Download citation
Download citation
link to html
Crystal–crystal phase transformation by external stimuli has attracted significant attention for application in switchable materials, which can change their structures and properties. Herein, it is revealed that N-salicyl­idene-p-amino­benzoic acid crystals undergo a two-step crystal–crystal phase transformation through a gas–solid reaction with aqua–ammonia vapour. The photochromic behaviour of the crystals switched from nonphotochromic to photochromic and back to nonphotochromic via a phase transformation. The two-step phase transformation and photochromic behaviour change were characterized and correlated by X-ray crystal structure analysis, UV–Vis spectroscopy, differential scanning calorimetry and scanning electron microscopy. This article is the first report to capture the stepwise structural change in the gas–solid (acid–base) reaction of ammonia with benzoic acid derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620016411/dg3013sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620016411/dg3013Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620016411/dg3013sup3.pdf
Supplementary material

CCDC reference: 2051277

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Azanium 4-{[(2-hydroxyphenyl)methylidene]amino}benzoate top
Crystal data top
NH4+·C14H10NO3F(000) = 1088
Mr = 258.27Dx = 1.371 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 43.803 (4) ÅCell parameters from 7721 reflections
b = 4.6835 (5) Åθ = 3.3–27.5°
c = 12.2643 (10) ŵ = 0.10 mm1
β = 96.105 (2)°T = 93 K
V = 2501.8 (4) Å3Plate, orange
Z = 80.22 × 0.21 × 0.18 mm
Data collection top
Rigaku R-AXIS RAPID IP area detector
diffractometer
2027 reflections with I > 2σ(I)
Radiation source: rotating anode X-ray tubeRint = 0.040
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1998)
h = 5556
Tmin = 0.691, Tmax = 0.983k = 66
12492 measured reflectionsl = 1415
2833 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0954P)2 + 0.0572P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2833 reflectionsΔρmax = 0.45 e Å3
188 parametersΔρmin = 0.33 e Å3
21 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data collection scaling and absorption corrections were performed using RAPID-AUTO program. Crystal parameter and refinement details are shown in Table 1. An initial structure was determined by dual space method with SHELXT-2018/2, and refined by full-matrix least-squares on Fo2 with SHELXL-2018/3.(Sheldrick, 2015b,a).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33880 (3)0.9844 (3)0.03443 (9)0.0594 (4)
H10.3506590.8723570.0718720.089*
N10.36111 (3)0.6992 (3)0.20736 (10)0.0348 (3)
C10.31999 (4)1.1125 (4)0.09993 (13)0.0421 (4)
O20.46366 (2)0.2646 (3)0.32356 (8)0.0414 (3)
N20.47499 (3)0.3778 (3)0.60490 (10)0.0363 (3)
H2A0.4959 (3)0.370 (3)0.6224 (11)0.039 (5)*
H2B0.4692 (3)0.542 (3)0.5687 (12)0.047 (5)*
H2C0.4684 (4)0.220 (3)0.5627 (13)0.064 (6)*
H2D0.4656 (3)0.366 (4)0.6691 (11)0.053 (5)*
C20.29844 (5)1.3094 (4)0.05473 (15)0.0547 (5)
H20.2969301.3501240.0215360.066*
O30.45629 (2)0.1223 (2)0.49153 (8)0.0401 (3)
C30.27932 (4)1.4450 (4)0.12011 (17)0.0558 (5)
H30.2647261.5792870.0884200.067*
C40.28102 (4)1.3891 (4)0.23101 (16)0.0502 (5)
H40.2678211.4852780.2755300.060*
C50.30203 (4)1.1927 (4)0.27662 (14)0.0433 (4)
H50.3031481.1540230.3529760.052*
C60.32176 (3)1.0490 (3)0.21266 (12)0.0346 (4)
C80.38202 (3)0.4944 (3)0.25718 (11)0.0311 (3)
C70.34333 (3)0.8413 (3)0.26321 (12)0.0348 (4)
H70.3442850.8098710.3400240.042*
C90.38484 (3)0.4217 (4)0.36864 (12)0.0387 (4)
H90.3718740.5092490.4162750.046*
C100.40646 (4)0.2225 (4)0.40959 (11)0.0362 (4)
H100.4081830.1752820.4853270.043*
C110.42570 (3)0.0903 (3)0.34178 (11)0.0298 (3)
C120.42230 (3)0.1584 (3)0.23080 (11)0.0340 (4)
H120.4348800.0668430.1828420.041*
C130.40085 (3)0.3573 (3)0.18942 (11)0.0348 (4)
H130.3989540.4011790.1133680.042*
C140.45010 (3)0.1157 (3)0.38823 (11)0.0304 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0726 (9)0.0676 (10)0.0380 (6)0.0255 (7)0.0054 (6)0.0070 (6)
N10.0386 (7)0.0298 (7)0.0349 (6)0.0029 (5)0.0016 (5)0.0031 (5)
C10.0461 (9)0.0387 (10)0.0399 (8)0.0022 (7)0.0037 (7)0.0021 (7)
O20.0417 (6)0.0449 (7)0.0367 (5)0.0124 (5)0.0003 (5)0.0053 (5)
N20.0415 (8)0.0335 (8)0.0333 (6)0.0047 (6)0.0007 (6)0.0025 (5)
C20.0609 (11)0.0490 (12)0.0507 (10)0.0096 (9)0.0101 (9)0.0120 (8)
O30.0523 (7)0.0355 (7)0.0307 (5)0.0086 (5)0.0041 (5)0.0019 (4)
C30.0455 (10)0.0415 (11)0.0763 (13)0.0112 (8)0.0128 (9)0.0075 (9)
C40.0402 (9)0.0405 (11)0.0696 (12)0.0053 (7)0.0041 (8)0.0018 (8)
C50.0421 (9)0.0386 (10)0.0493 (9)0.0020 (7)0.0055 (7)0.0032 (7)
C60.0335 (8)0.0279 (8)0.0411 (8)0.0020 (6)0.0024 (6)0.0023 (6)
C80.0313 (7)0.0269 (8)0.0339 (7)0.0013 (6)0.0012 (5)0.0018 (5)
C70.0378 (8)0.0320 (9)0.0339 (7)0.0012 (6)0.0001 (6)0.0032 (6)
C90.0429 (9)0.0417 (10)0.0318 (7)0.0097 (7)0.0051 (6)0.0019 (6)
C100.0418 (8)0.0402 (9)0.0266 (7)0.0063 (7)0.0030 (6)0.0039 (6)
C110.0326 (7)0.0258 (8)0.0304 (7)0.0021 (6)0.0000 (5)0.0008 (5)
C120.0386 (8)0.0327 (9)0.0308 (7)0.0025 (6)0.0043 (6)0.0006 (6)
C130.0433 (8)0.0342 (9)0.0266 (7)0.0013 (7)0.0015 (6)0.0042 (6)
C140.0341 (7)0.0257 (8)0.0309 (7)0.0001 (6)0.0006 (6)0.0011 (5)
Geometric parameters (Å, º) top
O1—H10.8400C4—C51.377 (2)
O1—C11.351 (2)C5—H50.9500
N1—C81.4188 (19)C5—C61.400 (2)
N1—C71.2773 (19)C6—C71.449 (2)
C1—C21.392 (2)C8—C91.401 (2)
C1—C61.408 (2)C8—C131.389 (2)
O2—C141.2524 (17)C7—H70.9500
N2—H2A0.917 (12)C9—H90.9500
N2—H2B0.912 (12)C9—C101.385 (2)
N2—H2C0.929 (13)C10—H100.9500
N2—H2D0.927 (12)C10—C111.3905 (19)
C2—H20.9500C11—C121.3904 (19)
C2—C31.375 (3)C11—C141.506 (2)
O3—C141.2674 (16)C12—H120.9500
C3—H30.9500C12—C131.381 (2)
C3—C41.379 (3)C13—H130.9500
C4—H40.9500
C1—O1—H1109.5C5—C6—C7119.78 (14)
C7—N1—C8121.57 (12)C9—C8—N1124.78 (13)
O1—C1—C2119.21 (15)C13—C8—N1116.88 (12)
O1—C1—C6121.12 (15)C13—C8—C9118.34 (13)
C2—C1—C6119.68 (15)N1—C7—C6121.83 (14)
H2A—N2—H2B111.7 (12)N1—C7—H7119.1
H2A—N2—H2C110.0 (12)C6—C7—H7119.1
H2A—N2—H2D108.6 (11)C8—C9—H9119.9
H2B—N2—H2C110.2 (12)C10—C9—C8120.22 (13)
H2B—N2—H2D109.6 (12)C10—C9—H9119.9
H2C—N2—H2D106.6 (12)C9—C10—H10119.4
C1—C2—H2119.9C9—C10—C11121.16 (12)
C3—C2—C1120.20 (16)C11—C10—H10119.4
C3—C2—H2119.9C10—C11—C14120.64 (12)
C2—C3—H3119.5C12—C11—C10118.34 (13)
C2—C3—C4121.00 (17)C12—C11—C14121.00 (12)
C4—C3—H3119.5C11—C12—H12119.6
C3—C4—H4120.3C13—C12—C11120.82 (13)
C5—C4—C3119.41 (16)C13—C12—H12119.6
C5—C4—H4120.3C8—C13—H13119.5
C4—C5—H5119.4C12—C13—C8121.07 (12)
C4—C5—C6121.28 (16)C12—C13—H13119.5
C6—C5—H5119.4O2—C14—O3123.64 (13)
C1—C6—C7121.81 (14)O2—C14—C11118.85 (12)
C5—C6—C1118.42 (14)O3—C14—C11117.48 (12)
O1—C1—C2—C3179.15 (17)C8—N1—C7—C6179.50 (13)
O1—C1—C6—C5178.82 (16)C8—C9—C10—C110.1 (2)
O1—C1—C6—C71.1 (3)C7—N1—C8—C91.8 (2)
N1—C8—C9—C10178.72 (15)C7—N1—C8—C13178.35 (14)
N1—C8—C13—C12178.88 (14)C9—C8—C13—C121.3 (2)
C1—C2—C3—C40.1 (3)C9—C10—C11—C121.4 (2)
C1—C6—C7—N12.2 (2)C9—C10—C11—C14177.15 (14)
C2—C1—C6—C51.5 (2)C10—C11—C12—C131.5 (2)
C2—C1—C6—C7178.66 (16)C10—C11—C14—O2168.74 (14)
C2—C3—C4—C50.5 (3)C10—C11—C14—O313.1 (2)
C3—C4—C5—C60.2 (3)C11—C12—C13—C80.2 (2)
C4—C5—C6—C10.8 (2)C12—C11—C14—O212.8 (2)
C4—C5—C6—C7179.28 (16)C12—C11—C14—O3165.32 (14)
C5—C6—C7—N1177.88 (15)C13—C8—C9—C101.5 (2)
C6—C1—C2—C31.1 (3)C14—C11—C12—C13176.96 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.862.6071 (17)147
N2—H2A···O2i0.92 (1)1.89 (1)2.7874 (17)165 (1)
N2—H2B···O3ii0.91 (1)1.89 (1)2.8007 (17)179 (2)
N2—H2C···O30.93 (1)1.88 (1)2.8014 (18)174 (2)
N2—H2D···O2iii0.93 (1)1.96 (1)2.8288 (16)154 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds