research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of 5-(tri­fluoro­meth­yl)picolinic acid monohydrate reveals a water-bridged hydrogen-bonding network

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 24 September 2020; accepted 8 October 2020; online 16 October 2020)

The title compound [systematic name: 5-(tri­fluoro­meth­yl)pyridine-2-carb­oxy­lic acid monohydrate], C7H4F3NO2·H2O, is the acid hydrate of a pyridine with a carb­oxy­lic acid group and a tri­fluoro­methyl substituent situated para to one another on the aromatic ring. The mol­ecule forms a centrosymmetric water-bridged hydrogen-bonding dimer with graph-set notation R44 (12). Hydrogen-bonding distances of 2.5219 (11) and 2.8213 (11) Å are observed between the donor carb­oxy­lic acid and the bridging water acceptor, and the donor water and carbonyl oxygen acceptor, respectively. The dimers are further linked into a two-dimensional sheet via two longer inter­molecular hydrogen-bonding inter­actions between the second hydrogen atom on the bridging water mol­ecule and both a pyridine nitro­gen atom and carbonyl oxygen with distances of 3.1769 (11) and 2.8455 (11) Å, respectively. The tri­fluoro­methyl groups extend out the faces of the sheet providing for F⋯F and C—H⋯F contacts between the sheets, completing the three-dimensional packing.

1. Chemical context

Picolinic acids, pyridine derivatives with a carb­oxy­lic acid substituent at the 2-position, are common bidentate chelating agents of metallic elements in the human body (Grant et al., 2009[Grant, R. S., Coggan, S. E. & Smythe, G. A. (2009). Int. J. Tryptophan Res. 2, 71-79.]). The title compound, the hydrate of 5-(tri­fluoro­meth­yl)-2-pyridine­carb­oxy­lic acid (I)[link], commonly known as 5-(tri­fluoro­meth­yl)picolinic acid, is a derivative of picolinic acid with potent chelating abilities and biological activities (Li et al., 2019[Li, B., Wang, J., Song, H., Wu, H., Chen, X. & Ma, X. (2019). J. Coord. Chem. 72, 2562-2573.]). Its transition-metal complexes also exhibit outstanding photophysical and electrochemical properties that make them promising phospho­rescent materials for OLEDs (Wei et al., 2016[Wei, X., Wang, S. & Wei, D. (2016). Huaxue Tongbao, 79, 947-951.]). The compound may be synthesized from a range of synthetic routes, one of which relies on the carboxyl­ation reaction of 2-bromo-5-(tri­fluoro­meth­yl)pyridine with butyl­lithium (Cottet et al., 2003[Cottet, F., Marull, M., Lefebvre, O. & Schlosser, M. (2003). Eur. J. Org. Chem. pp. 1559-1568.]).

[Scheme 1]

2. Structural commentary

The structure of 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] reveals that the crystalline material obtained from the supplier is a hydrate and confirms the position of the carb­oxy­lic acid group ortho to the pyridine nitro­gen atom with tri­fluoro­methyl substituent situated para to the acid group on the aromatic ring (Fig. 1[link]). The two aromatic carbon–nitro­gen bonds have bond lengths of N—C2 of 1.3397 (12) Å and N—C6 of 1.3387 (12) Å, shorter than the aromatic C—C bonds, which have an average bond length of 1.387 (3) Å, a wedge-type motif typical in pyridine structures (Montgomery et al., 2015[Montgomery, M. J., O'Connor, T. J. & Tanski, J. M. (2015). Acta Cryst. E71, 852-856.]). The aromatic carb­oxy­lic acid substituent has a C1—C2 bond length of 1.5081 (13) Å, similar to that of the tri­fluoro­methyl substituent C5—C7 of 1.5019 (13) Å, and the C—F bond lengths of the tri­fluoro­methyl group have an average bond length of 1.335 (4) Å. The carb­oxy­lic acid group is co-planar with the aromatic pyridine ring, with least-squares planes at an angle of 1.8 (2)°.

[Figure 1]
Figure 1
A view of 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The structure of 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] reported is a hydrate (Fig. 1[link]) exhibiting a water-linked two-dimensional hydrogen-bonding network. Four different hydrogen-bonding inter­actions are observed between the picolinic acid and water mol­ecule, which acts as both a hydrogen-bonding donor and acceptor with the carb­oxy­lic acid group and pyridine nitro­gen atom (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1W 0.92 (2) 1.60 (2) 2.5219 (11) 174 (2)
O1W—H2W⋯O2i 0.808 (19) 2.038 (19) 2.8213 (11) 163.2 (17)
O1W—H1W⋯O2ii 0.859 (19) 2.615 (18) 3.1769 (11) 124.1 (13)
O1W—H1W⋯Nii 0.859 (19) 2.008 (18) 2.8455 (11) 164.5 (16)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

The mol­ecular packing in the solid state can be characterized by the 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate asymmetric unit first forming a centrosymmetric water-bridged dimer unit with graph-set notation [R_{4}^{4}] (12) (Fig. 2[link]). The carb­oxy­lic acid hydrogen atom and the water oxygen form the stronger hydrogen bond, with an O1⋯O1W distance of 2.5219 (11) Å characterizing the O1—H1⋯O1W hydrogen bond, while the water hydrogen atom H2W bonds to the carbonyl oxygen atom with an O1W⋯O2i distance of 2.8213 (11) Å charaterizing the O1W-H2W⋯O2i hydrogen bond [symmetry code: (i) −x + 1, −y + 1, −z + 2].

[Figure 2]
Figure 2
A view of the inter­molecular water-bridged hydrogen-bonding dimer in 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate.

The water mol­ecules, specifically using the other water hydrogen atom H1W, further bridge the dimer units together to form a pleated strip or tape motif that propagates along the crystallographic [010] direction (Fig. 3[link]). The the O1W⋯Nii and O1W⋯O2ii distances of 3.1769 (11) and 2.8455 (11) Å, respectively, characterize the O1W—H1W⋯Nii and O1W—H1W⋯O2ii hydrogen bonds [symmetry code: (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]]. The pleated nature of the strip exposes the H1W hydrogen atom of every other dimer to a pyridine nitro­gen in the strip adjacent to it, forming a thick two-dimensional sheet (Fig. 4[link]). The sheet can be considered a bilayer with a hydro­philic core due to the presence of water mol­ecules and strong hydrogen bonding in the center and the more hydro­phobic tri­fluoro­methyl­aromatic groups extending to the faces of the sheet (Fig. 5[link]).

[Figure 3]
Figure 3
A view of a pleated strip formed between the water-bridged hydrogen-bonding dimers in 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate.
[Figure 4]
Figure 4
A view of the sheet hydrogen-bonding network in 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate viewing the water-bridge hydrogen-bonding dimers end-on shows the hydrogen-bonding inter­actions between the pleated strips forming a two-dimensional sheet.
[Figure 5]
Figure 5
An edge-on view of the two-dimensional sheet formed between the water-bridged hydrogen-bonding dimers in 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate.

The sheets stack in the [100] direction (Fig. 6[link]). The forces that guide the inter­molecular inter­actions between neighboring sheets are van der Waals forces including F⋯F and C—H⋯F contacts. The shortest weak Car­yl—H⋯F inter­action, C4—H4A⋯F2 exhibits an H⋯F distance of 2.495 (1) Å. The most notable inter­action is a dimeric F⋯F inter­action between CF3 groups on neighboring sheets with an F1⋯F3 distance of 3.077 (1) Å, which is ∼0.15 Å longer than the sum of the van der Waals radii of fluorine (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Figure 6]
Figure 6
A view of the stacking of the two-dimensional sheets in 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate showing the tri­fluoro­methyl­aromatic inter­actions at the inter­faces of the sheets.

4. Database survey

Mono­carb­oxy­lic derivatives of pyridine, pyridine­carb­oxy­lic acids, are also commonly known as picolinic acid, nicotinic acid, or isonicotinic acid when the carboxyl group resides at the 2-, 3-, or 4- position, respectively. The Cambridge Structural Database (Version 5.40, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains no isomers of tri­fluoro­methyl-substituted pyridine­carb­oxy­lic acids. The crystal structure of the base of the title compound, picolinic acid (PICOLA02), was shown to be 1:1 co-crystals of its neutral and zwitterionic forms, where the nitro­gen atom can both be protonated and deprotonated (Hamazaki et al., 1998[Hamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.]). The inter­actions form a zigzag chain by N—H⋯N and O—H⋯O inter­molecular hydrogen bonding. A zwitterionic hydrogen-bonding motif can be found in substituted picolinic acid derivatives as well, such as 3-thioxo-2-pyridine­carb­oxy­lic acid (MPYDCX01; Bourne & Taylor, 1983[Bourne, P. E. & Taylor, M. R. (1983). Acta Cryst. C39, 266-268.]).

A related solvated picolinic acid crystal structure can be found in the crystal structure of picolinic acid peroxosolvate (ANINES) which, while zwitterionic, exhibits a solvate-linked hydrogen-bonding pattern (Medvedev et al., 2013[Medvedev, A. G., Mikhailov, A. A., Prikhodchenko, P. V., Tripol'skaya, T. A., Lev, O. & Churakov, A. V. (2013). Russ. Chem. Bull. 62, 1871-1876.]). In this structure, every hydrogen peroxide mol­ecule links three picolinic acid mol­ecules together with two hydrogen bonds between the H2O2 hydrogen atoms and two carboxyl­ate groups, and an N—H⋯O hydrogen bond between the protonated pyridine nitro­gen atom and one oxygen atom of the H2O2 mol­ecule.

5-(Tri­fluoro­meth­yl)-2-pyridine­carb­oxy­lic acid has been used as a monoanionic ligand in several metal complexes, including with CoII (VOVZOY; Li et al., 2019[Li, B., Wang, J., Song, H., Wu, H., Chen, X. & Ma, X. (2019). J. Coord. Chem. 72, 2562-2573.]), CrIII (QEGWOR; Chai et al., 2017[Chai, J., Liu, Y., Liu, B. & Yang, B. (2017). J. Mol. Struct. 1150, 307-315.]), MnII (ROKSIW; Wang et al., 2019[Wang, J., Li, B., Wu, H., Tian, X. & Ma, X. (2019). Jiegou Huaxue. 38, 1349-1355.]), and IrIII [COKGAN and COKGIV (Sanner et al., 2019[Sanner, R. D., Cherepy, N. J., Martinez, H. P., Pham, H. Q. & Young, V. G. (2019). Inorg. Chim. Acta, 496, 119040.]); GIZJOR (Hao et al., 2019[Hao, H., Liu, X., Ge, X., Zhao, Y., Tian, X., Ren, T., Wang, Y., Zhao, C. & Liu, Z. (2019). J. Inorg. Biochem. 192, 52-61.])]. While the CoII and MnII complexes engage in inter­molecular hydrogen bonding with metal-coordinated water mol­ecules, the CrIII complex contains a water of solvation that facilitates the formation of a hydrogen-bonding network. In a fashion reminiscent of 5-(tri­fluoro­meth­yl)picolinic acid (I)[link] hydrate itself, [Cr(5-(tri­fluoro­meth­yl)picolinate)2(H2O)2]NO3·H2O hydrogen bonds into thick two-dimensional sheets with the tri­fluoro­methyl­aromatic groups extending to the faces of the sheets (Chai et al., 2017[Chai, J., Liu, Y., Liu, B. & Yang, B. (2017). J. Mol. Struct. 1150, 307-315.]).

5. Synthesis and crystallization

5-(Tri­fluoro­meth­yl)-2-pyridine­carb­oxy­lic acid (I, 95%) was purchased from Aldrich Chemical Company, USA, and was used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon atoms were included in calculated positions and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) of the aryl C-atoms. The position of the carb­oxy­lic acid and water hydrogen atoms were found in the difference map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C7H4F3NO2·H2O
Mr 209.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 125
a, b, c (Å) 8.9213 (10), 10.0759 (12), 9.1010 (11)
β (°) 99.983 (2)
V3) 805.70 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.32 × 0.25 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 19282, 2463, 2126
Rint 0.026
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.103, 1.07
No. of reflections 2463
No. of parameters 139
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

7. Analytical data

1H NMR (Bruker Avance III HD 400 MHz, DMSO d6): δ 3.70 (br s, OH), 8.21 (d, 1H, Car­ylH, Jortho = 8.0 Hz), 8.37 (dd, 1H, Car­ylH, Jortho = 8.2 Hz, Jmeta = 2.0 Hz), 9.07 (s, 1H, Car­ylH). 13C NMR (13C{1H}, 100.6 MHz, DMSO d6): δ 123.23 (q, CF3, JC–F = 272.8 Hz), 124.73 (s, Car­ylH), 127.30 (q, Car­ylCF3, JC–F = 32.7 Hz), 135.12 (q, Car­ylH, JC–F = 3.5 Hz), 146.24 (q, Car­ylH, JC–F = 3.8 Hz), 151.98 (s, Car­ylCOOH), 165.13 (s, COOH). 19F NMR (19F{1H}, 376.5 MHz, DMSO d6): δ −61.35 (s, 3F, CF3). IR (Thermo Nicolet iS50, FT–IR, KBr pellet, cm−1): 3469 (s br, O—H str), 3050 (s, Car­yl—H str), 2849 (w), 2571 (w), 1961 (m), 1707 (s, C=O str), 1606 (s), 1582 (s), 1493 (s), 1440 (s), 1392 (s), 1328 (m), 1290 (m), 1251 (s), 1163 (m), 1126 (s), 1075 (s), 1023 (s), 948 (s), 878 (m), 864 (s), 806 (s), 760 (s), 704 (s), 643 (s), 524 (s). GC–MS (Agilent Technologies 7890A GC/5975C MS): M+ = 191 amu, corresponding to the anhydrous form, 5-(tri­fluoro­meth­yl)pyridine-2-carb­oxy­lic acid (I)[link], whose calculated exact mol­ecular ion mass is 191.02 amu.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

5-(Trifluoromethyl)pyridine-2-carboxylic acid monohydrate top
Crystal data top
C7H4F3NO2·H2OF(000) = 424
Mr = 209.13Dx = 1.724 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.9213 (10) ÅCell parameters from 7786 reflections
b = 10.0759 (12) Åθ = 3.0–30.2°
c = 9.1010 (11) ŵ = 0.18 mm1
β = 99.983 (2)°T = 125 K
V = 805.70 (16) Å3Block, colourless
Z = 40.32 × 0.25 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2463 independent reflections
Radiation source: fine-focus sealed tube2126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.3°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1414
Tmin = 0.89, Tmax = 0.98l = 1313
19282 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2301P]
where P = (Fo2 + 2Fc2)/3
2463 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.02797 (8)0.44945 (10)0.19056 (8)0.0387 (2)
F20.91945 (11)0.63911 (8)0.13936 (9)0.0398 (2)
F30.80545 (8)0.45876 (7)0.06062 (7)0.02763 (17)
O10.62864 (9)0.36976 (7)0.76271 (8)0.02126 (17)
H10.572 (2)0.365 (2)0.838 (2)0.056 (6)*
O20.57174 (9)0.58725 (7)0.74769 (8)0.02259 (17)
N0.69746 (10)0.60686 (8)0.49521 (9)0.01815 (18)
C10.62637 (11)0.48809 (9)0.70248 (10)0.01643 (18)
C20.70005 (11)0.48977 (9)0.56536 (10)0.01547 (18)
C30.76396 (12)0.37599 (9)0.51689 (11)0.01936 (19)
H3A0.7628130.294670.5695190.023*
C40.82968 (12)0.38369 (10)0.38964 (11)0.0205 (2)
H4A0.874620.3077480.3531740.025*
C50.82825 (11)0.50451 (10)0.31708 (11)0.01741 (19)
C60.76044 (12)0.61375 (10)0.37220 (11)0.01917 (19)
H6A0.7587670.6959760.320850.023*
C70.89493 (12)0.51403 (10)0.17683 (11)0.0210 (2)
O1W0.46520 (10)0.34230 (8)0.96069 (9)0.02433 (18)
H2W0.469 (2)0.3734 (17)1.043 (2)0.040 (5)*
H1W0.4241 (19)0.2651 (19)0.9607 (19)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0238 (4)0.0669 (6)0.0280 (4)0.0091 (3)0.0118 (3)0.0011 (4)
F20.0630 (5)0.0278 (4)0.0368 (4)0.0179 (3)0.0317 (4)0.0058 (3)
F30.0315 (4)0.0352 (4)0.0167 (3)0.0061 (3)0.0055 (2)0.0055 (3)
O10.0303 (4)0.0167 (3)0.0190 (3)0.0011 (3)0.0104 (3)0.0034 (3)
O20.0328 (4)0.0185 (3)0.0189 (3)0.0026 (3)0.0112 (3)0.0006 (3)
N0.0240 (4)0.0154 (4)0.0161 (4)0.0013 (3)0.0066 (3)0.0005 (3)
C10.0192 (4)0.0165 (4)0.0135 (4)0.0014 (3)0.0027 (3)0.0004 (3)
C20.0180 (4)0.0150 (4)0.0136 (4)0.0004 (3)0.0031 (3)0.0006 (3)
C30.0252 (5)0.0151 (4)0.0188 (4)0.0012 (3)0.0066 (4)0.0006 (3)
C40.0248 (5)0.0174 (4)0.0207 (4)0.0015 (3)0.0078 (4)0.0033 (3)
C50.0182 (4)0.0197 (4)0.0153 (4)0.0028 (3)0.0056 (3)0.0031 (3)
C60.0252 (5)0.0167 (4)0.0168 (4)0.0006 (3)0.0070 (3)0.0006 (3)
C70.0218 (5)0.0234 (5)0.0194 (4)0.0044 (4)0.0079 (4)0.0036 (4)
O1W0.0376 (4)0.0188 (3)0.0198 (4)0.0073 (3)0.0140 (3)0.0031 (3)
Geometric parameters (Å, º) top
F1—C71.3402 (13)C3—C41.3879 (13)
F2—C71.3335 (13)C3—H3A0.95
F3—C71.3317 (12)C4—C51.3840 (14)
O1—C11.3109 (11)C4—H4A0.95
O1—H10.92 (2)C5—C61.3908 (13)
O2—C11.2143 (12)C5—C71.5019 (13)
N—C61.3387 (12)C6—H6A0.95
N—C21.3397 (12)O1W—H2W0.808 (19)
C1—C21.5081 (13)O1W—H1W0.859 (19)
C2—C31.3861 (13)
C1—O1—H1113.0 (13)C4—C5—C6119.52 (9)
C6—N—C2117.98 (8)C4—C5—C7119.30 (9)
O2—C1—O1125.78 (9)C6—C5—C7121.14 (9)
O2—C1—C2121.95 (8)N—C6—C5122.17 (9)
O1—C1—C2112.26 (8)N—C6—H6A118.9
N—C2—C3123.42 (9)C5—C6—H6A118.9
N—C2—C1115.48 (8)F3—C7—F2107.12 (9)
C3—C2—C1121.09 (8)F3—C7—F1105.68 (8)
C2—C3—C4118.41 (9)F2—C7—F1107.51 (9)
C2—C3—H3A120.8F3—C7—C5112.15 (8)
C4—C3—H3A120.8F2—C7—C5112.61 (8)
C5—C4—C3118.49 (9)F1—C7—C5111.38 (9)
C5—C4—H4A120.8H2W—O1W—H1W107.4 (16)
C3—C4—H4A120.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1W0.92 (2)1.60 (2)2.5219 (11)174 (2)
O1W—H2W···O2i0.808 (19)2.038 (19)2.8213 (11)163.2 (17)
O1W—H1W···O2ii0.859 (19)2.615 (18)3.1769 (11)124.1 (13)
O1W—H1W···Nii0.859 (19)2.008 (18)2.8455 (11)164.5 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1/2, z+3/2.
 

Funding information

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund and Olin College Fund of Vassar College for funding publication expenses.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBourne, P. E. & Taylor, M. R. (1983). Acta Cryst. C39, 266–268.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, J., Liu, Y., Liu, B. & Yang, B. (2017). J. Mol. Struct. 1150, 307–315.  Web of Science CSD CrossRef CAS Google Scholar
First citationCottet, F., Marull, M., Lefebvre, O. & Schlosser, M. (2003). Eur. J. Org. Chem. pp. 1559–1568.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrant, R. S., Coggan, S. E. & Smythe, G. A. (2009). Int. J. Tryptophan Res. 2, 71–79.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamazaki, H., Hosomi, H., Takeda, S., Kataoka, H. & Ohba, S. (1998). Acta Cryst. C54, IUC9800049.  CSD CrossRef IUCr Journals Google Scholar
First citationHao, H., Liu, X., Ge, X., Zhao, Y., Tian, X., Ren, T., Wang, Y., Zhao, C. & Liu, Z. (2019). J. Inorg. Biochem. 192, 52–61.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, B., Wang, J., Song, H., Wu, H., Chen, X. & Ma, X. (2019). J. Coord. Chem. 72, 2562–2573.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMedvedev, A. G., Mikhailov, A. A., Prikhodchenko, P. V., Tripol'skaya, T. A., Lev, O. & Churakov, A. V. (2013). Russ. Chem. Bull. 62, 1871–1876.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontgomery, M. J., O'Connor, T. J. & Tanski, J. M. (2015). Acta Cryst. E71, 852–856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSanner, R. D., Cherepy, N. J., Martinez, H. P., Pham, H. Q. & Young, V. G. (2019). Inorg. Chim. Acta, 496, 119040.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Li, B., Wu, H., Tian, X. & Ma, X. (2019). Jiegou Huaxue. 38, 1349–1355.  CAS Google Scholar
First citationWei, X., Wang, S. & Wei, D. (2016). Huaxue Tongbao, 79, 947–951.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds