Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title adduct, C5H14N22+·C8H3NO62-·C8H5NO6·H2O, crystallizes in the monoclinic space group P21. All O atoms of the 4-nitro­phthalate anions and neutral 4-nitro­phthalic acid mol­ecules are involved in hydrogen bonding with the piperazine dication and the water mol­ecule of crystallization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104018207/de1248sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104018207/de1248Isup2.hkl
Contains datablock I

CCDC reference: 251336

Comment top

The design of new piperazine derivatives for application in medicinal chemistry and materials science has recently engrossed the author. Piperazine derivatives, which are efficient host–guest systems, have been studied extensively in the context of hydrogen-bond patterns and non-linear optical materials (Jin et al., 2003; Loehlin et al., 1994). The author's interest in piperazine derivatives stems from their use as canalization of drug discovery and host–guest systems. The author has recently reported the crystal structure of N-[4-(4-methylpiperazin-1-ylsulfonyl)phenyl]acetamide monohydrate (Guo, 2004c), 4-ammonio-1-methylpiperazin-1-ium oxalate dihydrate (Guo, 2004b), 2-(4-methylpiperazin-4-ium-1-ylcarbonyl)benzoate monohydrate (Guo, 2004 d) and N-(4-methyl-1-piperazinyl)phthalimide (Guo, 2004a). The structure of the adduct 1-methylpiperazinium-1-ium 4-nitrophthalate 4-nitrophthalic acid monohydrate, (I), is reported here.

The hydrogen bonding of the adduct of (I) and the atom-numbering scheme are illustrated in Fig. 1. Interestingly, the crystal structure has the unexpected result of co-crystallization of one neutral molecule of the anions in addition to an ionic pair.

The bond distances and angles in the cation, anion, neutral molecule and water molecule are normal, within experimental error. Selected geometric parameters are shown Table 1.

The crystal packing of (I) is illustrated in Fig. 2, for the piperazine dications and water molecules. The piperazine dication adopts a normal chair conformation, as reported previously (Kuppayee et al., 1999). The piperazine dication participates in hydrogen bonds between the N3/H3 group and atom O7i of a 4-nitrophthalate anion, the N4/H4B group and atom O9iii of an anion, and the N4/H4A group and atom O13ii of a water molecule. In addition, there also exist some C–H···acceptor weak interactions (Steiner, 1996), namely C19—H19A···O2viii, C18—H18A···O8i, C18—H18B···O12iv, C21—H21A···O3ix, C21—H21B···O1x and C21—H21C···O8iii. The water molecules, which play an important role, link the 4-nitrophthalic acid moiety, the 4-nitrophthalate anion and the piperazine dication together via intermolecular O13—H13A···O9, O13—H13A···O7i, O13—H13B···O1v and O13—H13B···O2v hydrogen bonds. On the other hand, the 4-nitrophthalic acid moiety and the 4-nitrophthalate anion are linked together via O1—H1···O10 and O4—H4···O7iv hydrogen bonds and C—H···acceptor weak interactions (C13—H13···O10vii and C6—H6···O5vi). In the crystal structure, these hydrogen bonds form different size rings and build up a three-dimensional molecular network (Fig.3 and Table 2).

This study was initiated as an exploration of the salt 1-methylpiperazinium-1-ium 4-nitrophthalate via hydrogen bonding. However, the crystalline product from the mixture system of a 1:1 molar ratio aqueous solution of 1-methylpiperazine and 4-nitrophthalic acid is the title adduct rather than 1-methylpiperazinium-1-ium 4-nitrophthalate. The title adduct is thus more stable and easily obtained in the crystalline form. This adduct crystallizes in the monoclinic space group P21. It is expected that (I) can be used in canalization of optical material.

Experimental top

Crystals of the adduct were obtained from a 1:1 aqueous solution of 1-methylpiperazine and 4-nitrophthalic acid by slow concentration over a period of 2 d.

Refinement top

The value of the absolute structure parameter (Flack, 1983) of the title adduct is meaningless because Mo radiation was used and no atoms heavier than O are present. Therefore, in the absence of anomalous dispersion effects, 1574 Friedel pairs were merged before the final refinement. H atoms of the water molecule were found in difference Fourier maps. However, during refinement, their positions were fixed at O–H distances of 0.85 Å and their Uiso(H) values were set at 1.2Ueq(O). The O—H distances of the carboxy group were fixed at 0.82 Å and their Uiso(H) values were set at 1.2Ueq(O). H atoms of NH and CH groups were treated as riding, with N—H = 0.90–0.91 Å and C—H = 0.93–0.97 Å. For H atoms attached to atom C21, the Uiso(H) value is 1.5Ueq(C21); otherwise, Uiso(H) is 1.2Ueq(N,C).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SMART; data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atom-numbering scheme, showing 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radii and hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the a axis, showing the hydrogen-bonding interactions (dashed lines) for the piperazine dication and the water molecule.
[Figure 3] Fig. 3. A packing diagram of (I), viewed down the b axis, showing the hydrogen-bonding interactions (dashed lines).
1-Methylpiperazine-1,4-diium 4-nitrophthalate(2-) 4-nitrophthalic acid monohydrate top
Crystal data top
C5H14N22+·C8H3NO62·C8H5NO6·H2OF(000) = 564
Mr = 540.44Dx = 1.519 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 997 reflections
a = 7.882 (2) Åθ = 3.3–25.6°
b = 12.050 (3) ŵ = 0.13 mm1
c = 12.602 (4) ÅT = 293 K
β = 99.273 (5)°Plate, colorless
V = 1181.3 (6) Å30.18 × 0.16 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.975, Tmax = 0.990k = 1115
6800 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.3064P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2514 reflectionsΔρmax = 0.21 e Å3
346 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack H D (1983)
Primary atom site location: structure-invariant direct methods
Crystal data top
C5H14N22+·C8H3NO62·C8H5NO6·H2OV = 1181.3 (6) Å3
Mr = 540.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.882 (2) ŵ = 0.13 mm1
b = 12.050 (3) ÅT = 293 K
c = 12.602 (4) Å0.18 × 0.16 × 0.10 mm
β = 99.273 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2127 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.028
6800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2514 reflectionsΔρmin = 0.16 e Å3
346 parametersAbsolute structure: Flack H D (1983)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1233 (4)0.3547 (3)0.6614 (2)0.0541 (8)
N20.4103 (4)0.8937 (3)0.6566 (2)0.0504 (8)
N30.4062 (3)0.1911 (2)1.00073 (19)0.0349 (6)
H30.38620.14331.05330.042*
N40.7599 (3)0.1399 (2)0.9869 (2)0.0378 (6)
H4A0.85740.10151.00800.045*
H4B0.77880.18780.93520.045*
O10.0471 (3)0.57654 (18)0.18987 (18)0.0443 (6)
H10.11760.60080.23950.053*
O20.1122 (4)0.4293 (2)0.1566 (2)0.0618 (8)
O30.2337 (4)0.3215 (2)0.2087 (2)0.0724 (9)
O40.1703 (4)0.1751 (2)0.3001 (2)0.0630 (8)
H40.22200.14200.25830.076*
O50.2059 (5)0.2688 (3)0.6838 (2)0.0758 (10)
O60.0658 (4)0.4114 (3)0.7267 (2)0.0805 (10)
O70.3406 (3)1.0687 (2)0.17533 (19)0.0480 (6)
O80.5550 (3)0.9524 (2)0.1699 (2)0.0553 (7)
O90.2537 (3)0.80318 (18)0.18081 (16)0.0431 (6)
O100.2350 (4)0.6908 (2)0.3174 (2)0.0603 (8)
O110.3649 (4)0.8008 (3)0.6795 (2)0.0687 (8)
O120.4435 (4)0.9692 (3)0.7214 (2)0.0789 (10)
C10.0305 (4)0.4521 (2)0.3351 (2)0.0324 (6)
C20.1091 (4)0.3508 (3)0.3643 (2)0.0338 (7)
C30.1412 (4)0.3195 (3)0.4720 (3)0.0388 (7)
H3A0.19460.25220.49230.047*
C40.0928 (4)0.3893 (3)0.5477 (3)0.0391 (7)
C50.0143 (4)0.4900 (3)0.5215 (3)0.0432 (8)
H50.01710.53590.57440.052*
C60.0165 (4)0.5210 (3)0.4143 (3)0.0407 (8)
H60.06920.58870.39500.049*
C70.0143 (4)0.4868 (3)0.2182 (2)0.0346 (7)
C80.1757 (4)0.2811 (3)0.2822 (2)0.0374 (7)
C90.4357 (4)0.9616 (2)0.3301 (2)0.0291 (6)
C100.3607 (4)0.8639 (2)0.3583 (2)0.0269 (6)
C110.3568 (4)0.8416 (3)0.4664 (2)0.0322 (6)
H110.30860.77590.48640.039*
C120.4248 (4)0.9172 (3)0.5433 (2)0.0376 (7)
C130.5005 (5)1.0138 (3)0.5180 (3)0.0450 (8)
H130.54671.06350.57140.054*
C140.5065 (4)1.0354 (3)0.4108 (3)0.0427 (8)
H140.55861.10020.39210.051*
C150.4460 (4)0.9935 (2)0.2150 (2)0.0319 (7)
C160.2780 (4)0.7821 (2)0.2760 (2)0.0303 (6)
C170.4536 (4)0.1247 (3)0.9105 (2)0.0396 (8)
H17A0.46530.17380.85110.048*
H17B0.36210.07240.88580.048*
C180.6193 (4)0.0622 (3)0.9432 (3)0.0410 (8)
H18A0.60440.00740.99730.049*
H18B0.64960.02360.88140.049*
C190.7140 (4)0.2025 (3)1.0797 (3)0.0399 (8)
H19A0.80590.25371.10670.048*
H19B0.69990.15141.13710.048*
C200.5507 (4)0.2656 (3)1.0464 (2)0.0372 (7)
H20A0.52060.30431.10830.045*
H20B0.56820.32070.99310.045*
C210.2446 (5)0.2550 (3)0.9642 (3)0.0461 (8)
H21A0.21220.29441.02410.069*
H21B0.15430.20470.93550.069*
H21C0.26360.30700.90960.069*
O130.0129 (4)0.9875 (3)0.0404 (2)0.0713 (9)
H13A0.07310.96100.09670.107*
H13B0.04790.96320.01560.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0573 (19)0.072 (2)0.0319 (16)0.0199 (18)0.0049 (14)0.0022 (16)
N20.062 (2)0.064 (2)0.0242 (15)0.0119 (16)0.0029 (13)0.0059 (14)
N30.0456 (15)0.0340 (14)0.0263 (13)0.0066 (12)0.0092 (11)0.0029 (11)
N40.0427 (15)0.0389 (14)0.0325 (14)0.0049 (12)0.0083 (11)0.0029 (12)
O10.0667 (16)0.0338 (12)0.0290 (12)0.0162 (11)0.0024 (11)0.0004 (10)
O20.0852 (19)0.0509 (15)0.0430 (14)0.0340 (15)0.0088 (13)0.0005 (12)
O30.118 (3)0.0521 (16)0.0605 (18)0.0059 (17)0.0555 (18)0.0024 (14)
O40.101 (2)0.0396 (15)0.0595 (18)0.0210 (14)0.0450 (16)0.0083 (13)
O50.114 (3)0.063 (2)0.0439 (16)0.011 (2)0.0054 (16)0.0122 (14)
O60.076 (2)0.136 (3)0.0330 (14)0.001 (2)0.0183 (14)0.0100 (18)
O70.0705 (17)0.0411 (13)0.0359 (13)0.0198 (12)0.0188 (11)0.0110 (10)
O80.0611 (15)0.0567 (16)0.0557 (16)0.0181 (13)0.0326 (12)0.0125 (13)
O90.0697 (16)0.0386 (13)0.0213 (10)0.0088 (11)0.0080 (10)0.0044 (9)
O100.095 (2)0.0411 (14)0.0369 (14)0.0322 (14)0.0131 (13)0.0118 (11)
O110.107 (2)0.066 (2)0.0347 (14)0.0015 (18)0.0163 (14)0.0061 (14)
O120.113 (3)0.088 (2)0.0326 (15)0.004 (2)0.0030 (14)0.0261 (15)
C10.0332 (15)0.0317 (15)0.0333 (16)0.0092 (13)0.0081 (12)0.0003 (13)
C20.0327 (15)0.0359 (17)0.0338 (15)0.0034 (13)0.0081 (12)0.0024 (13)
C30.0383 (17)0.0414 (18)0.0376 (17)0.0041 (14)0.0088 (13)0.0096 (14)
C40.0412 (18)0.0485 (19)0.0286 (16)0.0150 (15)0.0086 (13)0.0016 (14)
C50.052 (2)0.0451 (19)0.0357 (18)0.0098 (17)0.0172 (15)0.0120 (15)
C60.049 (2)0.0336 (17)0.0423 (18)0.0033 (15)0.0156 (15)0.0043 (15)
C70.0424 (17)0.0275 (16)0.0334 (16)0.0048 (14)0.0051 (13)0.0011 (13)
C80.0440 (18)0.0393 (18)0.0299 (15)0.0034 (14)0.0091 (13)0.0037 (14)
C90.0294 (14)0.0281 (15)0.0303 (15)0.0042 (12)0.0060 (11)0.0006 (12)
C100.0319 (14)0.0254 (14)0.0231 (13)0.0035 (12)0.0039 (11)0.0002 (11)
C110.0368 (16)0.0340 (16)0.0258 (14)0.0023 (13)0.0046 (11)0.0009 (13)
C120.0408 (18)0.0447 (18)0.0257 (15)0.0097 (15)0.0001 (13)0.0048 (14)
C130.053 (2)0.0406 (19)0.0369 (19)0.0001 (16)0.0066 (15)0.0145 (15)
C140.049 (2)0.0325 (16)0.045 (2)0.0090 (15)0.0034 (15)0.0052 (15)
C150.0406 (17)0.0231 (14)0.0339 (16)0.0023 (13)0.0117 (13)0.0015 (12)
C160.0349 (16)0.0275 (15)0.0284 (15)0.0007 (13)0.0052 (12)0.0007 (12)
C170.0491 (19)0.0432 (18)0.0269 (16)0.0124 (15)0.0070 (13)0.0091 (14)
C180.0513 (19)0.0370 (18)0.0356 (18)0.0079 (15)0.0096 (15)0.0079 (14)
C190.053 (2)0.0366 (18)0.0290 (16)0.0085 (16)0.0018 (13)0.0034 (14)
C200.055 (2)0.0296 (16)0.0274 (15)0.0075 (15)0.0089 (13)0.0049 (13)
C210.051 (2)0.051 (2)0.0370 (18)0.0034 (16)0.0099 (15)0.0036 (16)
O130.079 (2)0.090 (2)0.0412 (15)0.0265 (18)0.0003 (14)0.0092 (15)
Geometric parameters (Å, º) top
N1—O61.213 (5)C4—C51.378 (5)
N1—O51.231 (5)C5—C61.384 (5)
N1—C41.473 (4)C5—H50.9300
N2—O121.223 (4)C6—H60.9300
N2—O111.225 (4)C9—C101.389 (4)
N2—C121.477 (4)C9—C141.398 (4)
N3—C171.486 (4)C9—C151.515 (4)
N3—C201.491 (4)C10—C111.393 (4)
N3—C211.497 (4)C10—C161.502 (4)
N3—H30.9100C11—C121.375 (4)
N4—C191.484 (4)C11—H110.9300
N4—C181.488 (4)C12—C131.368 (5)
N4—H4A0.9000C13—C141.385 (5)
N4—H4B0.9000C13—H130.9300
O1—C71.259 (4)C14—H140.9300
O1—H10.8200C17—C181.507 (5)
O2—C71.219 (4)C17—H17A0.9700
O3—C81.200 (4)C17—H17B0.9700
O4—C81.299 (4)C18—H18A0.9700
O4—H40.8200C18—H18B0.9700
O7—C151.276 (4)C19—C201.496 (5)
O8—C151.210 (4)C19—H19A0.9700
O9—C161.211 (3)C19—H19B0.9700
O10—C161.286 (4)C20—H20A0.9700
C1—C21.391 (4)C20—H20B0.9700
C1—C61.393 (4)C21—H21A0.9600
C1—C71.517 (4)C21—H21B0.9600
C2—C31.393 (4)C21—H21C0.9600
C2—C81.492 (4)O13—H13A0.8499
C3—C41.371 (5)O13—H13B0.8500
C3—H3A0.9300
O6—N1—O5124.1 (3)C12—C11—C10119.6 (3)
O6—N1—C4118.7 (4)C12—C11—H11120.2
O5—N1—C4117.2 (3)C10—C11—H11120.2
O12—N2—O11124.2 (3)C13—C12—C11122.3 (3)
O12—N2—C12117.5 (3)C13—C12—N2119.5 (3)
O11—N2—C12118.3 (3)C11—C12—N2118.2 (3)
C17—N3—C20110.5 (2)C12—C13—C14118.2 (3)
C17—N3—C21110.3 (2)C12—C13—H13120.9
C20—N3—C21111.6 (3)C14—C13—H13120.9
C17—N3—H3108.1C13—C14—C9121.1 (3)
C20—N3—H3108.1C13—C14—H14119.4
C21—N3—H3108.1C9—C14—H14119.4
C19—N4—C18110.5 (2)O8—C15—O7125.0 (3)
C19—N4—H4A109.6O8—C15—C9119.8 (3)
C18—N4—H4A109.6O7—C15—C9115.0 (3)
C19—N4—H4B109.6O9—C16—O10124.9 (3)
C18—N4—H4B109.6O9—C16—C10121.9 (3)
H4A—N4—H4B108.1O10—C16—C10113.2 (2)
C7—O1—H1109.5N3—C17—C18111.9 (3)
C8—O4—H4109.5N3—C17—H17A109.2
C2—C1—C6119.5 (3)C18—C17—H17A109.2
C2—C1—C7121.5 (3)N3—C17—H17B109.2
C6—C1—C7119.0 (3)C18—C17—H17B109.2
C1—C2—C3119.9 (3)H17A—C17—H17B107.9
C1—C2—C8120.1 (3)N4—C18—C17110.4 (3)
C3—C2—C8119.6 (3)N4—C18—H18A109.6
C4—C3—C2119.0 (3)C17—C18—H18A109.6
C4—C3—H3A120.5N4—C18—H18B109.6
C2—C3—H3A120.5C17—C18—H18B109.6
C3—C4—C5122.5 (3)H18A—C18—H18B108.1
C3—C4—N1118.9 (3)N4—C19—C20110.2 (3)
C5—C4—N1118.6 (3)N4—C19—H19A109.6
C4—C5—C6118.2 (3)C20—C19—H19A109.6
C4—C5—H5120.9N4—C19—H19B109.6
C6—C5—H5120.9C20—C19—H19B109.6
C5—C6—C1120.9 (3)H19A—C19—H19B108.1
C5—C6—H6119.6N3—C20—C19111.8 (3)
C1—C6—H6119.6N3—C20—H20A109.3
O2—C7—O1122.7 (3)C19—C20—H20A109.3
O2—C7—C1119.1 (3)N3—C20—H20B109.3
O1—C7—C1118.2 (3)C19—C20—H20B109.3
O3—C8—O4124.0 (3)H20A—C20—H20B107.9
O3—C8—C2121.8 (3)N3—C21—H21A109.5
O4—C8—C2114.1 (3)N3—C21—H21B109.5
C10—C9—C14119.3 (3)H21A—C21—H21B109.5
C10—C9—C15123.4 (3)N3—C21—H21C109.5
C14—C9—C15117.3 (3)H21A—C21—H21C109.5
C9—C10—C11119.4 (3)H21B—C21—H21C109.5
C9—C10—C16122.3 (2)H13A—O13—H13B110.6
C11—C10—C16118.2 (3)
C6—C1—C2—C30.5 (4)C9—C10—C11—C121.0 (4)
C7—C1—C2—C3177.1 (3)C16—C10—C11—C12177.2 (3)
C6—C1—C2—C8174.0 (3)C10—C11—C12—C131.5 (5)
C7—C1—C2—C89.4 (4)C10—C11—C12—N2176.8 (3)
C1—C2—C3—C40.6 (4)O12—N2—C12—C1310.8 (5)
C8—C2—C3—C4174.2 (3)O11—N2—C12—C13169.8 (3)
C2—C3—C4—C50.4 (5)O12—N2—C12—C11167.6 (3)
C2—C3—C4—N1178.6 (3)O11—N2—C12—C1111.8 (5)
O6—N1—C4—C3173.0 (3)C11—C12—C13—C140.7 (5)
O5—N1—C4—C36.6 (5)N2—C12—C13—C14177.7 (3)
O6—N1—C4—C56.1 (5)C12—C13—C14—C90.7 (5)
O5—N1—C4—C5174.3 (3)C10—C9—C14—C131.2 (5)
C3—C4—C5—C60.1 (5)C15—C9—C14—C13179.0 (3)
N1—C4—C5—C6178.9 (3)C10—C9—C15—O879.1 (4)
C4—C5—C6—C10.0 (5)C14—C9—C15—O8100.7 (4)
C2—C1—C6—C50.1 (5)C10—C9—C15—O7104.7 (3)
C7—C1—C6—C5176.8 (3)C14—C9—C15—O775.5 (4)
C2—C1—C7—O259.7 (4)C9—C10—C16—O99.2 (4)
C6—C1—C7—O2116.9 (4)C11—C10—C16—O9168.9 (3)
C2—C1—C7—O1122.7 (3)C9—C10—C16—O10171.8 (3)
C6—C1—C7—O160.7 (4)C11—C10—C16—O1010.0 (4)
C1—C2—C8—O333.1 (5)C20—N3—C17—C1854.1 (3)
C3—C2—C8—O3140.5 (4)C21—N3—C17—C18178.0 (3)
C1—C2—C8—O4149.2 (3)C19—N4—C18—C1757.6 (3)
C3—C2—C8—O437.2 (4)N3—C17—C18—N455.9 (3)
C14—C9—C10—C110.3 (4)C18—N4—C19—C2058.4 (3)
C15—C9—C10—C11179.9 (3)C17—N3—C20—C1955.0 (3)
C14—C9—C10—C16178.4 (3)C21—N3—C20—C19178.1 (3)
C15—C9—C10—C161.8 (4)N4—C19—C20—N357.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O7i0.911.872.766 (3)170
N4—H4A···O13ii0.901.842.715 (4)163
N4—H4B···O9iii0.902.002.877 (3)163
O1—H1···O100.821.652.430 (3)160
O4—H4···O7iv0.821.752.569 (3)177
O13—H13A···O90.852.513.253 (4)147
O13—H13A···O70.852.543.017 (4)117
O13—H13B···O2v0.851.972.810 (4)171
O13—H13B···O1v0.852.593.058 (4)116
C6—H6···O5vi0.932.553.476 (5)172
C11—H11···O100.932.352.677 (4)100
C13—H13···O10vii0.932.553.436 (4)159
C17—H17B···O12iv0.972.583.022 (4)108
C18—H18A···O8i0.972.373.262 (4)153
C18—H18B···O12iv0.972.463.121 (4)125
C19—H19A···O2viii0.972.273.140 (4)148
C21—H21A···O3ix0.962.333.198 (5)150
C21—H21B···O1x0.962.573.499 (5)164
C21—H21C···O8iii0.962.573.445 (4)153
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1, z; (v) x, y+1/2, z; (vi) x, y+1/2, z+1; (vii) x+1, y+1/2, z+1; (viii) x+1, y, z+1; (ix) x, y, z+1; (x) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC5H14N22+·C8H3NO62·C8H5NO6·H2O
Mr540.44
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.882 (2), 12.050 (3), 12.602 (4)
β (°) 99.273 (5)
V3)1181.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6800, 2514, 2127
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.05
No. of reflections2514
No. of parameters346
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16
Absolute structureFlack H D (1983)

Computer programs: SMART (Bruker 1997), SMART, SAINT (Bruker 1997), SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
N1—O61.213 (5)O3—C81.200 (4)
N1—O51.231 (5)O4—C81.299 (4)
N2—O121.223 (4)O7—C151.276 (4)
N2—O111.225 (4)O8—C151.210 (4)
O1—C71.259 (4)O9—C161.211 (3)
O2—C71.219 (4)O10—C161.286 (4)
O6—N1—O5124.1 (3)O3—C8—O4124.0 (3)
O12—N2—O11124.2 (3)O8—C15—O7125.0 (3)
O2—C7—O1122.7 (3)O9—C16—O10124.9 (3)
C7—C1—C2—C89.4 (4)C15—C9—C10—C161.8 (4)
C2—C1—C7—O259.7 (4)C10—C9—C15—O879.1 (4)
C2—C1—C7—O1122.7 (3)C10—C9—C15—O7104.7 (3)
C1—C2—C8—O333.1 (5)C9—C10—C16—O99.2 (4)
C1—C2—C8—O4149.2 (3)C9—C10—C16—O10171.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O7i0.911.872.766 (3)170
N4—H4A···O13ii0.901.842.715 (4)163
N4—H4B···O9iii0.902.002.877 (3)163
O1—H1···O100.821.652.430 (3)160
O4—H4···O7iv0.821.752.569 (3)177
O13—H13A···O90.852.513.253 (4)147
O13—H13A···O70.852.543.017 (4)117
O13—H13B···O2v0.851.972.810 (4)171
O13—H13B···O1v0.852.593.058 (4)116
C6—H6···O5vi0.932.553.476 (5)172
C11—H11···O100.932.352.677 (4)100
C13—H13···O10vii0.932.553.436 (4)159
C17—H17B···O12iv0.972.583.022 (4)108
C18—H18A···O8i0.972.373.262 (4)153
C18—H18B···O12iv0.972.463.121 (4)125
C19—H19A···O2viii0.972.273.140 (4)148
C21—H21A···O3ix0.962.333.198 (5)150
C21—H21B···O1x0.962.573.499 (5)164
C21—H21C···O8iii0.962.573.445 (4)153
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y1, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1, z; (v) x, y+1/2, z; (vi) x, y+1/2, z+1; (vii) x+1, y+1/2, z+1; (viii) x+1, y, z+1; (ix) x, y, z+1; (x) x, y1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds