Download citation
Download citation
link to html
The stable title tri­fluoro­methyl-substituted carbenyl metalloporphyrin, [Ru(C15H8F6)(C48H36N4)], has a five-coordinate Ru atom which is displaced from the porphyrin N4 plane towards the axial carbene ligand by 0.230 (3) Å. The Ru—C(carbene) bond coincides with a crystallographic twofold axis and its length of 1.841 (6) Å is notably shorter than the value of 1.868 (3) Å in the pyridine adduct.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010301669X/de1218sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010301669X/de1218Isup2.hkl
Contains datablock I

CCDC reference: 221065

Comment top

Carbenyl metalloporphyrin chemistry has been developed since the first synthesis of [(tpp)Fe(CCl2)] (where H2tpp is 5,10,15,20-tetraphenylporphyrin; Mansuy et al., 1977). Ruthenium(II)-porphyrin-carbene complexes have been reported as effective catalysts for the production of alkenes from ethyl diazoacetate (Collman et al., 1993). In order to investigate the catalytic mechanism, it seems important to isolate a five-coordinate ruthenium(II) porphyrin complex, as well as a six-coordinate adduct with a Lewis base. Recently, we studied the structural details of methanol- or pyridine-ligated six-coordinate ruthenium(II)-porphyrin-carbene complexes obtained from CH2Cl2 solution containing the relevant Lewis bases (Kawai et al., 2002; Harada et al., 2003). The title compound, [Ru(ttp){C(3—CF3C6H4)2}], (I) (where H2ttp is 5,10,15,20-tetra-p-tolylporphyrin), having a trifluoromethyl-substituted carbene ligand to facilitate examination by 19F NMR spectroscopy in solution, has been crystallized from CH2Cl2-hexane and is herein compared with its pyridine adduct [Ru(ttp){C(3—CF3C6H4)2}(pyridine)], (II) (Harada et al., 2003). \sch

The molecular structure of (I) features a square-pyramidally five-coordinate Ru atom, as shown in Fig. 1, in contrast with the octahedrally six-coordinate Ru atom in (II). In (I), the Ru—C25 bond coincides with a crystallographic twofold axis, so that the two 3-CF3 groups of the carbene ligand take an anti conformation, adopting a face-to-face arrangement with the porphyrin plane. The RuC bond length of 1.841 (6) Å in (I) is obviously shorter than the value of 1.868 (3) Å in (II). Based on UV-vis and 1H NMR spectroscopy, Galardon et al. (1998) described how excessive addition of pyridine to a ruthenium(II)-porphyrin-carbene complex caused dissociation of the carbene ligand. Destabilization of the RuC bond by the pyridine ligand seems consistent with the longer RuC bond length in (II), due to the trans influence of the pyridine ligand.

The angles about the carbene C25 atom in (I) [C26—C25—C26i 116.1 (5)° and Ru—C25—C26 121.9 (3)°; symmetry code: (i) y, x, −z Is this correct?] are close to the value of 120° for an ideal sp2 configuration. The porphyrin ring is in a distorted saddle conformation, as reported for two other five-coordinate ruthenium(II)-porphyrin-carbene complexes, [Ru(P*)(CPh2)]·2CH2Cl2, (III), and [Ru(P*){(C(Ph)CO2CH2CHCH2}]·3CH2Cl2, (IV) {H2P* is 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro- 1,4:5,8-dimethanoanthracen-9-yl]porphyrin; Che et al., 2001}. In (I), the largest deviations from the C20N4 least-squares plane are −0.118 (6) and 0.060 (5) Å for atoms C3 and C7, respectively. The Ru atom is displaced out of the N4 least-squares plane by 0.230 (3) Å toward the carbene ligand, and this is larger than the deviations of 0.19 and 0.22 Å in (III) and (IV), respectively.

Experimental top

Preparation of [(ttp)Ru(CO)] and the diaza compound N2C(3—CF3C6H4)2 was carried out according to the procedure of Collman et al. (1984) and the modified method for N2CPh2 (Smith & Howard, 1955), respectively. A solution of [(ttp)Ru(CO)] (0.50 g, 0.63 mmol) and a small excess amount of N2C(3—CF3C6H4)2 in CH2Cl2 (50 ml) was refluxed under a nitrogen atmosphere for 3 h. After removal of the solvent by rotary evaporation, the residue was chromatographed on a silica-gel column with toluene. A dark-red band was collected and evaporated to dryness. Recrystallization from a CH2Cl2-hexane solution gave air-stable dark-purple crystals of (I) (89%). Analysis found: C 70.35, H 4.03, N 5.09%; calculated for C66H44F6N4Ru: C 70.58, H 4.14, N 5.23%. Is C66 correct? C63 given in formula below. 1H NMR (CD2Cl2, 500 MHz, δ, p.p.m.): 2.66 (s, 12H), 3.04 (d, 2H), 3.27 (s, 2H), 6.30 (t, 2H), 6.73 (d, 2H), 7.49 (d, 4H), 7.52 (d, 4H), 7.71 (d, 4H), 7.90 (d, 4H), 8.41 (s, 8H). 19F NMR (CD2Cl2, 470 MHz, δ, p.p.m.): −62.88 (s). UV-vis (CH2Cl2): λmax (log ε) 398 (4.98), 427 s h (4.66), 537 (3.93).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl groups or 0.93 Å and Uiso(H) = 1.2Ueq(C) for the other H atoms.

At a late stage in the refinement, rotational disorder of the CF3 group was suggested by the rather large Ueq values (0.18–0.22 Å2) of the fluorine atoms and some peaks (0.29—0.35 e Å−3) in the differnce Fourier map. Accordingly, the CF3 group was assumed to be disordered in the two orientations. The fluorine atoms of the major components, F1A, F2A and F3A, were refined anisotropically, and those of the minor, F1B, F2B and F3B, were treated isotropically. The occupancy factors were refined to 0.846 (16) for the major, and 0.154 (16) for the minor.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Only one orientation of the disordered CF3 group is drawn. H atoms and p-tolyl groups have been omitted for clarity. Symmetry code: (i) y, x, −z. Is this correct?
(I) top
Crystal data top
[Ru(C15H8F6)(C48H36N4)]Dx = 1.393 Mg m3
Mr = 1072.09Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P41212Cell parameters from 25 reflections
Hall symbol: P 4abw 2nwθ = 13.4–14.8°
a = 11.817 (3) ŵ = 0.37 mm1
c = 36.608 (4) ÅT = 296 K
V = 5112.0 (19) Å3Prism, intense purple
Z = 40.25 × 0.23 × 0.20 mm
F(000) = 2192
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.053
Radiation source: rotating Mo anticathodeθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 015
ω scansk = 010
6817 measured reflectionsl = 4747
5890 independent reflections3 standard reflections every 150 reflections
4305 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5890 reflectionsΔρmax = 0.52 e Å3
348 parametersΔρmin = 0.75 e Å3
0 restraintsAbsolute structure: Flack (1983), 2333 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
[Ru(C15H8F6)(C48H36N4)]Z = 4
Mr = 1072.09Mo Kα radiation
Tetragonal, P41212µ = 0.37 mm1
a = 11.817 (3) ÅT = 296 K
c = 36.608 (4) Å0.25 × 0.23 × 0.20 mm
V = 5112.0 (19) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.053
6817 measured reflections3 standard reflections every 150 reflections
5890 independent reflections intensity decay: none
4305 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.52 e Å3
S = 1.02Δρmin = 0.75 e Å3
5890 reflectionsAbsolute structure: Flack (1983), 2333 Friedel pairs
348 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.14034 (3)0.14034 (3)0.00000.03459 (13)
N10.2576 (3)0.0547 (3)0.02997 (9)0.0402 (8)
N20.0864 (3)0.2177 (3)0.04711 (9)0.0390 (8)
C10.3359 (4)0.0219 (4)0.01690 (13)0.0427 (11)
C20.3957 (4)0.0715 (5)0.04674 (13)0.0563 (14)
H10.45360.12450.04510.068*
C30.3529 (5)0.0274 (5)0.07779 (13)0.0578 (14)
H20.37580.04480.10140.069*
C40.2661 (4)0.0508 (4)0.06787 (12)0.0443 (11)
C50.1970 (4)0.1100 (4)0.09233 (11)0.0422 (11)
C60.1158 (4)0.1902 (4)0.08222 (11)0.0423 (10)
C70.0482 (4)0.2561 (4)0.10724 (12)0.0502 (12)
H30.05020.25180.13260.060*
C80.0182 (5)0.3247 (5)0.08732 (13)0.0527 (13)
H40.06930.37770.09630.063*
C90.0046 (4)0.3007 (4)0.04941 (11)0.0428 (10)
C100.0455 (4)0.3560 (5)0.02015 (12)0.0463 (10)
C110.2124 (4)0.0834 (4)0.13196 (11)0.0460 (10)
C120.1853 (6)0.0221 (5)0.14540 (15)0.0729 (18)
H50.15670.07630.12950.088*
C130.1992 (6)0.0504 (6)0.18196 (16)0.0767 (19)
H60.17970.12230.19010.092*
C140.2421 (5)0.0281 (5)0.20621 (13)0.0602 (14)
C150.2675 (6)0.1293 (6)0.19379 (16)0.0797 (19)
H70.29520.18260.21020.096*
C160.2551 (6)0.1614 (5)0.15686 (15)0.0699 (17)
H80.27510.23380.14930.084*
C170.2584 (6)0.0062 (7)0.24587 (15)0.089 (2)
H90.21520.04330.26130.134*
H100.33710.00070.25210.134*
H110.23320.08270.24920.134*
C180.1347 (5)0.4426 (4)0.02864 (12)0.0521 (12)
C190.2431 (6)0.4111 (6)0.0368 (2)0.082 (2)
H120.26250.33490.03640.099*
C200.3238 (6)0.4904 (8)0.0458 (2)0.093 (2)
H130.39640.46550.05150.112*
C210.3028 (7)0.6012 (7)0.04665 (17)0.086 (2)
C220.1937 (8)0.6331 (7)0.0383 (2)0.105 (3)
H140.17510.70950.03840.126*
C230.1111 (6)0.5543 (6)0.0296 (2)0.088 (2)
H150.03800.57880.02440.106*
C240.3917 (8)0.6862 (8)0.0565 (2)0.133 (4)
H160.35950.76080.05590.199*
H170.41980.67060.08050.199*
H180.45270.68190.03920.199*
C250.0302 (4)0.0302 (4)0.00000.0425 (13)
C260.0274 (4)0.0060 (4)0.03397 (12)0.0465 (11)
C270.1276 (5)0.0451 (5)0.04504 (13)0.0543 (12)
H190.15780.10380.03120.065*
C280.1832 (5)0.0099 (6)0.07634 (15)0.0618 (15)
C290.1416 (7)0.0785 (6)0.09658 (16)0.0772 (18)
H200.17980.10320.11730.093*
C300.0428 (6)0.1302 (7)0.08584 (19)0.084 (2)
H210.01370.18980.09950.100*
C310.0137 (6)0.0941 (5)0.05476 (17)0.0689 (16)
H220.08040.13000.04780.083*
C320.2874 (7)0.0704 (9)0.0880 (2)0.088 (2)
F1A0.3503 (6)0.1077 (10)0.0611 (2)0.146 (4)0.846 (16)
F2A0.3585 (7)0.0090 (9)0.1067 (3)0.166 (5)0.846 (16)
F3A0.2664 (7)0.1619 (9)0.1073 (3)0.181 (5)0.846 (16)
F1B0.300 (3)0.053 (2)0.1218 (8)0.073 (10)*0.154 (16)
F2B0.303 (3)0.163 (3)0.0780 (12)0.096 (13)*0.154 (16)
F3B0.374 (4)0.020 (4)0.0750 (13)0.116 (16)*0.154 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.03592 (15)0.03592 (15)0.03193 (19)0.0059 (2)0.00298 (14)0.00298 (14)
N10.043 (2)0.045 (2)0.0330 (18)0.0077 (17)0.0027 (16)0.0005 (15)
N20.0388 (19)0.044 (2)0.0340 (17)0.0092 (16)0.0002 (15)0.0054 (15)
C10.041 (3)0.043 (2)0.044 (2)0.011 (2)0.0040 (19)0.0011 (19)
C20.058 (3)0.061 (3)0.050 (3)0.025 (2)0.001 (2)0.001 (2)
C30.067 (3)0.065 (3)0.042 (2)0.021 (3)0.002 (3)0.009 (2)
C40.050 (3)0.047 (3)0.035 (2)0.009 (2)0.000 (2)0.0013 (19)
C50.050 (3)0.045 (3)0.032 (2)0.005 (2)0.0000 (19)0.0012 (17)
C60.046 (3)0.046 (2)0.034 (2)0.004 (2)0.0027 (18)0.0041 (18)
C70.058 (3)0.057 (3)0.036 (2)0.011 (2)0.005 (2)0.010 (2)
C80.055 (3)0.063 (3)0.040 (2)0.016 (2)0.006 (2)0.015 (2)
C90.047 (3)0.045 (3)0.037 (2)0.007 (2)0.0058 (19)0.0090 (19)
C100.047 (3)0.045 (2)0.047 (2)0.011 (2)0.0009 (19)0.010 (2)
C110.052 (3)0.051 (3)0.035 (2)0.009 (2)0.0039 (19)0.004 (2)
C120.112 (5)0.061 (3)0.046 (3)0.007 (3)0.007 (3)0.001 (3)
C130.109 (5)0.068 (4)0.053 (3)0.001 (4)0.007 (3)0.015 (3)
C140.069 (4)0.076 (4)0.036 (2)0.012 (3)0.000 (2)0.007 (3)
C150.111 (5)0.080 (4)0.048 (3)0.024 (4)0.023 (3)0.001 (3)
C160.092 (5)0.066 (4)0.052 (3)0.013 (3)0.017 (3)0.008 (3)
C170.102 (5)0.121 (6)0.044 (3)0.020 (4)0.011 (3)0.011 (4)
C180.055 (3)0.059 (3)0.043 (2)0.018 (3)0.002 (2)0.006 (2)
C190.071 (4)0.075 (4)0.101 (5)0.017 (3)0.022 (4)0.002 (4)
C200.062 (4)0.116 (7)0.101 (6)0.046 (4)0.021 (4)0.011 (5)
C210.095 (5)0.107 (6)0.056 (3)0.064 (5)0.007 (3)0.022 (4)
C220.117 (7)0.066 (4)0.131 (7)0.034 (5)0.011 (5)0.037 (5)
C230.064 (4)0.066 (4)0.135 (6)0.016 (3)0.007 (4)0.036 (4)
C240.145 (9)0.160 (9)0.093 (5)0.112 (7)0.001 (5)0.027 (6)
C250.0405 (18)0.0405 (18)0.047 (3)0.007 (2)0.001 (2)0.001 (2)
C260.049 (3)0.043 (3)0.047 (2)0.011 (2)0.003 (2)0.0003 (19)
C270.053 (3)0.061 (3)0.049 (3)0.006 (3)0.004 (2)0.006 (2)
C280.060 (3)0.076 (4)0.049 (3)0.019 (3)0.007 (3)0.006 (3)
C290.084 (4)0.092 (4)0.056 (3)0.025 (4)0.010 (3)0.021 (3)
C300.086 (5)0.089 (5)0.077 (4)0.016 (4)0.002 (4)0.032 (4)
C310.071 (4)0.062 (4)0.073 (4)0.002 (3)0.001 (3)0.014 (3)
C320.079 (5)0.120 (7)0.066 (4)0.002 (5)0.021 (4)0.016 (5)
F1A0.087 (4)0.244 (12)0.105 (5)0.056 (6)0.032 (4)0.051 (6)
F2A0.093 (5)0.224 (8)0.181 (9)0.012 (6)0.075 (6)0.110 (7)
F3A0.126 (6)0.189 (9)0.226 (12)0.018 (6)0.037 (7)0.112 (8)
Geometric parameters (Å, º) top
Ru—N12.036 (4)C17—H100.9600
Ru—N22.053 (3)C17—H110.9600
Ru—C251.841 (6)C18—C231.349 (8)
N1—C11.380 (6)C18—C191.367 (9)
N1—C41.392 (5)C19—C201.377 (9)
N2—C61.371 (6)C19—H120.9300
N2—C91.380 (6)C20—C211.333 (11)
C1—C10i1.405 (6)C20—H130.9300
C1—C21.427 (7)C21—C221.377 (12)
C2—C31.349 (7)C21—C241.498 (8)
C2—H10.9300C22—C231.386 (9)
C3—C41.427 (7)C22—H140.9300
C3—H20.9300C23—H150.9300
C4—C51.400 (6)C24—H160.9600
C5—C61.399 (6)C24—H170.9600
C5—C111.495 (6)C24—H180.9600
C6—C71.443 (6)C25—C26i1.480 (5)
C7—C81.343 (7)C25—C261.480 (5)
C7—H30.9300C26—C311.379 (8)
C8—C91.442 (6)C26—C271.390 (8)
C8—H40.9300C27—C281.385 (7)
C9—C101.387 (6)C27—H190.9300
C10—C1i1.405 (6)C28—C291.372 (9)
C10—C181.502 (7)C28—C321.487 (10)
C11—C121.379 (8)C29—C301.375 (10)
C11—C161.391 (8)C29—H200.9300
C12—C131.389 (8)C30—C311.386 (9)
C12—H50.9300C30—H210.9300
C13—C141.380 (9)C31—H220.9300
C13—H60.9300C32—F1A1.311 (11)
C14—C151.314 (9)C32—F2A1.303 (10)
C14—C171.519 (7)C32—F3A1.314 (12)
C15—C161.412 (8)C32—F1B1.26 (3)
C15—H70.9300C32—F2B1.16 (4)
C16—H80.9300C32—F3B1.28 (4)
C17—H90.9600
N1—Ru—C2597.47 (11)C23—C18—C19117.1 (5)
N2—Ru—C2595.47 (11)C23—C18—C10121.8 (6)
N1—Ru—N1i165.1 (2)C19—C18—C10121.1 (5)
N1—Ru—N288.84 (14)C18—C19—C20121.1 (7)
N1—Ru—N2i89.74 (14)C18—C19—H12119.5
N2—Ru—N2i169.1 (2)C20—C19—H12119.5
C1—N1—C4106.0 (4)C21—C20—C19123.0 (7)
C1—N1—Ru126.5 (3)C21—C20—H13118.5
C4—N1—Ru127.1 (3)C19—C20—H13118.5
C6—N2—C9106.8 (3)C20—C21—C22116.0 (6)
C6—N2—Ru127.2 (3)C20—C21—C24122.3 (8)
C9—N2—Ru125.8 (3)C22—C21—C24121.8 (8)
N1—C1—C10i125.3 (4)C21—C22—C23121.8 (8)
N1—C1—C2109.6 (4)C21—C22—H14119.1
C10i—C1—C2125.0 (4)C23—C22—H14119.1
C3—C2—C1107.5 (4)C18—C23—C22121.1 (7)
C3—C2—H1126.2C18—C23—H15119.4
C1—C2—H1126.2C22—C23—H15119.4
C2—C3—C4107.7 (4)C21—C24—H16109.5
C2—C3—H2126.1C21—C24—H17109.5
C4—C3—H2126.1H16—C24—H17109.5
N1—C4—C5125.3 (4)C21—C24—H18109.5
N1—C4—C3109.1 (4)H16—C24—H18109.5
C5—C4—C3125.5 (4)H17—C24—H18109.5
C6—C5—C4124.8 (4)C26—C25—C26i116.1 (5)
C6—C5—C11118.8 (4)Ru—C25—C26121.9 (3)
C4—C5—C11116.4 (4)C31—C26—C27117.9 (5)
N2—C6—C5125.6 (4)C31—C26—C25121.3 (5)
N2—C6—C7109.1 (4)C27—C26—C25120.7 (4)
C5—C6—C7125.3 (4)C28—C27—C26121.0 (5)
C8—C7—C6107.7 (4)C28—C27—H19119.5
C8—C7—H3126.1C26—C27—H19119.5
C6—C7—H3126.1C29—C28—C27120.4 (6)
C7—C8—C9107.1 (4)C29—C28—C32120.5 (6)
C7—C8—H4126.4C27—C28—C32119.1 (6)
C9—C8—H4126.4C28—C29—C30119.2 (6)
N2—C9—C10125.9 (4)C28—C29—H20120.4
N2—C9—C8109.2 (4)C30—C29—H20120.4
C10—C9—C8124.8 (4)C29—C30—C31120.5 (7)
C9—C10—C1i125.5 (4)C29—C30—H21119.8
C9—C10—C18117.5 (4)C31—C30—H21119.8
C1i—C10—C18117.0 (4)C26—C31—C30121.0 (6)
C12—C11—C16116.7 (5)C26—C31—H22119.5
C12—C11—C5120.5 (5)C30—C31—H22119.5
C16—C11—C5122.7 (5)C28—C32—F1A114.5 (7)
C11—C12—C13122.3 (6)C28—C32—F2A114.6 (8)
C11—C12—H5118.9C28—C32—F3A113.2 (8)
C13—C12—H5118.9C28—C32—F1B107.4 (15)
C14—C13—C12120.1 (6)C28—C32—F2B119 (2)
C14—C13—H6119.9C28—C32—F3B109.4 (18)
C12—C13—H6119.9F1A—C32—F2A102.4 (9)
C15—C14—C13118.2 (5)F2A—C32—F3A107.4 (9)
C15—C14—C17123.0 (6)F3A—C32—F1A103.5 (11)
C13—C14—C17118.8 (6)F1B—C32—F2B116 (3)
C14—C15—C16123.5 (6)F2B—C32—F3B101 (3)
C14—C15—H7118.2F3B—C32—F1B101 (3)
C16—C15—H7118.2F1A—C32—F1B136.6 (16)
C11—C16—C15119.1 (6)F1A—C32—F2B50 (2)
C11—C16—H8120.4F1A—C32—F3B55 (2)
C15—C16—H8120.4F2A—C32—F1B47.3 (13)
C14—C17—H9109.5F2A—C32—F2B126 (2)
C14—C17—H10109.5F2A—C32—F3B54 (2)
H9—C17—H10109.5F3A—C32—F1B68.4 (13)
C14—C17—H11109.5F3A—C32—F2B55 (2)
H9—C17—H11109.5F3A—C32—F3B137.3 (19)
H10—C17—H11109.5
C25—Ru—N1—C185.2 (4)C16—C11—C12—C130.1 (10)
N1i—Ru—N1—C194.8 (4)C5—C11—C12—C13179.5 (6)
N2—Ru—N1—C1179.5 (4)C11—C12—C13—C140.4 (11)
N2i—Ru—N1—C110.3 (4)C12—C13—C14—C150.8 (11)
C25—Ru—N1—C486.3 (4)C12—C13—C14—C17178.9 (6)
N1i—Ru—N1—C493.7 (4)C13—C14—C15—C161.1 (11)
N2—Ru—N1—C49.1 (4)C17—C14—C15—C16178.6 (7)
N2i—Ru—N1—C4178.2 (4)C12—C11—C16—C150.3 (9)
C25—Ru—N2—C686.7 (4)C5—C11—C16—C15179.6 (6)
N1—Ru—N2—C610.7 (4)C14—C15—C16—C110.9 (12)
N1i—Ru—N2—C6175.8 (4)C9—C10—C18—C2398.3 (7)
N2i—Ru—N2—C693.3 (4)C1i—C10—C18—C2383.3 (7)
C25—Ru—N2—C986.6 (4)C9—C10—C18—C1979.6 (7)
N1—Ru—N2—C9176.1 (4)C1i—C10—C18—C1998.8 (7)
N1i—Ru—N2—C910.9 (4)C23—C18—C19—C200.2 (11)
N2i—Ru—N2—C993.4 (4)C10—C18—C19—C20177.8 (6)
C4—N1—C1—C10i179.9 (5)C18—C19—C20—C210.8 (13)
Ru—N1—C1—C10i7.0 (8)C19—C20—C21—C220.5 (12)
C4—N1—C1—C21.6 (6)C19—C20—C21—C24180.0 (8)
Ru—N1—C1—C2174.6 (3)C20—C21—C22—C230.3 (12)
N1—C1—C2—C31.2 (6)C24—C21—C22—C23179.1 (8)
C10i—C1—C2—C3179.6 (6)C19—C18—C23—C220.6 (11)
C1—C2—C3—C40.3 (7)C10—C18—C23—C22178.6 (7)
C1—N1—C4—C5175.8 (5)C21—C22—C23—C180.9 (13)
Ru—N1—C4—C52.9 (7)N1—Ru—C25—C26i114.7 (3)
C1—N1—C4—C31.5 (6)N1i—Ru—C25—C26i65.3 (3)
Ru—N1—C4—C3174.3 (3)N2—Ru—C25—C26i155.7 (3)
C2—C3—C4—N10.8 (7)N2i—Ru—C25—C26i24.3 (3)
C2—C3—C4—C5176.5 (5)N1—Ru—C25—C2665.3 (3)
N1—C4—C5—C66.3 (8)N1i—Ru—C25—C26114.7 (3)
C3—C4—C5—C6176.9 (5)N2—Ru—C25—C2624.3 (3)
N1—C4—C5—C11173.4 (5)N2i—Ru—C25—C26155.7 (3)
C3—C4—C5—C113.4 (8)C26i—C25—C26—C3189.2 (5)
C9—N2—C6—C5179.5 (5)Ru—C25—C26—C3190.8 (5)
Ru—N2—C6—C56.3 (7)C26i—C25—C26—C2788.0 (4)
C9—N2—C6—C71.5 (5)Ru—C25—C26—C2792.0 (4)
Ru—N2—C6—C7172.8 (3)C31—C26—C27—C281.2 (8)
C4—C5—C6—N24.5 (8)C25—C26—C27—C28178.5 (5)
C11—C5—C6—N2175.1 (4)C26—C27—C28—C291.7 (9)
C4—C5—C6—C7176.6 (5)C26—C27—C28—C32177.3 (6)
C11—C5—C6—C73.7 (8)C27—C28—C29—C301.4 (10)
N2—C6—C7—C81.9 (6)C32—C28—C29—C30177.7 (7)
C5—C6—C7—C8179.0 (5)C28—C29—C30—C310.6 (11)
C6—C7—C8—C91.5 (6)C27—C26—C31—C300.4 (9)
C6—N2—C9—C10177.2 (5)C25—C26—C31—C30177.7 (6)
Ru—N2—C9—C108.4 (7)C29—C30—C31—C260.0 (11)
C6—N2—C9—C80.6 (6)C29—C28—C32—F2B157 (3)
Ru—N2—C9—C8173.8 (3)C27—C28—C32—F2B22 (3)
C7—C8—C9—N20.6 (6)C29—C28—C32—F1B21.8 (19)
C7—C8—C9—C10178.5 (5)C27—C28—C32—F1B157.3 (16)
N2—C9—C10—C1i0.7 (9)C29—C28—C32—F3B87 (3)
C8—C9—C10—C1i178.1 (5)C27—C28—C32—F3B93 (3)
N2—C9—C10—C18178.9 (5)C29—C28—C32—F2A28.6 (13)
C8—C9—C10—C183.6 (8)C27—C28—C32—F2A152.3 (10)
C6—C5—C11—C12113.7 (6)C29—C28—C32—F1A146.6 (10)
C4—C5—C11—C1266.0 (7)C27—C28—C32—F1A34.3 (13)
C6—C5—C11—C1667.0 (7)C29—C28—C32—F3A95.1 (11)
C4—C5—C11—C16113.3 (6)C27—C28—C32—F3A83.9 (10)
Symmetry code: (i) y, x, z.

Experimental details

Crystal data
Chemical formula[Ru(C15H8F6)(C48H36N4)]
Mr1072.09
Crystal system, space groupTetragonal, P41212
Temperature (K)296
a, c (Å)11.817 (3), 36.608 (4)
V3)5112.0 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6817, 5890, 4305
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.02
No. of reflections5890
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.75
Absolute structureFlack (1983), 2333 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, CrystalStructure (Molecular Structure Corporation & Rigaku, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ru—N12.036 (4)Ru—C251.841 (6)
Ru—N22.053 (3)
N1—Ru—C2597.47 (11)N1—Ru—N2i89.74 (14)
N2—Ru—C2595.47 (11)N2—Ru—N2i169.1 (2)
N1—Ru—N1i165.1 (2)C26—C25—C26i116.1 (5)
N1—Ru—N288.84 (14)Ru—C25—C26121.9 (3)
Symmetry code: (i) y, x, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds