Download citation
Download citation
link to html
The substituent methoxy group at the phenyl ortho position in the title compound, C27H22O3, has an insignificant effect on the length of the Csp3-O bond and on the non-planarity of the pyran ring. The cause of the changes in the photochemical properties is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104019067/de1244sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019067/de1244Isup2.hkl
Contains datablock I

CCDC reference: 254920

Comment top

2,2-Diphenylchromene derivatives are a special kind of photochromic compound. In contrast to other classes of photochromic compounds, such as spiropyrans and spirooxazines, 2H-chromenes do not contain a spiro-heterocyclic fragment. Nevertheless, some chromenes are photoactive and have found commercial application (Malatesta, 1999). Aldoshin et al. (1995, 1996, 1998) have discussed the structures and photochemical properties of 2,2-diphenylchromene derivatives (I), (II), (III) and (IV), and show that in those compounds the pyran Csp3—O1 bond, the rupture of which is responsible for the compounds' photochemical properties, is elongated as a result of steric interactions. Thus, any factor that affects the Csp3—O1 bond length and the planarity of the pyran ring will affect the photochemical properties of the compound. Moreover, substituents on the phenyl groups of 3,3-diphenyl-3H-naphtho[2,1-b]pyran compounds have a substantial effect on colour intensity and fade rate (Ligas et al., 1991). Our interest in this subject derives from the fact that derivatives of chromenes are easily synthesized, with potential for commercial application (Kou, Wang, Xiu, Meng & Weng, 2000). In order to understand how the substituents on the phenyl ring influence the photochromic properties, we prepared some chromene derivatives with substituted phenyl rings and determined the X-ray structure of the title compound, (V).

Fig. 1 shows that the pyran ring in (V) is non-planar, with folding along the O1···C2 and O1···C3 axes, in a similar manner to that reported for (II). The dihedral angle between the O1/C1/C2 and O1/C2/C3 planes is 20.0 (1)°, and between the O1/C2/C3 and O1/C3/C4 planes is 9.6 (2)°, while the corresponding values in (II) are 22.9 (2) and 10.0 (2)°, respectively (Aldoshin et al., 1998). The C1—O1 bond [1.462 (2) Å] is longer than a typical C—O bond in a six-membered heterocycle (1.41–1.43 Å; Birukov & Unkovskij, 1976), but is indistinguishable from those in (I)–(IV) [1.441 (2)–1.468 (2) Å]. Therefore chromenes (V) and (II) have similar pyran ring structures. The mutual arrangement of the phenyl rings in the molecules of (V) and (II) is similar. The dihedral angles between these fragments are 93.3 (2) and 96.6 (2)°, respectively. However, the arrangement of the phenyl rings with respect to the pyran ring differs. In a Newman projection along C1—Cph, atom O1 of the pyran ring in (V) is almost eclipsed with both phenyl rings [the O1—C1—C21—C26 torsion angle is 1.7 (2)° and C2—C1—C14—C15 is 179.68 (16)°]. In the (II), atom O1 is eclipsed with only one of the phenyl rings. The corresponding torsion angles along the C1—Cph bond are 14.2 (2) and 3.2 (2)°. The later conformation is partly stabilized by atom H27A forming π···H interactions with the phenyl rings of the other molecule. Thus, the conformations of the phenyl groups do not essentially affect the structure of the pyran fragment and Cspiro center. It might be expected that (V) and (II) have similar photochromic properties. However, the photochemical properties are different. Compared with (II), compound (V) has a dramatically enhanced optical density and slower rate of fade (Van Gemert et al., 1991). Apparently, the electron-donating substituent methoxyl group in the phenyl ring stabilizes the pyramidal carbocation at atom C1, which is formed upon elongation and rupture of the C1—O1 bond at the first stage of photoconversion. The steric effects of these groups hinder reversion to the closed-ring form, increasing the lifetime of the open-ring form of (V) and thus decreasing its fade rate.

Experimental top

The title compound was synthesized by the reaction of 7,8-benzocoumarin and phenylmagnesium bromide as described by Cottam et al. (1964).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (V), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
(I) top
Crystal data top
C27H22O3F(000) = 832
Mr = 394.45Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 877 reflections
a = 9.609 (3) Åθ = 2.8–25.0°
b = 15.799 (4) ŵ = 0.08 mm1
c = 13.426 (4) ÅT = 293 K
β = 98.189 (5)°Needle, colourless
V = 2017.5 (10) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2445 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.4°, θmin = 2.0°
ϕ and ω scansh = 912
9496 measured reflectionsk = 1519
4105 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.1508P]
where P = (Fo2 + 2Fc2)/3
4105 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H22O3V = 2017.5 (10) Å3
Mr = 394.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.609 (3) ŵ = 0.08 mm1
b = 15.799 (4) ÅT = 293 K
c = 13.426 (4) Å0.22 × 0.20 × 0.18 mm
β = 98.189 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2445 reflections with I > 2σ(I)
9496 measured reflectionsRint = 0.037
4105 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
4105 reflectionsΔρmin = 0.18 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87367 (13)0.04168 (8)0.27317 (10)0.0428 (4)
O20.77257 (15)0.10600 (9)0.36257 (11)0.0532 (4)
O30.47231 (15)0.09054 (9)0.35101 (11)0.0518 (4)
C10.72509 (19)0.05746 (12)0.27897 (14)0.0368 (5)
C20.67815 (19)0.13600 (12)0.22048 (14)0.0396 (5)
H20.60090.16560.23700.048*
C30.74264 (19)0.16476 (12)0.14621 (15)0.0394 (5)
H30.70680.21180.10950.047*
C40.86836 (18)0.12365 (11)0.12158 (14)0.0338 (4)
C50.93646 (19)0.14559 (12)0.03687 (14)0.0361 (5)
C60.8783 (2)0.20242 (12)0.03844 (15)0.0443 (5)
H60.79230.22800.03360.053*
C70.9461 (2)0.22055 (14)0.11840 (16)0.0542 (6)
H70.90530.25780.16780.065*
C81.0758 (2)0.18400 (15)0.12710 (17)0.0564 (6)
H81.12120.19720.18180.068*
C91.1356 (2)0.12954 (14)0.05624 (17)0.0520 (6)
H91.22250.10580.06250.062*
C101.0684 (2)0.10796 (12)0.02724 (15)0.0401 (5)
C111.1277 (2)0.05034 (13)0.10097 (16)0.0472 (5)
H111.21510.02680.09590.057*
C121.0602 (2)0.02806 (13)0.17986 (15)0.0446 (5)
H121.10010.01120.22720.053*
C130.92984 (19)0.06501 (12)0.18875 (14)0.0364 (5)
C140.64300 (19)0.02174 (12)0.23763 (14)0.0344 (4)
C150.6709 (2)0.10172 (12)0.28110 (15)0.0385 (5)
C160.5971 (2)0.17206 (13)0.24112 (16)0.0475 (5)
H160.61600.22490.27050.057*
C170.4963 (2)0.16412 (14)0.15819 (18)0.0546 (6)
H170.44750.21180.13170.066*
C180.4668 (2)0.08695 (15)0.11417 (17)0.0534 (6)
H180.39850.08180.05800.064*
C190.5403 (2)0.01660 (13)0.15447 (15)0.0441 (5)
H190.51990.03590.12460.053*
C200.8105 (2)0.18649 (15)0.40466 (17)0.0615 (7)
H20A0.72930.21310.42500.092*
H20B0.88150.17970.46210.092*
H20C0.84640.22110.35530.092*
C210.7165 (2)0.07238 (11)0.39121 (14)0.0375 (5)
C220.5880 (2)0.09009 (12)0.42368 (15)0.0408 (5)
C230.5813 (3)0.10558 (13)0.52488 (16)0.0516 (6)
H230.49520.11720.54600.062*
C240.7017 (3)0.10376 (13)0.59352 (17)0.0565 (6)
H240.69660.11400.66110.068*
C250.8288 (3)0.08701 (14)0.56361 (17)0.0564 (6)
H250.91000.08600.61050.068*
C260.8361 (2)0.07149 (13)0.46285 (16)0.0465 (5)
H260.92290.06020.44270.056*
C270.3408 (2)0.11628 (15)0.37808 (18)0.0593 (6)
H27A0.31350.07780.42710.089*
H27B0.27090.11620.31940.089*
H27C0.34940.17230.40600.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (8)0.0501 (9)0.0417 (8)0.0048 (6)0.0085 (6)0.0078 (6)
O20.0635 (10)0.0407 (9)0.0503 (9)0.0048 (7)0.0099 (8)0.0078 (7)
O30.0454 (9)0.0638 (10)0.0487 (9)0.0012 (7)0.0153 (7)0.0044 (7)
C10.0334 (10)0.0399 (12)0.0381 (11)0.0013 (8)0.0083 (9)0.0000 (9)
C20.0401 (11)0.0353 (11)0.0454 (12)0.0039 (9)0.0130 (9)0.0011 (9)
C30.0401 (11)0.0350 (12)0.0432 (12)0.0010 (9)0.0066 (9)0.0007 (9)
C40.0342 (10)0.0313 (11)0.0352 (11)0.0027 (8)0.0027 (8)0.0021 (9)
C50.0373 (11)0.0353 (11)0.0361 (11)0.0075 (8)0.0065 (9)0.0077 (9)
C60.0443 (12)0.0448 (13)0.0444 (13)0.0015 (9)0.0078 (10)0.0017 (10)
C70.0639 (15)0.0569 (15)0.0437 (13)0.0018 (11)0.0142 (11)0.0061 (11)
C80.0651 (16)0.0627 (15)0.0466 (14)0.0036 (12)0.0255 (12)0.0022 (12)
C90.0481 (13)0.0561 (15)0.0553 (14)0.0000 (11)0.0192 (11)0.0064 (12)
C100.0403 (12)0.0410 (12)0.0395 (12)0.0049 (9)0.0069 (9)0.0058 (9)
C110.0352 (11)0.0546 (14)0.0532 (14)0.0055 (10)0.0106 (10)0.0036 (11)
C120.0384 (12)0.0464 (13)0.0474 (13)0.0066 (9)0.0008 (10)0.0031 (10)
C130.0351 (11)0.0384 (11)0.0361 (11)0.0060 (9)0.0066 (9)0.0061 (9)
C140.0361 (11)0.0357 (11)0.0326 (11)0.0037 (8)0.0089 (9)0.0029 (9)
C150.0401 (11)0.0393 (12)0.0362 (11)0.0040 (9)0.0063 (9)0.0006 (9)
C160.0509 (13)0.0364 (13)0.0552 (14)0.0020 (10)0.0070 (11)0.0008 (10)
C170.0496 (14)0.0437 (14)0.0684 (16)0.0034 (10)0.0013 (12)0.0113 (12)
C180.0463 (13)0.0555 (15)0.0545 (14)0.0028 (11)0.0062 (11)0.0096 (12)
C190.0446 (12)0.0409 (12)0.0464 (13)0.0073 (10)0.0045 (10)0.0008 (10)
C200.0717 (17)0.0573 (15)0.0546 (15)0.0148 (12)0.0060 (13)0.0137 (12)
C210.0457 (12)0.0308 (11)0.0368 (11)0.0048 (9)0.0088 (10)0.0003 (9)
C220.0500 (13)0.0346 (12)0.0384 (12)0.0045 (9)0.0084 (10)0.0001 (9)
C230.0683 (16)0.0442 (13)0.0469 (14)0.0026 (11)0.0240 (12)0.0012 (10)
C240.0886 (19)0.0477 (14)0.0348 (13)0.0011 (12)0.0138 (13)0.0004 (10)
C250.0724 (17)0.0533 (15)0.0411 (13)0.0071 (12)0.0002 (12)0.0060 (11)
C260.0522 (14)0.0417 (13)0.0453 (13)0.0029 (10)0.0059 (11)0.0025 (10)
C270.0477 (13)0.0617 (16)0.0732 (16)0.0001 (11)0.0248 (12)0.0006 (12)
Geometric parameters (Å, º) top
O1—C131.373 (2)C12—C131.402 (3)
O1—C11.462 (2)C12—H120.9300
O2—C151.360 (2)C14—C191.383 (3)
O2—C201.418 (2)C14—C151.402 (2)
O3—C221.370 (2)C15—C161.385 (3)
O3—C271.423 (2)C16—C171.374 (3)
C1—C21.503 (3)C16—H160.9300
C1—C211.539 (3)C17—C181.367 (3)
C1—C141.540 (3)C17—H170.9300
C2—C31.327 (3)C18—C191.385 (3)
C2—H20.9300C18—H180.9300
C3—C41.451 (2)C19—H190.9300
C3—H30.9300C20—H20A0.9600
C4—C131.367 (3)C20—H20B0.9600
C4—C51.433 (2)C20—H20C0.9600
C5—C61.407 (3)C21—C261.390 (3)
C5—C101.423 (3)C21—C221.395 (3)
C6—C71.363 (3)C22—C231.391 (3)
C6—H60.9300C23—C241.373 (3)
C7—C81.394 (3)C23—H230.9300
C7—H70.9300C24—C251.365 (3)
C8—C91.349 (3)C24—H240.9300
C8—H80.9300C25—C261.386 (3)
C9—C101.412 (3)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—C111.404 (3)C27—H27A0.9600
C11—C121.365 (3)C27—H27B0.9600
C11—H110.9300C27—H27C0.9600
C13—O1—C1119.98 (14)C15—C14—C1121.64 (16)
C15—O2—C20118.64 (16)O2—C15—C16122.75 (18)
C22—O3—C27118.63 (17)O2—C15—C14116.91 (17)
O1—C1—C2109.61 (14)C16—C15—C14120.33 (18)
O1—C1—C21105.50 (15)C17—C16—C15120.3 (2)
C2—C1—C21109.34 (15)C17—C16—H16119.9
O1—C1—C14107.23 (14)C15—C16—H16119.9
C2—C1—C14112.48 (16)C18—C17—C16120.7 (2)
C21—C1—C14112.40 (15)C18—C17—H17119.7
C3—C2—C1122.54 (17)C16—C17—H17119.7
C3—C2—H2118.7C17—C18—C19119.0 (2)
C1—C2—H2118.7C17—C18—H18120.5
C2—C3—C4120.74 (19)C19—C18—H18120.5
C2—C3—H3119.6C14—C19—C18122.3 (2)
C4—C3—H3119.6C14—C19—H19118.9
C13—C4—C5118.96 (17)C18—C19—H19118.9
C13—C4—C3116.66 (17)O2—C20—H20A109.5
C5—C4—C3124.18 (18)O2—C20—H20B109.5
C6—C5—C10117.98 (17)H20A—C20—H20B109.5
C6—C5—C4123.03 (17)O2—C20—H20C109.5
C10—C5—C4118.99 (18)H20A—C20—H20C109.5
C7—C6—C5120.9 (2)H20B—C20—H20C109.5
C7—C6—H6119.5C26—C21—C22117.87 (19)
C5—C6—H6119.5C26—C21—C1121.44 (18)
C6—C7—C8120.8 (2)C22—C21—C1120.66 (18)
C6—C7—H7119.6O3—C22—C23123.30 (19)
C8—C7—H7119.6O3—C22—C21116.28 (17)
C9—C8—C7120.1 (2)C23—C22—C21120.4 (2)
C9—C8—H8120.0C24—C23—C22120.0 (2)
C7—C8—H8120.0C24—C23—H23120.0
C8—C9—C10121.1 (2)C22—C23—H23120.0
C8—C9—H9119.4C25—C24—C23120.7 (2)
C10—C9—H9119.4C25—C24—H24119.7
C11—C10—C9122.05 (19)C23—C24—H24119.7
C11—C10—C5118.93 (18)C24—C25—C26119.5 (2)
C9—C10—C5119.01 (19)C24—C25—H25120.2
C12—C11—C10121.63 (19)C26—C25—H25120.2
C12—C11—H11119.2C25—C26—C21121.5 (2)
C10—C11—H11119.2C25—C26—H26119.3
C11—C12—C13119.19 (19)C21—C26—H26119.3
C11—C12—H12120.4O3—C27—H27A109.5
C13—C12—H12120.4O3—C27—H27B109.5
C4—C13—O1122.86 (16)H27A—C27—H27B109.5
C4—C13—C12122.23 (18)O3—C27—H27C109.5
O1—C13—C12114.79 (17)H27A—C27—H27C109.5
C19—C14—C15117.47 (18)H27B—C27—H27C109.5
C19—C14—C1120.88 (17)
C13—O1—C1—C231.4 (2)C21—C1—C14—C19124.91 (19)
C13—O1—C1—C21149.03 (15)O1—C1—C14—C1559.1 (2)
C13—O1—C1—C1490.97 (18)C2—C1—C14—C15179.68 (16)
O1—C1—C2—C323.9 (3)C21—C1—C14—C1556.4 (2)
C21—C1—C2—C3139.08 (19)C20—O2—C15—C163.9 (3)
C14—C1—C2—C395.3 (2)C20—O2—C15—C14175.88 (17)
C1—C2—C3—C43.6 (3)C19—C14—C15—O2179.72 (17)
C2—C3—C4—C1311.4 (3)C1—C14—C15—O21.0 (2)
C2—C3—C4—C5173.81 (18)C19—C14—C15—C160.1 (3)
C13—C4—C5—C6177.16 (18)C1—C14—C15—C16178.80 (17)
C3—C4—C5—C68.2 (3)O2—C15—C16—C17179.49 (19)
C13—C4—C5—C102.3 (3)C14—C15—C16—C170.3 (3)
C3—C4—C5—C10172.43 (17)C15—C16—C17—C180.2 (3)
C10—C5—C6—C70.3 (3)C16—C17—C18—C190.0 (3)
C4—C5—C6—C7179.15 (18)C15—C14—C19—C180.2 (3)
C5—C6—C7—C80.7 (3)C1—C14—C19—C18178.55 (18)
C6—C7—C8—C90.4 (3)C17—C18—C19—C140.3 (3)
C7—C8—C9—C100.5 (3)O1—C1—C21—C261.7 (2)
C8—C9—C10—C11178.9 (2)C2—C1—C21—C26116.11 (19)
C8—C9—C10—C50.9 (3)C14—C1—C21—C26118.23 (19)
C6—C5—C10—C11179.30 (17)O1—C1—C21—C22179.54 (15)
C4—C5—C10—C110.1 (3)C2—C1—C21—C2261.7 (2)
C6—C5—C10—C90.5 (3)C14—C1—C21—C2263.9 (2)
C4—C5—C10—C9179.99 (16)C27—O3—C22—C236.5 (3)
C9—C10—C11—C12178.13 (19)C27—O3—C22—C21173.94 (17)
C5—C10—C11—C121.7 (3)C26—C21—C22—O3179.92 (17)
C10—C11—C12—C131.4 (3)C1—C21—C22—O32.0 (2)
C5—C4—C13—O1178.45 (16)C26—C21—C22—C230.5 (3)
C3—C4—C13—O13.4 (3)C1—C21—C22—C23178.41 (17)
C5—C4—C13—C122.6 (3)O3—C22—C23—C24179.76 (19)
C3—C4—C13—C12172.44 (17)C21—C22—C23—C240.2 (3)
C1—O1—C13—C419.7 (3)C22—C23—C24—C250.1 (3)
C1—O1—C13—C12164.20 (16)C23—C24—C25—C260.2 (3)
C11—C12—C13—C40.8 (3)C24—C25—C26—C210.1 (3)
C11—C12—C13—O1176.95 (17)C22—C21—C26—C250.5 (3)
O1—C1—C14—C19119.59 (18)C1—C21—C26—C25178.37 (18)
C2—C1—C14—C191.0 (2)

Experimental details

Crystal data
Chemical formulaC27H22O3
Mr394.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.609 (3), 15.799 (4), 13.426 (4)
β (°) 98.189 (5)
V3)2017.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9496, 4105, 2445
Rint0.037
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.00
No. of reflections4105
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C131.373 (2)C1—C141.540 (3)
O1—C11.462 (2)C2—C31.327 (3)
C1—C21.503 (3)C3—C41.451 (2)
C1—C211.539 (3)C4—C131.367 (3)
C13—O1—C1119.98 (14)C3—C2—C1122.54 (17)
O1—C1—C2109.61 (14)C2—C3—C4120.74 (19)
O1—C1—C21105.50 (15)C13—C4—C3116.66 (17)
C2—C1—C21109.34 (15)C4—C13—O1122.86 (16)
O1—C1—C14107.23 (14)C26—C21—C1121.44 (18)
C2—C1—C14112.48 (16)C22—C21—C1120.66 (18)
C21—C1—C14112.40 (15)
C13—O1—C1—C231.4 (2)O1—C1—C14—C19119.59 (18)
C13—O1—C1—C21149.03 (15)C2—C1—C14—C191.0 (2)
C13—O1—C1—C1490.97 (18)O1—C1—C14—C1559.1 (2)
O1—C1—C2—C323.9 (3)C2—C1—C14—C15179.68 (16)
C21—C1—C2—C3139.08 (19)O1—C1—C21—C261.7 (2)
C14—C1—C2—C395.3 (2)C2—C1—C21—C26116.11 (19)
C1—C2—C3—C43.6 (3)C2—C1—C21—C2261.7 (2)
C1—O1—C13—C419.7 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds