Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The compounds 2-{[(E)-(4-methoxy­phenyl)­methyl­ene]­amino}-N-(3-methyl­phenyl)-4,5,6,7-tetra­hydro-1-benzo­thio­ph­ene-3-carbox­amide, C24H24N2O2S, (I), and N-(4-meth­yl­phenyl)-2-{[(E)-(4-methyl­phenyl)­methyl­ene]­amino}-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carbox­amide, C24H24N2OS, (II), show antibacterial and antifungal activities. The m-toluidine ring in (I) and the p-toluidine ring in (II) are coplanar with their respective thio­phene rings. In (I), an intermolecular C—H...O hydrogen bond is present, whereas (II) does not exhibit any significant intermolecular interactions. However, in both compounds, an intramolecular N—H...N hydrogen bond forms a pseudo-six-membered ring, thus locking the molecular conformation and eliminating conformational flexibility.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016014/de1249sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016014/de1249Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016014/de1249IIsup3.hkl
Contains datablock II

CCDC references: 251309; 251310

Comment top

The design of compounds that possess important pharmacological properties, such as antibacterial, anticancer, anti-inflamatory and anti-toxic activities, is an important area of research, and Schiff bases (Pellis & West, 1968; Cohen et al., 1977; Csaszar & Morvay, 1983; Lakshmi et al., 1985) and their thiophene derivatives (El Meghraby et al., 1984; Dzhurayev et al., 1992; Gewald et al., 1966) have been found to exhibit these activities. In this context, sulfur-containing Schiff bases are most effective. We have already reported the crystal structures of biologically active thiophene-3-carboxamide derivatives (Vasu et al., 2003). In view of the medicinal application of such classes of compounds, single-crystal studies have been carried out.

The two compounds 2-{[1(E)-4-methoxyphenyl)methylene]amino)-N-(3-methylphenyl) −4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide, C24H24N2O2S1, (I), and 2-{[1(E)-4-methylphenyl)methylene]amino}-N-(4-methylphenyl)-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxamide, C24H24N2O1S1, (II), belong to the same series of compounds and show antibacterial and antifungal activities (Mohan & Saravanan, 2002, 2003).

Compounds (I) and (II) contain three different structural moieties, which will be discussed separately (Figs.1 and 2). The thiophene ring exhibits normal geometry and is planar, with a maximum deviation of 0.012 (1) and 0.007 (3) Å for atom C7 in (I) and (II), respectively. The six-membered cyclohexene ring adopts a half-chair conformation, with atoms C1 and C2 deviating +0.316 (2) and −0.340 (2) Å in (I), and +0.337 (5) and −0.250 (4) Å in (II), respectively.

The m-toluidine group in (I) and the p-toluidine moiety in (II) are coplanar with the plane of the thiophene ring, as indicated by the C9—N1—C10—C15 torsion angles [177.5 (2) and −178.3 (3)°, respectively]. The angle between the mean planes of the m-toluidine and thiophene rings is 8.2 (1)°, whereas those between the p-toluidine and thiophene rings is 9.7 (1)°. The dihedral angle between the planes containing the p-methoxyphenyl group and the thiophene ring is 13.03 (5)°, which implies that the whole molecule is planar. The corresponding dihedral angle between the planes passing through the p-toluidine group attached to the imine moiety and thiophene ring is 14.3 (1)°.

The C—N bond lengths in the carboxamide and imine moieties are significantly different; the C9—N1 and C8—N2 bond lengths are 1.364 (2) and 1.391 (2) Å in (I), and the corresponding bond lengths are 1.360 (2) and 1.391 (3) Å in (II), respectively, indicating that the electronic and steric environment around these moieties is different. The C23—C18—C19 [117.5 (1)°] and C22—C21—C20 [117.9 (3)°] angles in (I) and (II) deviate significantly from the ideal value of 120° for a phenyl ring, This deviation is due to the electron-donating resonance effect of the methoxy group attached to atom C21 in (I) and the electron-donating inductive effect of the methyl group in (II).

There are no significant intermolecular hydrogen-bonding interactions in the packing of (II). An intramolecular N—H···N hydrogen-bonding interaction in each structure locks the molecule into a rigid pseudo-six-membered-ring conformation and removes the conformational flexibility. Hence the free NH group is not available for participation in intermolecular interactions. In (I), intermolecular C—H···O molecular chains running parallel to the crystallographic c axis further stabilize the packing of molecules in the crystal structure.

The packing characteristics reveal interesting features as regards the orientation of the molecules in the crystalline environment. In (I), the molecules held together by C—H···O molecular chains are related by the n-glide plane (1/2 + x,1/2 − y,1/2 + z), and this feature of molecular recognition essentially steers the molecules to pack in a monoclinic centrosymmetric environment. In (II), replacement of the H atom that participates in an intermolecular interaction in (I) by a methyl group eliminates the formation of chains. This difference leads to remarkable differences in the crystal packing, and the molecules in (II) are stacked in layers that are parallel to each other and related by a center of inversion.

Experimental top

The title compound was synthesized using the Gewald reaction (Gewald et al., 1966). For (I), m-cyanotoluidine was refluxed with cyclohexanone in the presence of sulfur, dimethylamine and ethanol at 313–323 K for 1 h. The resulting product was treated with 4-methoxybenzaldehyde in an equimolar ratio in the presence of ethanol, yielding (I). Compound (I) was recrystallized from a solution of N,N-dimethylformamide and ethanol (1:2) by slow evaporation. Crystals were obtained after four weeks and used for single-crystal data collection. For the preparation of (II), a similar procedure was followed using p-cyanotoluidine, and later 4-methylbenzaldehyde was added. The compound was purified and crystallized using the same procedure as for (I).

Refinement top

For (I), the methyl H atoms were constrained to an ideal geometry [C—H= 0.96 Å and Uiso(H)=1.5Ueq(C)] but were allowed to rotate freely about the C—C bond. All other H atoms were located from a difference Fourier map and their parameters were refined freely. For (II), the methyl H atoms were constrained to an ideal geometry [C—H= 0.96 Å and Uiso(H)=1.5Ueq(C)], but were allowed to rotate freely about the C—C bond. The H atoms of the cyclohexene ring (C—H = 0.93–0.97 Å) and phenyl atom H22 (C—H= 0.93 Å) were placed in idealized positions and constrained to ride on their parent atoms [Uiso(H)=1.2Ueq(C)]. All other H atoms were located from a difference Fourier map and their parameters were refined freely.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), drawn with 50% probability displacement ellipsoids. The broken lines show N—H···N intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A view of (II), drawn with 50% probability displacement ellipsoids. The broken lines show N—H···N intramolecular hydrogen bonds.
[Figure 3] Fig. 3. C—H···O interactions in (I).
(I) 2-{[1(E)-(4-methoxyphenyl)methylene]amino}-N-(3-methylphenyl)-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C24H24N2O2SF(000) = 856
Mr = 404.52Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 265 reflections
a = 8.184 (5) Åθ = 1.5–26.4°
b = 19.786 (11) ŵ = 0.18 mm1
c = 12.884 (7) ÅT = 293 K
β = 96.994 (10)°Block, yellow
V = 2071 (2) Å30.33 × 0.28 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4130 independent reflections
Radiation source: fine-focus sealed tube3501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.927, Tmax = 0.975k = 2424
15741 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0928P)2 + 0.6468P]
where P = (Fo2 + 2Fc2)/3
4130 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H24N2O2SV = 2071 (2) Å3
Mr = 404.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.184 (5) ŵ = 0.18 mm1
b = 19.786 (11) ÅT = 293 K
c = 12.884 (7) Å0.33 × 0.28 × 0.14 mm
β = 96.994 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4130 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3501 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.975Rint = 0.016
15741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.21 e Å3
4130 reflectionsΔρmin = 0.21 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31834 (5)1.09418 (2)0.66002 (3)0.04950 (15)
N10.26063 (17)0.90929 (7)0.43964 (10)0.0431 (3)
N20.18060 (15)1.04305 (6)0.47033 (9)0.0408 (3)
O10.46000 (15)0.86340 (6)0.55710 (9)0.0559 (3)
O20.26098 (17)1.15638 (7)0.06445 (10)0.0671 (4)
C10.6648 (2)1.01489 (11)0.88427 (15)0.0631 (5)
C20.6072 (3)0.94259 (11)0.86943 (13)0.0613 (5)
C30.5615 (2)0.92420 (9)0.75396 (12)0.0470 (4)
C40.45939 (17)0.97889 (7)0.69551 (11)0.0397 (3)
C50.44588 (19)1.04090 (8)0.73918 (11)0.0450 (3)
C60.5293 (3)1.06461 (11)0.84331 (13)0.0587 (5)
C70.36684 (17)0.97358 (7)0.59301 (10)0.0374 (3)
C80.28054 (18)1.03229 (7)0.56420 (11)0.0395 (3)
C90.36850 (18)0.91046 (7)0.52908 (11)0.0390 (3)
C100.22774 (18)0.85674 (7)0.36638 (11)0.0398 (3)
C110.3089 (2)0.79443 (8)0.37271 (14)0.0511 (4)
C120.2640 (2)0.74679 (9)0.29545 (16)0.0605 (5)
C130.1442 (2)0.75931 (9)0.21289 (15)0.0590 (5)
C140.0628 (2)0.82092 (9)0.20525 (12)0.0509 (4)
C150.1051 (2)0.86859 (8)0.28341 (12)0.0453 (3)
C160.0675 (3)0.83685 (12)0.11502 (16)0.0750 (6)
C170.09460 (19)1.09680 (7)0.45389 (12)0.0431 (3)
C180.00336 (18)1.11176 (7)0.35466 (11)0.0411 (3)
C190.0968 (2)1.17075 (8)0.34186 (13)0.0492 (4)
C200.1848 (2)1.18775 (8)0.24655 (14)0.0521 (4)
C210.18149 (19)1.14495 (8)0.16207 (12)0.0486 (4)
C220.0914 (2)1.08498 (8)0.17380 (14)0.0530 (4)
C230.0046 (2)1.06899 (8)0.26805 (13)0.0469 (4)
C240.3444 (4)1.21875 (12)0.04489 (19)0.0945 (8)
H1N0.210 (2)0.9460 (10)0.4253 (13)0.048 (5)*
H1A0.695 (3)1.0242 (11)0.9556 (19)0.074 (6)*
H1B0.764 (3)1.0242 (10)0.8420 (17)0.069 (6)*
H2A0.510 (3)0.9373 (11)0.9035 (16)0.068 (6)*
H2B0.696 (3)0.9111 (11)0.8987 (18)0.080 (7)*
H3A0.501 (2)0.8822 (10)0.7473 (14)0.053 (5)*
H3B0.664 (2)0.9175 (9)0.7196 (14)0.051 (5)*
H6A0.444 (3)1.0669 (11)0.8892 (16)0.069 (6)*
H6B0.581 (3)1.1096 (12)0.8331 (17)0.078 (6)*
H110.394 (2)0.7860 (10)0.4288 (16)0.064 (5)*
H120.318 (2)0.7058 (11)0.2997 (15)0.065 (5)*
H130.116 (2)0.7257 (11)0.1608 (17)0.072 (6)*
H150.050 (2)0.9108 (9)0.2819 (14)0.048 (5)*
H16A0.01580.85290.05670.112*
H16B0.14010.87100.13600.112*
H16C0.12940.79670.09510.112*
H170.093 (2)1.1307 (10)0.5055 (14)0.056 (5)*
H190.099 (2)1.1988 (10)0.4030 (14)0.060 (5)*
H200.248 (2)1.2285 (10)0.2418 (15)0.066 (5)*
H220.094 (2)1.0551 (11)0.1102 (17)0.073 (6)*
H230.056 (2)1.0278 (10)0.2743 (15)0.061 (5)*
H24A0.43301.22170.08710.142*
H24B0.38771.22140.02770.142*
H24C0.26891.25540.06200.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0613 (3)0.0445 (2)0.0409 (2)0.00384 (17)0.00092 (17)0.01009 (15)
N10.0533 (7)0.0358 (7)0.0379 (7)0.0037 (5)0.0041 (5)0.0046 (5)
N20.0464 (7)0.0379 (6)0.0370 (6)0.0003 (5)0.0005 (5)0.0001 (5)
O10.0697 (7)0.0483 (6)0.0456 (6)0.0140 (5)0.0104 (5)0.0045 (5)
O20.0793 (9)0.0609 (8)0.0546 (7)0.0138 (6)0.0180 (6)0.0023 (6)
C10.0641 (11)0.0803 (13)0.0409 (9)0.0018 (9)0.0103 (8)0.0133 (9)
C20.0683 (12)0.0745 (13)0.0376 (9)0.0022 (10)0.0073 (8)0.0013 (8)
C30.0496 (9)0.0527 (9)0.0367 (8)0.0012 (7)0.0031 (6)0.0010 (7)
C40.0417 (7)0.0465 (8)0.0309 (7)0.0050 (6)0.0040 (5)0.0014 (6)
C50.0487 (8)0.0524 (9)0.0336 (7)0.0027 (7)0.0033 (6)0.0048 (6)
C60.0642 (11)0.0709 (12)0.0390 (8)0.0001 (9)0.0017 (8)0.0167 (8)
C70.0407 (7)0.0395 (7)0.0317 (7)0.0037 (6)0.0035 (5)0.0005 (5)
C80.0447 (8)0.0399 (7)0.0335 (7)0.0045 (6)0.0037 (6)0.0037 (5)
C90.0440 (7)0.0395 (7)0.0332 (7)0.0034 (6)0.0034 (6)0.0001 (5)
C100.0452 (8)0.0362 (7)0.0381 (7)0.0060 (6)0.0058 (6)0.0043 (6)
C110.0558 (9)0.0428 (8)0.0531 (9)0.0010 (7)0.0001 (7)0.0054 (7)
C120.0693 (11)0.0400 (9)0.0713 (12)0.0024 (8)0.0050 (9)0.0133 (8)
C130.0710 (11)0.0495 (9)0.0565 (10)0.0117 (8)0.0074 (8)0.0208 (8)
C140.0560 (9)0.0548 (9)0.0411 (8)0.0120 (7)0.0026 (7)0.0085 (7)
C150.0524 (9)0.0412 (8)0.0409 (8)0.0020 (7)0.0007 (6)0.0039 (6)
C160.0839 (14)0.0835 (14)0.0523 (10)0.0080 (11)0.0133 (10)0.0149 (10)
C170.0493 (8)0.0377 (8)0.0418 (8)0.0027 (6)0.0036 (6)0.0036 (6)
C180.0423 (7)0.0360 (7)0.0443 (8)0.0021 (6)0.0027 (6)0.0003 (6)
C190.0560 (9)0.0398 (8)0.0504 (9)0.0034 (7)0.0006 (7)0.0056 (7)
C200.0560 (9)0.0403 (8)0.0578 (10)0.0089 (7)0.0021 (7)0.0005 (7)
C210.0468 (8)0.0461 (9)0.0501 (9)0.0004 (6)0.0047 (7)0.0027 (7)
C220.0603 (10)0.0474 (9)0.0483 (9)0.0051 (7)0.0054 (7)0.0075 (7)
C230.0523 (9)0.0376 (8)0.0491 (9)0.0065 (7)0.0016 (7)0.0017 (6)
C240.124 (2)0.0772 (15)0.0719 (14)0.0388 (14)0.0281 (14)0.0094 (11)
Geometric parameters (Å, º) top
S1—C51.7268 (17)C23—C221.367 (2)
S1—C81.7397 (16)C23—H230.95 (2)
N1—C91.3638 (19)C5—C61.504 (2)
N1—C101.4080 (19)C3—C21.533 (2)
N1—H1N0.844 (19)C3—H3B1.005 (19)
O1—C91.2215 (18)C3—H3A0.967 (19)
N2—C171.279 (2)C22—H221.01 (2)
N2—C81.3914 (19)C13—C121.379 (3)
C7—C81.386 (2)C13—C141.387 (3)
C7—C41.444 (2)C13—H130.95 (2)
C7—C91.497 (2)C11—C121.387 (2)
C18—C191.394 (2)C11—H110.953 (19)
C18—C231.400 (2)C1—C21.511 (3)
C18—C171.454 (2)C1—C61.528 (3)
C4—C51.360 (2)C1—H1B1.05 (2)
C4—C31.511 (2)C1—H1A0.94 (2)
C10—C151.394 (2)C14—C161.512 (3)
C10—C111.398 (2)C6—H6A0.97 (2)
C17—H170.946 (19)C6—H6B1.00 (2)
C19—C201.387 (2)C16—H16A0.9600
C19—H190.967 (19)C16—H16B0.9600
O2—C211.363 (2)C16—H16C0.9600
O2—C241.418 (2)C2—H2A0.96 (2)
C21—C201.382 (2)C2—H2B1.00 (2)
C21—C221.395 (2)C12—H120.92 (2)
C15—C141.392 (2)C24—H24A0.9600
C15—H150.947 (17)C24—H24B0.9600
C20—H200.95 (2)C24—H24C0.9600
C5—S1—C891.83 (8)C4—C3—H3A109.0 (11)
C9—N1—C10129.07 (13)C2—C3—H3A110.6 (11)
C9—N1—H1N114.8 (12)H3B—C3—H3A107.2 (15)
C10—N1—H1N116.1 (12)C23—C22—C21120.24 (15)
C17—N2—C8121.65 (13)C23—C22—H22123.0 (12)
C8—C7—C4112.17 (12)C21—C22—H22116.8 (12)
C8—C7—C9126.17 (12)C12—C13—C14120.20 (15)
C4—C7—C9121.67 (13)C12—C13—H13120.5 (12)
O1—C9—N1123.17 (13)C14—C13—H13119.3 (12)
O1—C9—C7121.31 (13)C12—C11—C10118.36 (16)
N1—C9—C7115.51 (13)C12—C11—H11121.9 (12)
C7—C8—N2125.97 (12)C10—C11—H11119.7 (12)
C7—C8—S1111.04 (11)C2—C1—C6111.34 (16)
N2—C8—S1122.96 (11)C2—C1—H1B110.5 (11)
C19—C18—C23117.46 (14)C6—C1—H1B106.5 (11)
C19—C18—C17120.67 (14)C2—C1—H1A110.6 (13)
C23—C18—C17121.84 (14)C6—C1—H1A107.7 (13)
C5—C4—C7112.59 (13)H1B—C1—H1A110.1 (17)
C5—C4—C3120.52 (14)C13—C14—C15117.97 (16)
C7—C4—C3126.89 (13)C13—C14—C16121.71 (16)
C15—C10—C11119.04 (14)C15—C14—C16120.32 (17)
C15—C10—N1116.80 (13)C5—C6—C1109.79 (15)
C11—C10—N1124.16 (14)C5—C6—H6A106.2 (12)
N2—C17—C18123.26 (14)C1—C6—H6A111.4 (12)
N2—C17—H17121.9 (11)C5—C6—H6B108.3 (13)
C18—C17—H17114.8 (11)C1—C6—H6B108.3 (13)
C20—C19—C18121.73 (15)H6A—C6—H6B112.9 (18)
C20—C19—H19121.5 (11)C14—C16—H16A109.5
C18—C19—H19116.8 (11)C14—C16—H16B109.5
C21—O2—C24118.29 (15)H16A—C16—H16B109.5
O2—C21—C20124.91 (15)C14—C16—H16C109.5
O2—C21—C22115.32 (15)H16A—C16—H16C109.5
C20—C21—C22119.77 (15)H16B—C16—H16C109.5
C14—C15—C10122.22 (15)C1—C2—C3112.53 (16)
C14—C15—H15120.4 (11)C1—C2—H2A107.9 (13)
C10—C15—H15117.4 (11)C3—C2—H2A107.5 (13)
C21—C20—C19119.39 (15)C1—C2—H2B110.1 (13)
C21—C20—H20121.9 (12)C3—C2—H2B107.5 (14)
C19—C20—H20118.7 (12)H2A—C2—H2B111.4 (18)
C22—C23—C18121.39 (15)C13—C12—C11122.19 (17)
C22—C23—H23118.8 (12)C13—C12—H12119.6 (12)
C18—C23—H23119.8 (12)C11—C12—H12118.2 (12)
C4—C5—C6126.84 (15)O2—C24—H24A109.5
C4—C5—S1112.35 (11)O2—C24—H24B109.5
C6—C5—S1120.81 (13)H24A—C24—H24B109.5
C4—C3—C2111.63 (15)O2—C24—H24C109.5
C4—C3—H3B108.4 (10)H24A—C24—H24C109.5
C2—C3—H3B109.8 (10)H24B—C24—H24C109.5
C10—N1—C9—O12.4 (3)O2—C21—C20—C19179.21 (16)
C10—N1—C9—C7176.79 (14)C22—C21—C20—C190.7 (3)
C8—C7—C9—O1173.33 (15)C18—C19—C20—C210.6 (3)
C4—C7—C9—O16.8 (2)C19—C18—C23—C221.3 (2)
C8—C7—C9—N17.4 (2)C17—C18—C23—C22177.08 (16)
C4—C7—C9—N1172.38 (13)C7—C4—C5—C6178.14 (16)
C4—C7—C8—N2179.84 (13)C3—C4—C5—C62.4 (3)
C9—C7—C8—N20.3 (2)C7—C4—C5—S11.31 (17)
C4—C7—C8—S12.01 (15)C3—C4—C5—S1178.12 (12)
C9—C7—C8—S1178.15 (11)C8—S1—C5—C40.14 (13)
C17—N2—C8—C7174.02 (15)C8—S1—C5—C6179.34 (15)
C17—N2—C8—S18.4 (2)C5—C4—C3—C213.0 (2)
C5—S1—C8—C71.10 (12)C7—C4—C3—C2166.35 (15)
C5—S1—C8—N2179.01 (12)C18—C23—C22—C210.1 (3)
C8—C7—C4—C52.16 (18)O2—C21—C22—C23178.93 (16)
C9—C7—C4—C5177.99 (13)C20—C21—C22—C231.0 (3)
C8—C7—C4—C3177.22 (15)C15—C10—C11—C120.2 (2)
C9—C7—C4—C32.6 (2)N1—C10—C11—C12179.68 (16)
C9—N1—C10—C15177.45 (15)C12—C13—C14—C150.6 (3)
C9—N1—C10—C112.0 (3)C12—C13—C14—C16179.09 (19)
C8—N2—C17—C18176.09 (13)C10—C15—C14—C131.5 (3)
C19—C18—C17—N2178.99 (15)C10—C15—C14—C16178.16 (17)
C23—C18—C17—N22.7 (2)C4—C5—C6—C113.2 (3)
C23—C18—C19—C201.6 (2)S1—C5—C6—C1166.24 (14)
C17—C18—C19—C20176.81 (15)C2—C1—C6—C543.9 (2)
C24—O2—C21—C204.7 (3)C6—C1—C2—C362.1 (2)
C24—O2—C21—C22175.2 (2)C4—C3—C2—C144.6 (2)
C11—C10—C15—C141.3 (2)C14—C13—C12—C110.5 (3)
N1—C10—C15—C14179.16 (15)C10—C11—C12—C130.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.84 (2)2.03 (2)2.766 (2)145 (2)
C13—H13···O1i0.95 (2)2.47 (2)3.385 (2)160 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
(II) N-(4-methylphenyl)-2-{[1(E)-(4-methylphenyl)methylene]amino}-4,5,6,7- tetrahydro-1-benzothiophene-3-carboxamide top
Crystal data top
C24H24N2OSZ = 2
Mr = 388.52F(000) = 412
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.658 (7) ÅCell parameters from 650 reflections
b = 12.365 (11) Åθ = 1.4–26.2°
c = 12.569 (11) ŵ = 0.18 mm1
α = 108.490 (13)°T = 293 K
β = 103.745 (14)°Block, yellow
γ = 106.020 (13)°0.16 × 0.11 × 0.10 mm
V = 1013.6 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4011 independent reflections
Radiation source: fine-focus sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 99
Tmin = 0.936, Tmax = 0.983k = 1415
10561 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1622P)2 + 0.394P]
where P = (Fo2 + 2Fc2)/3
4011 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C24H24N2OSγ = 106.020 (13)°
Mr = 388.52V = 1013.6 (16) Å3
Triclinic, P1Z = 2
a = 7.658 (7) ÅMo Kα radiation
b = 12.365 (11) ŵ = 0.18 mm1
c = 12.569 (11) ÅT = 293 K
α = 108.490 (13)°0.16 × 0.11 × 0.10 mm
β = 103.745 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4011 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3363 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.983Rint = 0.018
10561 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.43 e Å3
4011 reflectionsΔρmin = 0.43 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.20767 (9)0.92406 (5)1.13384 (5)0.0487 (2)
N10.0513 (3)0.85417 (18)0.73254 (16)0.0466 (5)
N20.0252 (3)0.75400 (16)0.89770 (16)0.0416 (4)
O10.2644 (3)1.05120 (16)0.80431 (16)0.0681 (6)
C10.4990 (6)1.2970 (3)1.2772 (3)0.0857 (11)
C20.5700 (5)1.3021 (3)1.1812 (3)0.0831 (10)
C30.4365 (3)1.2083 (2)1.0540 (2)0.0484 (5)
C40.3299 (3)1.08540 (19)1.05226 (19)0.0399 (5)
C50.3388 (3)1.0722 (2)1.15687 (19)0.0428 (5)
C60.4477 (4)1.1720 (2)1.2821 (2)0.0534 (6)
C70.2115 (3)0.97178 (19)0.94773 (18)0.0389 (5)
C80.1373 (3)0.87557 (19)0.97860 (18)0.0392 (5)
C90.1798 (3)0.9639 (2)0.82254 (19)0.0417 (5)
C100.0006 (3)0.8170 (2)0.60747 (18)0.0411 (5)
C110.0780 (4)0.8905 (2)0.5539 (2)0.0526 (6)
C120.0205 (4)0.8443 (3)0.4294 (2)0.0545 (6)
C130.1144 (4)0.7274 (2)0.3550 (2)0.0474 (5)
C140.1970 (4)0.6563 (2)0.4092 (2)0.0579 (6)
C150.1412 (4)0.6998 (2)0.5332 (2)0.0561 (6)
C160.1699 (4)0.6794 (3)0.2204 (2)0.0624 (7)
C170.0384 (3)0.6692 (2)0.9324 (2)0.0448 (5)
C180.1488 (3)0.54040 (19)0.8489 (2)0.0419 (5)
C190.2431 (4)0.4564 (2)0.8888 (2)0.0517 (6)
C200.3505 (4)0.3339 (2)0.8107 (2)0.0538 (6)
C210.3661 (3)0.2915 (2)0.6913 (2)0.0476 (5)
C220.2689 (4)0.3758 (2)0.6526 (2)0.0521 (6)
C230.1623 (3)0.4971 (2)0.7291 (2)0.0477 (5)
C240.4861 (4)0.1589 (2)0.6065 (3)0.0658 (7)
H1N0.003 (4)0.792 (3)0.762 (3)0.074 (9)*
H1A0.38471.31781.26670.103*
H1B0.59781.35841.35330.103*
H2A0.69271.29101.19800.100*
H2B0.59671.38411.18280.100*
H3A0.34291.23951.02170.058*
H3B0.51331.19791.00310.058*
H6A0.56551.16181.31840.064*
H6B0.36781.16581.33100.064*
H110.177 (4)0.971 (3)0.602 (3)0.060 (7)*
H120.082 (5)0.892 (3)0.397 (3)0.082 (10)*
H140.294 (5)0.577 (3)0.365 (3)0.077 (9)*
H150.198 (4)0.651 (3)0.573 (3)0.077 (9)*
H16A0.19030.74150.19440.094*
H16B0.28730.60680.18270.094*
H16C0.06720.65940.19840.094*
H170.013 (4)0.690 (3)1.009 (3)0.060 (8)*
H190.231 (4)0.487 (3)0.970 (3)0.062 (8)*
H200.407 (4)0.279 (3)0.837 (2)0.058 (7)*
H220.27600.34890.57280.062*
H230.093 (3)0.553 (2)0.697 (2)0.046 (6)*
H24A0.49120.10830.65070.099*
H24B0.42820.13310.54810.099*
H24C0.61550.15080.56640.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0632 (4)0.0426 (4)0.0343 (3)0.0144 (3)0.0145 (3)0.0157 (2)
N10.0557 (11)0.0405 (10)0.0347 (9)0.0076 (8)0.0159 (8)0.0142 (8)
N20.0470 (10)0.0358 (9)0.0377 (9)0.0121 (8)0.0145 (8)0.0137 (8)
O10.0954 (14)0.0432 (10)0.0416 (10)0.0014 (9)0.0189 (9)0.0156 (8)
C10.120 (3)0.0515 (16)0.0517 (17)0.0113 (17)0.0175 (18)0.0073 (13)
C20.102 (2)0.0461 (15)0.0576 (17)0.0087 (15)0.0216 (16)0.0049 (13)
C30.0548 (13)0.0361 (11)0.0451 (12)0.0107 (10)0.0164 (10)0.0118 (10)
C40.0408 (10)0.0372 (11)0.0380 (11)0.0148 (9)0.0133 (9)0.0117 (9)
C50.0463 (11)0.0387 (11)0.0358 (11)0.0152 (9)0.0103 (9)0.0101 (9)
C60.0622 (14)0.0477 (13)0.0352 (12)0.0167 (11)0.0084 (10)0.0089 (10)
C70.0418 (10)0.0383 (11)0.0355 (10)0.0151 (9)0.0142 (8)0.0137 (9)
C80.0436 (11)0.0362 (10)0.0351 (10)0.0136 (9)0.0146 (8)0.0124 (9)
C90.0476 (11)0.0363 (10)0.0383 (11)0.0122 (9)0.0162 (9)0.0141 (9)
C100.0483 (11)0.0390 (11)0.0354 (11)0.0146 (9)0.0168 (9)0.0149 (9)
C110.0581 (14)0.0465 (13)0.0413 (12)0.0039 (11)0.0171 (11)0.0175 (10)
C120.0627 (15)0.0585 (15)0.0432 (13)0.0138 (12)0.0238 (11)0.0262 (12)
C130.0576 (13)0.0524 (13)0.0365 (11)0.0253 (11)0.0195 (10)0.0179 (10)
C140.0777 (17)0.0410 (13)0.0398 (12)0.0119 (12)0.0170 (12)0.0099 (10)
C150.0777 (17)0.0385 (12)0.0415 (12)0.0086 (11)0.0209 (12)0.0155 (10)
C160.0782 (17)0.0725 (18)0.0359 (12)0.0302 (14)0.0209 (12)0.0198 (12)
C170.0537 (12)0.0422 (12)0.0385 (12)0.0153 (10)0.0184 (10)0.0177 (10)
C180.0462 (11)0.0384 (11)0.0419 (11)0.0137 (9)0.0166 (9)0.0187 (9)
C190.0630 (14)0.0471 (13)0.0492 (13)0.0164 (11)0.0250 (12)0.0252 (11)
C200.0582 (14)0.0427 (12)0.0627 (15)0.0116 (11)0.0260 (12)0.0277 (12)
C210.0433 (11)0.0384 (11)0.0554 (14)0.0125 (9)0.0132 (10)0.0182 (10)
C220.0637 (15)0.0446 (13)0.0423 (13)0.0150 (11)0.0170 (11)0.0171 (11)
C230.0581 (13)0.0392 (11)0.0465 (12)0.0133 (10)0.0211 (10)0.0212 (10)
C240.0603 (15)0.0425 (13)0.0729 (18)0.0053 (11)0.0136 (13)0.0166 (13)
Geometric parameters (Å, º) top
S2—C51.720 (3)C5—C61.507 (3)
S2—C81.743 (3)C11—C121.391 (4)
N2—C171.279 (3)C11—H110.96 (3)
N2—C81.391 (3)C12—H120.91 (3)
N1—C91.360 (3)C15—C141.387 (4)
N1—C101.409 (3)C15—H150.97 (3)
N1—H1N0.97 (3)C23—C221.369 (3)
O1—C91.216 (3)C23—H231.00 (3)
C9—C71.501 (3)C14—H140.94 (3)
C7—C81.383 (3)C19—C201.386 (4)
C7—C41.443 (3)C19—H190.94 (3)
C18—C191.394 (3)C22—H220.930
C18—C231.396 (3)C20—H200.90 (3)
C18—C171.459 (3)C24—H24A0.9600
C10—C111.386 (3)C24—H24B0.9600
C10—C151.390 (3)C24—H24C0.9600
C17—H170.87 (3)C16—H16A0.9600
C21—C201.386 (4)C16—H16B0.9600
C21—C221.394 (4)C16—H16C0.9600
C21—C241.505 (4)C6—C11.511 (4)
C4—C51.364 (3)C6—H6A0.9700
C4—C31.504 (3)C6—H6B0.9700
C13—C121.375 (4)C2—C11.449 (5)
C13—C141.384 (4)C2—H2A0.9700
C13—C161.509 (3)C2—H2B0.9700
C3—C21.529 (4)C1—H1A0.9700
C3—H3A0.9700C1—H1B0.9700
C3—H3B0.9700
C5—S2—C891.42 (10)C14—C15—H15122.3 (19)
C17—N2—C8122.0 (2)C10—C15—H15116.6 (19)
C9—N1—C10128.94 (19)C22—C23—C18120.7 (2)
C9—N1—H1N112.9 (19)C22—C23—H23118.0 (14)
C10—N1—H1N117.7 (19)C18—C23—H23121.3 (14)
O1—C9—N1122.9 (2)C13—C14—C15121.4 (2)
N1—C9—C7115.81 (18)C13—C14—H14123 (2)
C8—C7—C4111.83 (19)C15—C14—H14116 (2)
C8—C7—C9126.10 (19)C20—C19—C18120.6 (2)
C4—C7—C9122.06 (19)C20—C19—H19122.5 (17)
C19—C18—C23118.2 (2)C18—C19—H19116.9 (17)
C19—C18—C17119.7 (2)C23—C22—C21121.5 (2)
C23—C18—C17122.1 (2)C23—C22—H22119.4
C7—C8—N2125.1 (2)C21—C22—H22119.4
C7—C8—S2111.53 (16)C21—C20—H20118.3 (18)
N2—C8—S2123.30 (16)C19—C20—H20120.6 (18)
C11—C10—C15118.0 (2)C21—C24—H24A109.5
C11—C10—N1124.0 (2)C21—C24—H24B109.5
C15—C10—N1117.9 (2)H24A—C24—H24B109.5
N2—C17—C18122.5 (2)C21—C24—H24C109.5
N2—C17—H17118 (2)H24A—C24—H24C109.5
C18—C17—H17120 (2)H24B—C24—H24C109.5
C20—C21—C22117.9 (2)C13—C16—H16A109.5
C20—C21—C24120.8 (2)C13—C16—H16B109.5
C22—C21—C24121.3 (2)H16A—C16—H16B109.5
C5—C4—C7112.5 (2)C13—C16—H16C109.5
C5—C4—C3120.6 (2)H16A—C16—H16C109.5
C7—C4—C3127.0 (2)H16B—C16—H16C109.5
C12—C13—C14116.9 (2)C5—C6—C1109.6 (2)
C12—C13—C16121.3 (2)C5—C6—H6A109.7
C14—C13—C16121.7 (2)C1—C6—H6A109.7
C4—C3—C2111.6 (2)C5—C6—H6B109.7
C4—C3—H3A109.3C1—C6—H6B109.7
C2—C3—H3A109.3H6A—C6—H6B108.2
C4—C3—H3B109.3C1—C2—C3116.7 (3)
C2—C3—H3B109.3C1—C2—H2A108.1
H3A—C3—H3B108.0C3—C2—H2A108.1
C4—C5—C6126.5 (2)C1—C2—H2B108.1
C4—C5—S2112.72 (17)C3—C2—H2B108.1
C6—C5—S2120.81 (18)H2A—C2—H2B107.3
C10—C11—C12119.8 (2)C2—C1—C6113.1 (3)
C10—C11—H11120.6 (17)C2—C1—H1A109.0
C12—C11—H11119.5 (17)C6—C1—H1A109.0
C13—C12—C11122.8 (2)C2—C1—H1B109.0
C13—C12—H12119 (2)C6—C1—H1B109.0
C11—C12—H12118 (2)H1A—C1—H1B107.8
C14—C15—C10121.1 (2)
C10—N1—C9—O13.9 (4)C3—C4—C5—S2179.64 (16)
C10—N1—C9—C7176.4 (2)C8—S2—C5—C40.22 (17)
O1—C9—C7—C8173.7 (2)C8—S2—C5—C6179.91 (19)
N1—C9—C7—C86.5 (3)C15—C10—C11—C122.4 (4)
O1—C9—C7—C45.4 (3)N1—C10—C11—C12178.5 (2)
N1—C9—C7—C4174.32 (19)C14—C13—C12—C111.6 (4)
C4—C7—C8—N2177.06 (18)C16—C13—C12—C11178.6 (2)
C9—C7—C8—N22.2 (3)C10—C11—C12—C130.6 (4)
C4—C7—C8—S21.1 (2)C11—C10—C15—C141.9 (4)
C9—C7—C8—S2179.64 (16)N1—C10—C15—C14178.9 (2)
C17—N2—C8—C7179.7 (2)C19—C18—C23—C221.3 (4)
C17—N2—C8—S21.8 (3)C17—C18—C23—C22179.3 (2)
C5—S2—C8—C70.77 (17)C12—C13—C14—C152.1 (4)
C5—S2—C8—N2177.44 (18)C16—C13—C14—C15178.2 (3)
C9—N1—C10—C110.8 (4)C10—C15—C14—C130.3 (4)
C9—N1—C10—C15178.3 (2)C23—C18—C19—C201.3 (4)
C8—N2—C17—C18177.23 (19)C17—C18—C19—C20179.4 (2)
C19—C18—C17—N2168.7 (2)C18—C23—C22—C210.5 (4)
C23—C18—C17—N212.0 (4)C20—C21—C22—C230.5 (4)
C8—C7—C4—C51.0 (3)C24—C21—C22—C23178.8 (2)
C9—C7—C4—C5179.75 (18)C22—C21—C20—C190.6 (4)
C8—C7—C4—C3179.05 (19)C24—C21—C20—C19178.7 (2)
C9—C7—C4—C30.2 (3)C18—C19—C20—C210.3 (4)
C5—C4—C3—C28.4 (3)C4—C5—C6—C116.4 (4)
C7—C4—C3—C2171.6 (2)S2—C5—C6—C1163.5 (2)
C7—C4—C5—C6179.5 (2)C4—C3—C2—C137.1 (4)
C3—C4—C5—C60.5 (3)C3—C2—C1—C656.6 (5)
C7—C4—C5—S20.4 (2)C5—C6—C1—C243.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.98 (4)1.89 (4)2.752 (4)146 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC24H24N2O2SC24H24N2OS
Mr404.52388.52
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)8.184 (5), 19.786 (11), 12.884 (7)7.658 (7), 12.365 (11), 12.569 (11)
α, β, γ (°)90, 96.994 (10), 90108.490 (13), 103.745 (14), 106.020 (13)
V3)2071 (2)1013.6 (16)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.180.18
Crystal size (mm)0.33 × 0.28 × 0.140.16 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Multi-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.927, 0.9750.936, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15741, 4130, 3501 10561, 4011, 3363
Rint0.0160.018
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 0.83 0.057, 0.192, 0.87
No. of reflections41304011
No. of parameters336295
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.210.43, 0.43

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.84 (2)2.03 (2)2.766 (2)145 (2)
C13—H13···O1i0.95 (2)2.47 (2)3.385 (2)160 (2)
Symmetry code: (i) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.98 (4)1.89 (4)2.752 (4)146 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds