.2 (5)C12—C11—C10—C90.6 (6)
O2—C13—C11—C1230.6 (5)C13—C11—C10—C9179.1 (4)
N1—C13—C11—C12149.3 (4)C1—O1—C7—C8149.6 (5)
N1—N2—C14—N3176.7 (3)C1—O1—C7—C1233.4 (7)
N1—N2—C14—S14.1 (5)C11—C12—C7—C81.8 (6)
C15—N3—C14—N25.7 (5)C11—C12—C7—O1178.8 (4)
C15—N3—C14—S1175.2 (3)O1—C7—C8—F12.0 (6)
C17—C16—C21—C200.7 (5)C12—C7—C8—F1179.3 (4)
C15—C16—C21—C20179.7 (3)O1—C7—C8—C9176.8 (4)
C14—N3—C15—O35.9 (5)C12—C7—C8—C90.4 (7)
C14—N3—C15—C16174.1 (3)F1—C8—C9—C10179.1 (4)
C21—C16—C15—O35.2 (5)C7—C8—C9—C102.1 (7)
C17—C16—C15—O3173.8 (3)C11—C10—C9—C81.5 (7)
C21—C16—C15—N3174.7 (3)C7—O1—C1—C2148.1 (4)
C17—C16—C15—N36.3 (5)C7—O1—C1—C634.9 (7)
C22—O4—C19—C18177.2 (4)C6—C1—C2—C32.0 (8)
C22—O4—C19—C203.0 (6)O1—C1—C2—C3175.1 (5)
C16—C21—C20—C191.2 (6)C6—C5—C4—C30.1 (9)
O4—C19—C20—C21179.1 (4)C2—C1—C6—C51.7 (8)
C18—C19—C20—C210.7 (6)O1—C1—C6—C5175.1 (4)
C21—C16—C17—C180.2 (6)C4—C5—C6—C10.7 (8)
C15—C16—C17—C18178.8 (3)C1—C2—C3—C41.3 (9)
C10—C11—C12—C72.3 (6)C5—C4—C3—C20.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.861.922.589 (4)134
N3—H3N···S1i0.862.803.615 (3)159
C17—H17···S1i0.932.693.614 (4)174
N1—H1···O2ii0.862.152.915 (4)148
C21—H21···O3iii0.932.573.399 (4)148
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z; (iii) x+1, y1, z.
 

Acknowledgements

The authors are thankful to the CIF of IISER Bhopal for research facilities and infrastructure.

References

First citationAcharya, P. T., Bhavsar, Z. A., Jethava, D., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.  CrossRef Google Scholar
First citationAmeryckx, A., Thabault, L., Pochet, L., Leimanis, S., Poupaert, J. H., Wouters, J., Joris, B., Van Bambeke, F. & Frédérick, R. (2018). Eur. J. Med. Chem. 159, 324–338.  CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, M. J. M. (1975). Coord. Chem. Rev. 15, 279–319.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGazieva, G. A. & Kravchenko, A. N. (2012). Russ. Chem. Rev. 81, 494–523.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan, T. P. (2006). PhD Thesis, Mangalore University, Mangalore, Karnataka, India.  Google Scholar
First citationPaneth, A., Stączek, P., Plech, T., Strzelczyk, A., Dzitko, K., Wujec, M., Kuśmierz, E., Kosikowska, U., Grzegorczyk, A. & Paneth, P. (2016). J. Enzyme Inhib. Med. Chem. 31, 14–22.  CrossRef CAS PubMed Google Scholar
First citationPramanik, S. & Chopra, D. (2020). J. Indian Inst. Sci. 100, 43–59.  CrossRef Google Scholar
First citationQandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta. Pharm. Sci. 48, 95–107.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiwek, A., Bielawska, A., Maciorkowska, E., Lepiarczyk, M., Bielawski, K., Trotsko, N. & Wujec, M. (2014). J. Enzyme Inhib. Med. Chem. 29, 243–248.  CrossRef CAS PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia, Perth.  Google Scholar
First citationYan, Y., Dai, L., Zhang, L., Zhong, S., Zhou, H., Wu, L. & Cai, L. (2018). Res. Chem. Intermed. 44, 3437–3454.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds