Download citation
Download citation
link to html
Cathinones belong to a group of com­pounds of great inter­est in the new psycho­active substances (NPS) market. Constant changes to the chemical struc­ture made by the producers of these com­pounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated com­pounds were confirmed as: 1-[1-(4-methyl­phen­yl)-1-oxo­hexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl, the hydro­chloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenyl­pentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl, the hydro­chloride of α-PiHP) and meth­yl[1-(4-methyl­phen­yl)-1-oxo­pentan-2-yl]aza­nium chloride (3; C13H20NO+·Cl, the hydro­chloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and com­prehensive crystallographic data on salts 13.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621013401/dg3025sup1.cif
Contains datablocks ch20_pk1269, ch20_pk1270, ch20_pk1271, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1269sup2.hkl
Contains datablock ch20_pk1269

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1270sup3.hkl
Contains datablock ch20_pk1270

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1271sup4.hkl
Contains datablock ch20_pk1271

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1269sup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1270sup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621013401/dg3025ch20_pk1271sup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621013401/dg3025sup8.pdf
Additional analytical details, spectra and packing diagrams

CCDC references: 2041927; 2041926; 2041925

Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015).

1-[1-(4-Methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (ch20_pk1269) top
Crystal data top
C17H26NO+·ClF(000) = 640
Mr = 295.84Dx = 1.151 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.0494 (9) ÅCell parameters from 2886 reflections
b = 6.9334 (3) Åθ = 5.4–73.6°
c = 15.241 (1) ŵ = 1.94 mm1
β = 108.635 (7)°T = 294 K
V = 1707.19 (17) Å3Polyhedron, colorless
Z = 40.08 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova
diffractometer with an Atlas detector
3400 independent reflections
Radiation source: micro-focus sealed X-ray tube2207 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.047
ω scansθmax = 74.3°, θmin = 5.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 2116
Tmin = 0.480, Tmax = 1.000k = 88
11711 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.260P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.20 e Å3
3400 reflectionsΔρmin = 0.16 e Å3
184 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal X-ray experiments were performed at room temperature. The data were collected using a SuperNova kappa diffractometer with Atlas CCD detector (Agilent Technologies, Santa Clara, CA, USA). For the integration of the collected data, the CrysAlis PRO software (version 1.171.38.41q, 2015; Rigaku Oxford Diffraction, Rigaku, Tokyo, Japan) was used. The structures were solved using direct methods with the SHELXS2013 software and the solutions were refined using SHELXL2018/3 program (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61628 (4)0.21454 (8)0.18970 (5)0.0621 (2)
O10.78864 (13)0.5776 (3)0.21150 (16)0.0775 (6)
C10.85218 (15)0.8538 (4)0.29481 (19)0.0528 (6)
C20.84184 (17)1.0456 (4)0.3143 (2)0.0702 (8)
H20.7889061.0967290.3012810.084*
C30.91037 (18)1.1609 (5)0.3530 (3)0.0789 (9)
H30.9027401.2896140.3653890.095*
C40.98949 (17)1.0901 (5)0.3736 (2)0.0696 (8)
C50.99912 (18)0.9007 (5)0.3519 (2)0.0785 (9)
H51.0521570.8508820.3638850.094*
C60.93187 (16)0.7839 (4)0.3128 (2)0.0686 (8)
H60.9399550.6566950.2983730.082*
C70.78160 (15)0.7207 (4)0.25425 (19)0.0536 (6)
C80.70078 (14)0.7615 (3)0.27361 (18)0.0484 (6)
H80.6886910.8995630.2644280.058*
N10.63213 (11)0.6520 (3)0.20618 (14)0.0464 (5)
H10.6469880.5149340.2120870.056*
C90.61602 (19)0.7095 (4)0.10622 (19)0.0698 (8)
H9A0.6292380.6042900.0714000.084*
H9B0.6490020.8209880.1020480.084*
C100.5243 (2)0.7569 (5)0.0696 (2)0.0929 (12)
H10A0.5155020.8946620.0723960.111*
H10B0.5006050.7143700.0059610.111*
C110.48658 (18)0.6512 (5)0.1310 (2)0.0776 (9)
H11A0.4777390.5164100.1135690.093*
H11B0.4343270.7086610.1296210.093*
C120.55060 (15)0.6738 (4)0.2243 (2)0.0596 (7)
H12A0.5442860.5752160.2666840.072*
H12B0.5464960.7996520.2502880.072*
C130.71033 (15)0.7113 (4)0.37435 (17)0.0523 (6)
H13A0.7504940.7986060.4144100.063*
H13B0.6577810.7338740.3845840.063*
C140.73739 (17)0.5056 (4)0.40294 (18)0.0589 (7)
H14A0.7026040.4182510.3571570.071*
H14B0.7938010.4891060.4026520.071*
C150.7334 (2)0.4492 (5)0.4974 (2)0.0711 (8)
H15A0.7683700.5358130.5433920.085*
H15B0.6770290.4653550.4978860.085*
C160.7600 (3)0.2468 (6)0.5238 (3)0.1066 (13)
H16A0.7251280.1598490.4791300.160*
H16B0.7557540.2195160.5838290.160*
H16C0.8163980.2305620.5253670.160*
C171.0640 (2)1.2168 (6)0.4200 (3)0.0996 (12)
H17A1.0782551.2051630.4859820.149*
H17B1.0507351.3486960.4022160.149*
H17C1.1099711.1765130.4009870.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0698 (4)0.0326 (3)0.0768 (5)0.0022 (3)0.0135 (3)0.0021 (3)
O10.0762 (13)0.0633 (12)0.1053 (17)0.0081 (10)0.0463 (12)0.0286 (12)
C10.0487 (13)0.0505 (13)0.0602 (15)0.0016 (11)0.0188 (11)0.0001 (12)
C20.0499 (14)0.0529 (16)0.108 (3)0.0041 (12)0.0251 (15)0.0080 (16)
C30.0607 (17)0.0615 (18)0.114 (3)0.0131 (13)0.0276 (17)0.0149 (18)
C40.0553 (16)0.086 (2)0.0664 (18)0.0167 (14)0.0179 (14)0.0018 (16)
C50.0469 (15)0.095 (3)0.088 (2)0.0052 (15)0.0144 (15)0.0022 (19)
C60.0554 (15)0.0667 (17)0.084 (2)0.0064 (13)0.0224 (14)0.0010 (16)
C70.0599 (14)0.0435 (13)0.0606 (15)0.0006 (11)0.0238 (12)0.0003 (12)
C80.0472 (12)0.0342 (11)0.0621 (15)0.0016 (9)0.0151 (11)0.0043 (10)
N10.0505 (11)0.0318 (9)0.0539 (12)0.0006 (7)0.0127 (9)0.0018 (8)
C90.091 (2)0.0595 (16)0.0535 (16)0.0123 (15)0.0160 (15)0.0080 (13)
C100.108 (3)0.066 (2)0.072 (2)0.0056 (18)0.0191 (19)0.0051 (16)
C110.0610 (17)0.0709 (19)0.086 (2)0.0076 (14)0.0019 (16)0.0114 (17)
C120.0455 (13)0.0559 (16)0.0729 (18)0.0052 (11)0.0125 (12)0.0050 (13)
C130.0516 (13)0.0485 (13)0.0562 (15)0.0006 (11)0.0164 (11)0.0128 (12)
C140.0636 (15)0.0561 (15)0.0559 (15)0.0095 (12)0.0176 (13)0.0012 (12)
C150.0793 (19)0.079 (2)0.0570 (17)0.0020 (15)0.0239 (15)0.0016 (15)
C160.119 (3)0.111 (3)0.096 (3)0.035 (2)0.043 (2)0.047 (2)
C170.0670 (19)0.130 (3)0.095 (3)0.035 (2)0.0172 (18)0.017 (2)
Geometric parameters (Å, º) top
O1—C71.214 (3)C10—C111.487 (5)
C1—C61.385 (4)C10—H10A0.9700
C1—C21.386 (4)C10—H10B0.9700
C1—C71.485 (3)C11—C121.499 (4)
C2—C31.383 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.374 (4)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.376 (4)C13—C141.519 (4)
C4—C171.520 (4)C13—H13A0.9700
C5—C61.374 (4)C13—H13B0.9700
C5—H50.9300C14—C151.514 (4)
C6—H60.9300C14—H14A0.9700
C7—C81.525 (3)C14—H14B0.9700
C8—N11.495 (3)C15—C161.491 (5)
C8—C131.531 (4)C15—H15A0.9700
C8—H80.9800C15—H15B0.9700
N1—C121.509 (3)C16—H16A0.9600
N1—C91.513 (3)C16—H16B0.9600
N1—H10.9800C16—H16C0.9600
C9—C101.518 (5)C17—H17A0.9600
C9—H9A0.9700C17—H17B0.9600
C9—H9B0.9700C17—H17C0.9600
C6—C1—C2118.5 (2)H10A—C10—H10B108.8
C6—C1—C7118.6 (2)C10—C11—C12102.4 (2)
C2—C1—C7122.9 (2)C10—C11—H11A111.3
C3—C2—C1119.9 (3)C12—C11—H11A111.3
C3—C2—H2120.1C10—C11—H11B111.3
C1—C2—H2120.1C12—C11—H11B111.3
C4—C3—C2121.7 (3)H11A—C11—H11B109.2
C4—C3—H3119.2C11—C12—N1104.5 (2)
C2—C3—H3119.2C11—C12—H12A110.9
C3—C4—C5118.0 (3)N1—C12—H12A110.9
C3—C4—C17120.9 (3)C11—C12—H12B110.9
C5—C4—C17121.1 (3)N1—C12—H12B110.9
C6—C5—C4121.3 (3)H12A—C12—H12B108.9
C6—C5—H5119.4C14—C13—C8115.2 (2)
C4—C5—H5119.4C14—C13—H13A108.5
C5—C6—C1120.6 (3)C8—C13—H13A108.5
C5—C6—H6119.7C14—C13—H13B108.5
C1—C6—H6119.7C8—C13—H13B108.5
O1—C7—C1121.7 (2)H13A—C13—H13B107.5
O1—C7—C8120.4 (2)C15—C14—C13114.4 (2)
C1—C7—C8117.8 (2)C15—C14—H14A108.7
N1—C8—C7109.29 (19)C13—C14—H14A108.7
N1—C8—C13112.52 (19)C15—C14—H14B108.7
C7—C8—C13109.8 (2)C13—C14—H14B108.7
N1—C8—H8108.4H14A—C14—H14B107.6
C7—C8—H8108.4C16—C15—C14113.4 (3)
C13—C8—H8108.4C16—C15—H15A108.9
C8—N1—C12112.83 (19)C14—C15—H15A108.9
C8—N1—C9114.14 (19)C16—C15—H15B108.9
C12—N1—C9106.0 (2)C14—C15—H15B108.9
C8—N1—H1107.9H15A—C15—H15B107.7
C12—N1—H1107.9C15—C16—H16A109.5
C9—N1—H1107.9C15—C16—H16B109.5
N1—C9—C10105.2 (3)H16A—C16—H16B109.5
N1—C9—H9A110.7C15—C16—H16C109.5
C10—C9—H9A110.7H16A—C16—H16C109.5
N1—C9—H9B110.7H16B—C16—H16C109.5
C10—C9—H9B110.7C4—C17—H17A109.5
H9A—C9—H9B108.8C4—C17—H17B109.5
C11—C10—C9105.3 (2)H17A—C17—H17B109.5
C11—C10—H10A110.7C4—C17—H17C109.5
C9—C10—H10A110.7H17A—C17—H17C109.5
C11—C10—H10B110.7H17B—C17—H17C109.5
C9—C10—H10B110.7
1-(4-Methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (ch20_pk1270) top
Crystal data top
C16H24NO+·ClF(000) = 608
Mr = 281.81Dx = 1.139 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.0379 (13) ÅCell parameters from 1846 reflections
b = 10.3133 (5) Åθ = 5.3–69.3°
c = 11.4344 (7) ŵ = 1.99 mm1
β = 96.829 (7)°T = 294 K
V = 1643.7 (2) Å3Parallelepiped, colorless
Z = 40.17 × 0.08 × 0.04 mm
Data collection top
Agilent SuperNova
diffractometer with an Atlas detector
2938 independent reflections
Radiation source: micro-focus sealed X-ray tube1541 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.047
ω scansθmax = 73.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1716
Tmin = 0.633, Tmax = 1.000k = 1212
7563 measured reflectionsl = 914
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0959P)2 + 1.2724P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.245(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.30 e Å3
2938 reflectionsΔρmin = 0.42 e Å3
175 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0033 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal X-ray experiments were performed at room temperature. The data were collected using a SuperNova kappa diffractometer with Atlas CCD detector (Agilent Technologies, Santa Clara, CA, USA). For the integration of the collected data, the CrysAlis PRO software (version 1.171.38.41q, 2015; Rigaku Oxford Diffraction, Rigaku, Tokyo, Japan) was used. The structures were solved using direct methods with the SHELXS2013 software and the solutions were refined using SHELXL2018/3 program (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63520 (11)0.06947 (12)0.15315 (10)0.0782 (5)
O10.2540 (3)0.8958 (4)0.3051 (3)0.0909 (13)
N10.3639 (3)0.7638 (3)0.1508 (3)0.0537 (9)
H10.3516360.7147360.2209080.064*
C10.2412 (3)1.0750 (5)0.1768 (4)0.0602 (12)
C20.2739 (4)1.1340 (4)0.0811 (4)0.0658 (13)
H20.3025991.0843030.0271630.079*
C30.2646 (4)1.2648 (5)0.0648 (5)0.0775 (15)
H30.2880001.3042730.0008180.093*
C40.2206 (4)1.3378 (5)0.1434 (6)0.0854 (17)
H40.2148541.4270150.1329570.103*
C50.1851 (5)1.2801 (6)0.2366 (5)0.0870 (17)
H50.1535111.3296830.2879700.104*
C60.1961 (4)1.1491 (5)0.2548 (5)0.0741 (14)
H60.1732311.1102800.3193510.089*
C70.2566 (3)0.9351 (4)0.2058 (4)0.0589 (12)
C80.2746 (3)0.8385 (4)0.1095 (4)0.0580 (11)
H80.2828790.8849640.0365980.070*
C90.4504 (3)0.8451 (5)0.1838 (5)0.0719 (14)
H9A0.4523050.9173640.1298110.086*
H9B0.4511460.8786140.2631540.086*
C100.5327 (4)0.7561 (6)0.1758 (6)0.0900 (17)
H10A0.5449350.7031170.2461230.108*
H10B0.5903750.8040480.1648140.108*
C110.5005 (5)0.6751 (7)0.0708 (6)0.099 (2)
H11A0.5280090.5889450.0800020.119*
H11B0.5203350.7140620.0004040.119*
C120.3927 (4)0.6682 (5)0.0617 (4)0.0666 (13)
H12A0.3720360.5813530.0795000.080*
H12B0.3641990.6913480.0169520.080*
C130.1898 (4)0.7458 (5)0.0881 (4)0.0678 (13)
H13A0.2037100.6821220.0300490.081*
H13B0.1836850.6997130.1608210.081*
C140.0949 (4)0.8087 (7)0.0464 (5)0.0909 (18)
H140.0839720.8774900.1024320.109*
C150.0937 (5)0.8701 (8)0.0740 (6)0.120 (3)
H15A0.1350850.9444620.0684980.180*
H15B0.0294480.8964100.1022720.180*
H15C0.1156860.8083400.1275770.180*
C160.0147 (5)0.7099 (10)0.0476 (7)0.144 (3)
H16A0.0282650.6358310.0014740.215*
H16B0.0449050.7481440.0148630.215*
H16C0.0101240.6832910.1271820.215*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1122 (12)0.0652 (7)0.0596 (7)0.0108 (7)0.0204 (7)0.0078 (5)
O10.137 (4)0.085 (2)0.053 (2)0.022 (2)0.022 (2)0.0133 (18)
N10.057 (2)0.058 (2)0.0457 (18)0.0032 (17)0.0056 (16)0.0022 (15)
C10.060 (3)0.069 (3)0.049 (2)0.001 (2)0.002 (2)0.005 (2)
C20.082 (4)0.055 (3)0.060 (3)0.005 (2)0.006 (2)0.002 (2)
C30.081 (4)0.070 (3)0.079 (3)0.006 (3)0.001 (3)0.001 (3)
C40.093 (4)0.057 (3)0.102 (4)0.004 (3)0.009 (3)0.009 (3)
C50.100 (5)0.074 (4)0.087 (4)0.004 (3)0.013 (3)0.020 (3)
C60.091 (4)0.066 (3)0.066 (3)0.002 (3)0.011 (3)0.012 (2)
C70.072 (3)0.054 (2)0.051 (2)0.005 (2)0.007 (2)0.003 (2)
C80.057 (3)0.061 (2)0.055 (2)0.004 (2)0.000 (2)0.006 (2)
C90.057 (3)0.068 (3)0.088 (4)0.002 (2)0.003 (3)0.008 (3)
C100.059 (4)0.090 (4)0.118 (5)0.004 (3)0.002 (3)0.000 (4)
C110.079 (4)0.119 (5)0.100 (4)0.007 (4)0.016 (3)0.021 (4)
C120.078 (4)0.067 (3)0.055 (3)0.001 (3)0.008 (2)0.009 (2)
C130.061 (3)0.078 (3)0.063 (3)0.001 (3)0.005 (2)0.005 (2)
C140.062 (4)0.121 (5)0.088 (4)0.007 (4)0.000 (3)0.015 (4)
C150.091 (5)0.152 (7)0.109 (5)0.020 (5)0.022 (4)0.014 (5)
C160.073 (5)0.219 (10)0.138 (7)0.034 (6)0.008 (4)0.001 (6)
Geometric parameters (Å, º) top
O1—C71.210 (5)C9—H9B0.9700
N1—C91.487 (6)C10—C111.488 (8)
N1—C81.499 (5)C10—H10A0.9700
N1—C121.507 (5)C10—H10B0.9700
N1—H10.9800C11—C121.506 (8)
C1—C21.378 (6)C11—H11A0.9700
C1—C61.383 (7)C11—H11B0.9700
C1—C71.491 (6)C12—H12A0.9700
C2—C31.366 (7)C12—H12B0.9700
C2—H20.9300C13—C141.507 (7)
C3—C41.374 (8)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.366 (8)C14—C151.514 (8)
C4—H40.9300C14—C161.520 (10)
C5—C61.373 (7)C14—H140.9800
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.528 (6)C15—H15C0.9600
C8—C131.524 (7)C16—H16A0.9600
C8—H80.9800C16—H16B0.9600
C9—C101.487 (7)C16—H16C0.9600
C9—H9A0.9700
C9—N1—C8114.7 (4)C11—C10—H10A111.1
C9—N1—C12105.3 (4)C9—C10—H10B111.1
C8—N1—C12113.8 (3)C11—C10—H10B111.1
C9—N1—H1107.6H10A—C10—H10B109.0
C8—N1—H1107.6C10—C11—C12106.8 (5)
C12—N1—H1107.6C10—C11—H11A110.4
C2—C1—C6119.3 (5)C12—C11—H11A110.4
C2—C1—C7123.4 (4)C10—C11—H11B110.4
C6—C1—C7117.2 (4)C12—C11—H11B110.4
C3—C2—C1120.6 (5)H11A—C11—H11B108.6
C3—C2—H2119.7C11—C12—N1105.7 (4)
C1—C2—H2119.7C11—C12—H12A110.6
C2—C3—C4119.6 (6)N1—C12—H12A110.6
C2—C3—H3120.2C11—C12—H12B110.6
C4—C3—H3120.2N1—C12—H12B110.6
C5—C4—C3120.4 (5)H12A—C12—H12B108.7
C5—C4—H4119.8C14—C13—C8115.1 (5)
C3—C4—H4119.8C14—C13—H13A108.5
C4—C5—C6120.1 (6)C8—C13—H13A108.5
C4—C5—H5119.9C14—C13—H13B108.5
C6—C5—H5119.9C8—C13—H13B108.5
C5—C6—C1119.9 (5)H13A—C13—H13B107.5
C5—C6—H6120.1C13—C14—C15112.5 (5)
C1—C6—H6120.1C13—C14—C16109.6 (6)
O1—C7—C1120.8 (4)C15—C14—C16111.1 (6)
O1—C7—C8118.9 (4)C13—C14—H14107.8
C1—C7—C8120.2 (4)C15—C14—H14107.8
N1—C8—C13109.7 (4)C16—C14—H14107.8
N1—C8—C7108.1 (3)C14—C15—H15A109.5
C13—C8—C7109.3 (4)C14—C15—H15B109.5
N1—C8—H8109.9H15A—C15—H15B109.5
C13—C8—H8109.9C14—C15—H15C109.5
C7—C8—H8109.9H15A—C15—H15C109.5
C10—C9—N1104.7 (4)H15B—C15—H15C109.5
C10—C9—H9A110.8C14—C16—H16A109.5
N1—C9—H9A110.8C14—C16—H16B109.5
C10—C9—H9B110.8H16A—C16—H16B109.5
N1—C9—H9B110.8C14—C16—H16C109.5
H9A—C9—H9B108.9H16A—C16—H16C109.5
C9—C10—C11103.4 (5)H16B—C16—H16C109.5
C9—C10—H10A111.1
C6—C1—C2—C31.9 (7)O1—C7—C8—N152.9 (6)
C7—C1—C2—C3174.5 (5)C1—C7—C8—N1127.9 (4)
C1—C2—C3—C41.3 (8)O1—C7—C8—C1366.5 (6)
C2—C3—C4—C50.8 (8)C1—C7—C8—C13112.8 (5)
C3—C4—C5—C62.1 (9)C8—N1—C9—C10158.7 (4)
C4—C5—C6—C11.5 (9)C12—N1—C9—C1032.7 (5)
C2—C1—C6—C50.5 (8)N1—C9—C10—C1138.1 (6)
C7—C1—C6—C5176.1 (5)C9—C10—C11—C1228.9 (7)
C2—C1—C7—O1157.2 (5)C10—C11—C12—N19.0 (6)
C6—C1—C7—O119.3 (7)C9—N1—C12—C1114.5 (5)
C2—C1—C7—C823.6 (7)C8—N1—C12—C11140.9 (5)
C6—C1—C7—C8160.0 (4)N1—C8—C13—C14179.8 (4)
C9—N1—C8—C13175.4 (4)C7—C8—C13—C1461.4 (5)
C12—N1—C8—C1363.3 (5)C8—C13—C14—C1564.9 (7)
C9—N1—C8—C756.3 (5)C8—C13—C14—C16170.9 (5)
C12—N1—C8—C7177.6 (4)
Methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (ch20_pk1271) top
Crystal data top
C13H20NO+·ClF(000) = 520
Mr = 241.75Dx = 1.140 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.1747 (2) ÅCell parameters from 6458 reflections
b = 7.8832 (2) Åθ = 5.8–73.6°
c = 24.9469 (6) ŵ = 2.24 mm1
β = 93.765 (2)°T = 294 K
V = 1407.94 (6) Å3Polyhedron, colorless
Z = 40.38 × 0.33 × 0.08 mm
Data collection top
Agilent SuperNova
diffractometer with an Atlas detector
2799 independent reflections
Radiation source: micro-focus sealed X-ray tube2694 reflections with I > 2σ(I)
Detector resolution: 10.4498 pixels mm-1Rint = 0.016
ω scansθmax = 73.5°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 86
Tmin = 0.600, Tmax = 1.000k = 89
9319 measured reflectionsl = 2930
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.3144P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2799 reflectionsΔρmax = 0.41 e Å3
148 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal X-ray experiments were performed at room temperature. The data were collected using a SuperNova kappa diffractometer with Atlas CCD detector (Agilent Technologies, Santa Clara, CA, USA). For the integration of the collected data, the CrysAlis PRO software (version 1.171.38.41q, 2015; Rigaku Oxford Diffraction, Rigaku, Tokyo, Japan) was used. The structures were solved using direct methods with the SHELXS2013 software and the solutions were refined using SHELXL2018/3 program (Sheldrick, 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98520 (5)0.13609 (5)0.23702 (2)0.05579 (17)
O10.63367 (17)0.12727 (16)0.14209 (5)0.0611 (3)
N10.56633 (17)0.01840 (16)0.23441 (5)0.0485 (3)
H14A0.5767830.0912200.2425900.058*
H14B0.6759370.0529170.2236540.058*
C10.3264 (2)0.12105 (19)0.10155 (6)0.0495 (4)
C20.1371 (3)0.1186 (2)0.11019 (7)0.0587 (4)
H20.0976120.0822600.1430570.070*
C30.0070 (3)0.1699 (3)0.07003 (8)0.0685 (5)
H30.1190170.1702540.0767150.082*
C40.0597 (3)0.2205 (2)0.02051 (8)0.0670 (5)
C50.2473 (3)0.2187 (3)0.01155 (7)0.0743 (6)
H50.2851580.2494410.0220410.089*
C60.3809 (3)0.1719 (3)0.05155 (7)0.0646 (5)
H60.5068950.1744610.0449100.077*
C70.4736 (2)0.07816 (19)0.14386 (6)0.0473 (3)
C80.4223 (2)0.03854 (19)0.18908 (6)0.0476 (3)
H80.3011610.0030000.2012480.057*
C90.5251 (3)0.1140 (3)0.28359 (8)0.0663 (5)
H9A0.5312810.2335770.2765790.099*
H9B0.6151710.0849500.3122740.099*
H9C0.4021580.0853620.2936910.099*
C100.4045 (3)0.2197 (2)0.16777 (7)0.0600 (4)
H10A0.2948770.2261860.1429360.072*
H10B0.3839680.2948410.1976190.072*
C110.5703 (4)0.2836 (3)0.13969 (10)0.0822 (6)
H11A0.5986730.2041510.1116820.099*
H11B0.6779540.2892770.1652530.099*
C120.5352 (5)0.4574 (3)0.11506 (11)0.0999 (9)
H12A0.4372930.4498360.0870180.150*
H12B0.6472920.4977510.1003540.150*
H12C0.4987110.5346890.1422090.150*
C130.0843 (4)0.2748 (3)0.02325 (10)0.0945 (8)
H13A0.1595470.3644190.0100680.142*
H13B0.0221230.3144830.0537830.142*
H13C0.1625190.1800130.0336310.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0426 (2)0.0505 (3)0.0748 (3)0.00148 (14)0.00800 (18)0.01062 (16)
O10.0526 (7)0.0611 (7)0.0700 (7)0.0078 (5)0.0063 (6)0.0106 (5)
N10.0457 (7)0.0453 (7)0.0544 (7)0.0014 (5)0.0027 (5)0.0009 (5)
C10.0562 (9)0.0417 (8)0.0508 (8)0.0015 (6)0.0044 (7)0.0011 (6)
C20.0573 (10)0.0629 (10)0.0560 (9)0.0028 (7)0.0050 (7)0.0018 (7)
C30.0606 (11)0.0742 (12)0.0696 (11)0.0063 (9)0.0039 (8)0.0022 (9)
C40.0776 (12)0.0564 (10)0.0651 (10)0.0003 (9)0.0114 (9)0.0000 (8)
C50.0920 (15)0.0789 (13)0.0515 (9)0.0068 (11)0.0012 (9)0.0102 (9)
C60.0663 (11)0.0706 (11)0.0574 (9)0.0054 (9)0.0088 (8)0.0063 (8)
C70.0492 (8)0.0392 (7)0.0540 (8)0.0023 (6)0.0074 (6)0.0021 (6)
C80.0456 (8)0.0449 (8)0.0523 (8)0.0032 (6)0.0028 (6)0.0017 (6)
C90.0643 (11)0.0773 (13)0.0569 (10)0.0032 (9)0.0009 (8)0.0151 (9)
C100.0713 (11)0.0439 (8)0.0638 (10)0.0100 (7)0.0034 (8)0.0024 (7)
C110.1015 (17)0.0564 (11)0.0892 (14)0.0018 (11)0.0090 (12)0.0174 (10)
C120.161 (3)0.0510 (11)0.0849 (15)0.0130 (14)0.0136 (16)0.0133 (11)
C130.113 (2)0.0822 (15)0.0828 (14)0.0043 (14)0.0348 (14)0.0086 (12)
Geometric parameters (Å, º) top
O1—C71.2158 (19)C8—C101.527 (2)
N1—C91.486 (2)C8—H80.9800
N1—C81.4894 (19)C9—H9A0.9600
N1—H14A0.8900C9—H9B0.9600
N1—H14B0.8900C9—H9C0.9600
C1—C21.390 (2)C10—C111.506 (3)
C1—C61.390 (2)C10—H10A0.9700
C1—C71.482 (2)C10—H10B0.9700
C2—C31.384 (3)C11—C121.516 (3)
C2—H20.9300C11—H11A0.9700
C3—C41.375 (3)C11—H11B0.9700
C3—H30.9300C12—H12A0.9600
C4—C51.379 (3)C12—H12B0.9600
C4—C131.515 (3)C12—H12C0.9600
C5—C61.387 (3)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—C81.520 (2)
C9—N1—C8114.00 (12)C10—C8—H8108.6
C9—N1—H14A108.8N1—C9—H9A109.5
C8—N1—H14A108.8N1—C9—H9B109.5
C9—N1—H14B108.8H9A—C9—H9B109.5
C8—N1—H14B108.8N1—C9—H9C109.5
H14A—N1—H14B107.6H9A—C9—H9C109.5
C2—C1—C6118.58 (16)H9B—C9—H9C109.5
C2—C1—C7122.97 (15)C11—C10—C8115.10 (15)
C6—C1—C7118.41 (15)C11—C10—H10A108.5
C3—C2—C1120.22 (18)C8—C10—H10A108.5
C3—C2—H2119.9C11—C10—H10B108.5
C1—C2—H2119.9C8—C10—H10B108.5
C4—C3—C2121.55 (19)H10A—C10—H10B107.5
C4—C3—H3119.2C10—C11—C12112.1 (2)
C2—C3—H3119.2C10—C11—H11A109.2
C3—C4—C5118.13 (18)C12—C11—H11A109.2
C3—C4—C13121.0 (2)C10—C11—H11B109.2
C5—C4—C13120.9 (2)C12—C11—H11B109.2
C4—C5—C6121.46 (18)H11A—C11—H11B107.9
C4—C5—H5119.3C11—C12—H12A109.5
C6—C5—H5119.3C11—C12—H12B109.5
C5—C6—C1120.03 (18)H12A—C12—H12B109.5
C5—C6—H6120.0C11—C12—H12C109.5
C1—C6—H6120.0H12A—C12—H12C109.5
O1—C7—C1122.14 (15)H12B—C12—H12C109.5
O1—C7—C8119.68 (14)C4—C13—H13A109.5
C1—C7—C8118.11 (13)C4—C13—H13B109.5
N1—C8—C7108.02 (12)H13A—C13—H13B109.5
N1—C8—C10113.71 (13)C4—C13—H13C109.5
C7—C8—C10109.07 (13)H13A—C13—H13C109.5
N1—C8—H8108.6H13B—C13—H13C109.5
C7—C8—H8108.6
C6—C1—C2—C31.6 (3)C2—C1—C7—C825.7 (2)
C7—C1—C2—C3176.03 (16)C6—C1—C7—C8156.66 (15)
C1—C2—C3—C41.6 (3)C9—N1—C8—C7174.85 (14)
C2—C3—C4—C50.1 (3)C9—N1—C8—C1063.95 (18)
C2—C3—C4—C13179.40 (19)O1—C7—C8—N121.3 (2)
C3—C4—C5—C61.8 (3)C1—C7—C8—N1161.81 (13)
C13—C4—C5—C6178.9 (2)O1—C7—C8—C10102.75 (17)
C4—C5—C6—C11.7 (3)C1—C7—C8—C1074.14 (17)
C2—C1—C6—C50.0 (3)N1—C8—C10—C1167.9 (2)
C7—C1—C6—C5177.76 (17)C7—C8—C10—C1152.7 (2)
C2—C1—C7—O1157.51 (16)C8—C10—C11—C12174.53 (18)
C6—C1—C7—O120.1 (2)
Hydrogen-bond geometry (Å, °) for the studied compounds top
D—H···AD—HH···AD···AD—H···A
4-MPHP (1)C8—H8···Cl1i0.982.593.522 (2)160
N1—H1···Cl10.982.153.048 (2)152
α-PiHP (2)N1—H1···Cl1ii0.982.073.006 (4)159
C2—H2···Cl1iii0.932.823.744 (5)172
C8—H8···Cl1iii0.982.623.525 (5)154
C10—H10B···Cl1iv0.972.823.560 (6)134
C12—H12B···Cl1iii0.972.923.645 (5)133
C12—H12B···O1v0.972.573.388 (6)142
4-MPD (3)N1—H14A···Cl1vi0.892.263.1245 (13)164
N1—H14B···Cl10.892.323.1418 (13)154
C8—H8···Cl1vii0.982.703.5140 (16)141
Symmetry codes: (i) x, y+1, z; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, -y+1, -z; (iv) x, y+1, z; (v) x, -y+3/2, z-1/2; (vi) -x+3/2, y-1/2, -z+1/2; (vii) x-1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds