Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Fe(C5H5)(C9H9O3)], has Fe–centroid distances of 1.6551 (11) and 1.6445 (11) Å to the cyclo­penta­dienyl rings. The carboxyl group forms hydrogen bonds in the extremely rare synanti chain motif, with O...O distances of 2.667 (3) and 2.655 (3) Å. The carboxyl group and the hydrogen-bonded chains are disordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006309/de1207sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006309/de1207Isup2.hkl
Contains datablock I

CCDC reference: 214139

Comment top

In the process of preparing 2-propenyl 4-ferrocenyl-4-oxobutanoate, reported earlier by our group (Giraldés et al., 2001), the title compound, (I), was used as a starting material. It is a common, commercially available, ferrocene, but its crystal structure has not been reported previously, only that of a complex of its carboxylate with a zirconocene (Ma et al., 1989). Thus, we undertook to determine its structure at low temperature.

The molecule is depicted in Fig. 1, which shows the normal eclipsed conformation of the cyclopentadienyl (Cp) rings. The Fe–centroid distance to the unsubstituted ring is 1.6551 (11) Å, while that to the substituted ring is slightly shorter, at 1.6445 (11) Å, and the centroid–Fe–centroid angle is linear, 179.95 (7)°. The unsubstituted Cp ring forms a weak intramolecular C—H···O hydrogen bond (Steiner & Desiraju, 1998) with the carboxyl group (Table 2). This hydrogen bond was also present in 2-propenyl 4-ferrocenyl-4-oxobutanoate (Giraldés et al., 2001), but involved an ester carbonyl O atom, and was somewhat shorter [3.289 (2) Å] but slightly less linear (159°).

The carboxyl group is disordered, with equal C—O distances midway between those expected for ordered COOH groups (Borthwick, 1980). The carboxyl H atoms must also be disordered over two half-populated positions, and both sites were clearly visible in difference maps. The half H atom on O3 lies in the synplanar position usually observed in carboxylic acids, while that on O2 lies in the rare antiplanar position normally found only in intramolecular hydrogen bonds (Leiserowitz, 1976). The synplanar conformation is more stable by 8.37–16.74 kJ mol−1 (Miyazawa & Pitzer, 1959; Lide, 1964; Karpfen, 1984; Marcoccia et al., 1990). The antiplanar conformation was apparently unknown in intermolecular hydrogen bonds before about 1980 (Fujinaga & James, 1980). We have previously encountered it in hydrogen bonds to water molecules from carboxyl groups on crown ethers and their metal ion complexes (Dutton et al., 1990, 1993). In those cases, the water molecule was encapsulated by the crown, which had insufficient flexibility to allow a syn-H atom on the carboxyl group to donate to the water molecule. This could only happen with the antiplanar conformation, so those cases were somewhat analogous to intramolecular hydrogen bonds.

Hydrogen bonding involving the carboxyl groups is illustrated in Fig. 2. Both partially occupied carboxyl H-atom positions lie near inversion centers, that on O2 near 0,1/2,0, and that on O3 near 0,1/2,1/2. Thus, the carboxyl groups form disordered hydrogen-bonded chains running in the [001] direction, and these chains are of the rare syn–anti type, similar to that seen in the isostructural compounds 4-bromocubane-1-carboxylic acid and its iodo analog (Kuduva et al., 1999). Ordered syn–anti chains are also present in other cubane carboxylic acids (Ermer & Lex, 1987) and seem to be the dominant pattern in that class of compounds, despite occurring for an estimated 0.15% of all organic carboxylic acids (Kuduva et al., 1999). The existence of the antiplanar conformation in the carboxyl group of the cubane acids was attributed to its allowance of C—H···O hydrogen bonding by the acidic cubane H atoms, an idea which is supported by the structure of formic acid–HF (Wiechert et al., 1997), which is able to form C—H···O hydrogen bonds in conjunction with anti–anti carboxyl chains. The role of C—H···O hydrogen bonding in allowing the less stable anti carboxyl group conformation in (I) is less clear. In addition to the intramolecular interaction mentioned above, (I) has a shorter but less linear intermolecular hydrogen bond involving atom C13 and ketone atom O1 (Table 2). However, it is not obvious why (I) could not form the ubiquitous syn–syn carboxyl dimers or syn–syn chains and still be able to form both the observed intramolecular and intermolecular C—H···O hydrogen bonds.

The cell dimensions at 292 K, measured using a CAD-4 diffractometer with Cu Kα radiation (25 reflections, 14 < θ < 27°), are a = 5.7331 (4), b = 27.099 (3), c = 7.7730 (6) Å and β = 100.622 (5)°.

Experimental top

The title compound was synthesized and purified following the procedure of Suzuki et al. (1993). It was then further purified using column chromatography (hexanes/diethyl ether, 9:1). Crystals used for X-ray analysis where grown from a hexanes/diethyl ether (9:1) solution.

Refinement top

H atoms were placed in calculated positions, with C—H bond lengths in the range 0.95–0.99 Å and O—H distances of 0.84 Å, and with Uiso = 1.2Ueq of the attached atom (1.5Ueq for OH groups), and thereafter treated as riding. A torsional parameter was refined for each OH group. The carboxyl groups are disordered, with the H atoms half populated and lying near inversion centers.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2002).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the atom-numbering scheme and ellipsoids at the 50% probability level. Dashed bonds are to half-populated H-atom sites.
[Figure 2] Fig. 2. A portion of the disordered hydrogen-bonded chain.
3-carboxy-1-oxopropylferrocene top
Crystal data top
[Fe(C5H5)(C9H9O3)]F(000) = 592
Mr = 286.10Dx = 1.631 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2661 reflections
a = 5.673 (2) Åθ = 2.5–27.5°
b = 26.892 (6) ŵ = 1.29 mm1
c = 7.764 (2) ÅT = 120 K
β = 100.433 (10)°Prism, orange
V = 1164.9 (6) Å30.20 × 0.13 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD (fitted with an Oxford Cryosystems Cryostream cooler)
diffractometer
2673 independent reflections
Radiation source: fine-focus sealed tube2059 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.804, Tmax = 0.914k = 3434
13367 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.015P)2 + 1.1438P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2673 reflectionsΔρmax = 0.39 e Å3
166 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (5)
Crystal data top
[Fe(C5H5)(C9H9O3)]V = 1164.9 (6) Å3
Mr = 286.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.673 (2) ŵ = 1.29 mm1
b = 26.892 (6) ÅT = 120 K
c = 7.764 (2) Å0.20 × 0.13 × 0.07 mm
β = 100.433 (10)°
Data collection top
Nonius KappaCCD (fitted with an Oxford Cryosystems Cryostream cooler)
diffractometer
2673 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
2059 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.914Rint = 0.025
13367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
2673 reflectionsΔρmin = 0.33 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.54330 (5)0.334308 (12)0.70899 (4)0.01418 (11)
O10.1573 (3)0.37150 (6)0.2794 (2)0.0218 (4)
O20.0120 (3)0.49756 (6)0.1697 (2)0.0226 (4)
H2O0.01180.49670.06610.034*0.50
O30.1794 (3)0.47965 (6)0.4363 (2)0.0224 (4)
H3O0.05870.49440.46010.034*0.50
C10.4930 (4)0.33179 (9)0.4433 (3)0.0151 (5)
C20.3736 (4)0.29077 (8)0.5086 (3)0.0176 (5)
H20.20670.28390.48130.021*
C30.5467 (4)0.26217 (9)0.6208 (3)0.0192 (5)
H30.51610.23290.68170.023*
C40.7750 (4)0.28488 (9)0.6267 (3)0.0193 (5)
H40.92270.27340.69220.023*
C50.7439 (4)0.32771 (9)0.5176 (3)0.0173 (5)
H50.86690.34970.49740.021*
C60.3717 (4)0.37340 (9)0.3403 (3)0.0160 (5)
C70.5189 (4)0.41877 (9)0.3153 (3)0.0182 (5)
H7A0.65720.40850.26200.022*
H7B0.58240.43360.43110.022*
C80.3741 (4)0.45786 (9)0.1991 (3)0.0191 (5)
H8A0.48230.48550.18090.023*
H8B0.31240.44290.08330.023*
C90.1673 (4)0.47871 (9)0.2713 (3)0.0190 (5)
C100.4095 (4)0.40089 (9)0.7748 (3)0.0233 (6)
H100.33850.42570.69490.028*
C110.2885 (4)0.36111 (10)0.8404 (3)0.0267 (6)
H110.12130.35460.81290.032*
C120.4600 (5)0.33267 (9)0.9542 (3)0.0244 (6)
H120.42830.30361.01590.029*
C130.6871 (4)0.35507 (9)0.9600 (3)0.0221 (5)
H130.83460.34381.02660.027*
C140.6553 (4)0.39696 (9)0.8495 (3)0.0221 (6)
H140.77830.41890.82870.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01359 (17)0.01571 (18)0.01326 (18)0.00013 (14)0.00252 (12)0.00178 (15)
O10.0167 (9)0.0283 (10)0.0188 (9)0.0002 (7)0.0007 (7)0.0016 (7)
O20.0229 (9)0.0256 (10)0.0191 (9)0.0071 (7)0.0030 (7)0.0054 (8)
O30.0248 (9)0.0279 (10)0.0149 (9)0.0103 (8)0.0046 (7)0.0000 (7)
C10.0170 (11)0.0180 (12)0.0107 (11)0.0013 (10)0.0033 (9)0.0028 (10)
C20.0182 (12)0.0198 (13)0.0147 (12)0.0026 (10)0.0023 (10)0.0055 (10)
C30.0262 (13)0.0159 (13)0.0155 (12)0.0001 (10)0.0042 (10)0.0044 (10)
C40.0171 (12)0.0216 (13)0.0193 (13)0.0052 (10)0.0032 (10)0.0024 (10)
C50.0165 (11)0.0202 (13)0.0165 (12)0.0015 (10)0.0062 (9)0.0024 (10)
C60.0187 (12)0.0203 (13)0.0101 (12)0.0010 (10)0.0052 (10)0.0029 (9)
C70.0192 (12)0.0203 (13)0.0159 (13)0.0023 (10)0.0053 (10)0.0013 (10)
C80.0242 (13)0.0183 (13)0.0164 (13)0.0023 (10)0.0080 (10)0.0016 (10)
C90.0207 (13)0.0134 (12)0.0234 (14)0.0009 (10)0.0049 (10)0.0001 (10)
C100.0324 (15)0.0215 (13)0.0155 (13)0.0122 (11)0.0034 (11)0.0037 (10)
C110.0163 (12)0.0401 (17)0.0252 (14)0.0033 (11)0.0076 (11)0.0157 (12)
C120.0403 (15)0.0185 (13)0.0186 (13)0.0044 (12)0.0166 (11)0.0023 (11)
C130.0236 (13)0.0268 (14)0.0135 (12)0.0049 (11)0.0032 (10)0.0054 (11)
C140.0256 (13)0.0196 (13)0.0228 (14)0.0064 (10)0.0091 (11)0.0089 (11)
Geometric parameters (Å, º) top
Fe1—C12.032 (2)C3—H30.9500
Fe1—C22.043 (2)C4—C51.421 (3)
Fe1—C32.058 (2)C4—H40.9500
Fe1—C42.051 (2)C5—H50.9500
Fe1—C52.036 (2)C6—C71.511 (3)
Fe1—C102.045 (2)C7—C81.525 (3)
Fe1—C112.046 (2)C7—H7A0.9900
Fe1—C122.043 (2)C7—H7B0.9900
Fe1—C132.049 (2)C8—C91.498 (3)
Fe1—C142.045 (2)C8—H8A0.9900
O1—C61.224 (3)C8—H8B0.9900
O2—C91.274 (3)C10—C141.414 (3)
O2—H2O0.8400C10—C111.415 (4)
O3—C91.271 (3)C10—H100.9500
O3—H3O0.8400C11—C121.414 (4)
C1—C21.435 (3)C11—H110.9500
C1—C51.440 (3)C12—C131.416 (3)
C1—C61.472 (3)C12—H120.9500
C2—C31.416 (3)C13—C141.408 (3)
C2—H20.9500C13—H130.9500
C3—C41.425 (3)C14—H140.9500
C1—Fe1—C541.46 (9)C4—C3—H3125.9
C1—Fe1—C241.22 (9)Fe1—C3—H3127.0
C5—Fe1—C269.10 (9)C5—C4—C3108.3 (2)
C1—Fe1—C12158.68 (10)C5—C4—Fe169.09 (13)
C5—Fe1—C12158.75 (10)C3—C4—Fe169.99 (13)
C2—Fe1—C12122.70 (10)C5—C4—H4125.8
C1—Fe1—C14122.83 (10)C3—C4—H4125.8
C5—Fe1—C14107.49 (10)Fe1—C4—H4126.7
C2—Fe1—C14159.44 (10)C4—C5—C1107.9 (2)
C12—Fe1—C1467.83 (10)C4—C5—Fe170.22 (13)
C1—Fe1—C10107.01 (9)C1—C5—Fe169.11 (12)
C5—Fe1—C10122.70 (10)C4—C5—H5126.0
C2—Fe1—C10123.14 (10)C1—C5—H5126.0
C12—Fe1—C1068.12 (10)Fe1—C5—H5126.2
C14—Fe1—C1040.44 (10)O1—C6—C1120.9 (2)
C1—Fe1—C11122.42 (10)O1—C6—C7121.2 (2)
C5—Fe1—C11158.98 (10)C1—C6—C7117.96 (19)
C2—Fe1—C11107.66 (10)C6—C7—C8112.43 (19)
C12—Fe1—C1140.48 (10)C6—C7—H7A109.1
C14—Fe1—C1167.84 (10)C8—C7—H7A109.1
C10—Fe1—C1140.48 (10)C6—C7—H7B109.1
C1—Fe1—C13158.93 (10)C8—C7—H7B109.1
C5—Fe1—C13122.61 (10)H7A—C7—H7B107.8
C2—Fe1—C13158.69 (10)C9—C8—C7114.30 (19)
C12—Fe1—C1340.47 (10)C9—C8—H8A108.7
C14—Fe1—C1340.22 (10)C7—C8—H8A108.7
C10—Fe1—C1368.02 (10)C9—C8—H8B108.7
C11—Fe1—C1367.99 (10)C7—C8—H8B108.7
C1—Fe1—C469.03 (9)H8A—C8—H8B107.6
C5—Fe1—C440.69 (9)O3—C9—O2120.5 (2)
C2—Fe1—C468.39 (9)O3—C9—C8118.8 (2)
C12—Fe1—C4123.07 (10)O2—C9—C8120.6 (2)
C14—Fe1—C4123.06 (10)C14—C10—C11107.6 (2)
C10—Fe1—C4158.88 (10)C14—C10—Fe169.77 (13)
C11—Fe1—C4159.12 (11)C11—C10—Fe169.77 (14)
C13—Fe1—C4107.81 (10)C14—C10—H10126.2
C1—Fe1—C368.84 (9)C11—C10—H10126.2
C5—Fe1—C368.59 (9)Fe1—C10—H10125.8
C2—Fe1—C340.39 (9)C12—C11—C10108.1 (2)
C12—Fe1—C3107.89 (10)C12—C11—Fe169.68 (13)
C14—Fe1—C3158.94 (10)C10—C11—Fe169.75 (13)
C10—Fe1—C3159.13 (10)C12—C11—H11126.0
C11—Fe1—C3123.23 (10)C10—C11—H11126.0
C13—Fe1—C3123.16 (10)Fe1—C11—H11126.2
C4—Fe1—C340.58 (9)C11—C12—C13108.0 (2)
C9—O2—H2O109.5C11—C12—Fe169.84 (14)
C9—O3—H3O109.5C13—C12—Fe169.99 (13)
C2—C1—C5107.2 (2)C11—C12—H12126.0
C2—C1—C6124.9 (2)C13—C12—H12126.0
C5—C1—C6127.4 (2)Fe1—C12—H12125.7
C2—C1—Fe169.83 (12)C14—C13—C12107.8 (2)
C5—C1—Fe169.43 (12)C14—C13—Fe169.73 (13)
C6—C1—Fe1119.47 (15)C12—C13—Fe169.54 (14)
C3—C2—C1108.4 (2)C14—C13—H13126.1
C3—C2—Fe170.37 (13)C12—C13—H13126.1
C1—C2—Fe168.95 (12)Fe1—C13—H13126.2
C3—C2—H2125.8C13—C14—C10108.5 (2)
C1—C2—H2125.8C13—C14—Fe170.06 (14)
Fe1—C2—H2126.4C10—C14—Fe169.79 (14)
C2—C3—C4108.2 (2)C13—C14—H14125.7
C2—C3—Fe169.24 (13)C10—C14—H14125.7
C4—C3—Fe169.43 (13)Fe1—C14—H14126.0
C2—C3—H3125.9
C5—Fe1—C1—C2118.31 (19)C3—Fe1—C5—C181.84 (14)
C12—Fe1—C1—C248.0 (3)C2—C1—C6—O111.9 (3)
C14—Fe1—C1—C2162.65 (13)C5—C1—C6—O1177.5 (2)
C10—Fe1—C1—C2121.23 (14)Fe1—C1—C6—O196.8 (2)
C11—Fe1—C1—C279.65 (16)C2—C1—C6—C7167.0 (2)
C13—Fe1—C1—C2165.9 (2)C5—C1—C6—C73.6 (3)
C4—Fe1—C1—C280.73 (14)Fe1—C1—C6—C782.1 (2)
C3—Fe1—C1—C237.11 (13)O1—C6—C7—C83.9 (3)
C2—Fe1—C1—C5118.31 (19)C1—C6—C7—C8177.24 (18)
C12—Fe1—C1—C5166.3 (2)C6—C7—C8—C962.3 (3)
C14—Fe1—C1—C579.04 (16)C7—C8—C9—O327.9 (3)
C10—Fe1—C1—C5120.47 (14)C7—C8—C9—O2155.7 (2)
C11—Fe1—C1—C5162.04 (14)C1—Fe1—C10—C14121.01 (15)
C13—Fe1—C1—C547.6 (3)C5—Fe1—C10—C1478.31 (17)
C4—Fe1—C1—C537.57 (13)C2—Fe1—C10—C14163.31 (14)
C3—Fe1—C1—C581.20 (14)C12—Fe1—C10—C1481.03 (16)
C5—Fe1—C1—C6122.2 (2)C11—Fe1—C10—C14118.6 (2)
C2—Fe1—C1—C6119.5 (2)C13—Fe1—C10—C1437.25 (14)
C12—Fe1—C1—C671.5 (3)C4—Fe1—C10—C1445.3 (3)
C14—Fe1—C1—C643.1 (2)C3—Fe1—C10—C14163.9 (2)
C10—Fe1—C1—C61.7 (2)C1—Fe1—C10—C11120.35 (15)
C11—Fe1—C1—C639.9 (2)C5—Fe1—C10—C11163.05 (14)
C13—Fe1—C1—C674.6 (3)C2—Fe1—C10—C1178.06 (17)
C4—Fe1—C1—C6159.8 (2)C12—Fe1—C10—C1137.60 (15)
C3—Fe1—C1—C6156.6 (2)C14—Fe1—C10—C11118.6 (2)
C5—C1—C2—C30.1 (2)C13—Fe1—C10—C1181.38 (16)
C6—C1—C2—C3172.0 (2)C4—Fe1—C10—C11163.9 (2)
Fe1—C1—C2—C359.52 (16)C3—Fe1—C10—C1145.3 (3)
C5—C1—C2—Fe159.64 (15)C14—C10—C11—C120.4 (3)
C6—C1—C2—Fe1112.5 (2)Fe1—C10—C11—C1259.36 (17)
C1—Fe1—C2—C3119.74 (19)C14—C10—C11—Fe159.77 (16)
C5—Fe1—C2—C381.14 (14)C1—Fe1—C11—C12162.89 (14)
C12—Fe1—C2—C378.98 (16)C5—Fe1—C11—C12162.4 (2)
C14—Fe1—C2—C3165.3 (2)C2—Fe1—C11—C12120.02 (15)
C10—Fe1—C2—C3162.68 (14)C14—Fe1—C11—C1281.34 (16)
C11—Fe1—C2—C3120.88 (15)C10—Fe1—C11—C12119.3 (2)
C13—Fe1—C2—C346.3 (3)C13—Fe1—C11—C1237.78 (15)
C4—Fe1—C2—C337.33 (14)C4—Fe1—C11—C1244.5 (3)
C5—Fe1—C2—C138.61 (13)C3—Fe1—C11—C1278.35 (17)
C12—Fe1—C2—C1161.28 (13)C1—Fe1—C11—C1077.84 (17)
C14—Fe1—C2—C145.5 (3)C5—Fe1—C11—C1043.2 (3)
C10—Fe1—C2—C177.57 (16)C2—Fe1—C11—C10120.71 (15)
C11—Fe1—C2—C1119.37 (14)C12—Fe1—C11—C10119.3 (2)
C13—Fe1—C2—C1166.1 (2)C14—Fe1—C11—C1037.93 (14)
C4—Fe1—C2—C182.41 (14)C13—Fe1—C11—C1081.49 (16)
C3—Fe1—C2—C1119.74 (19)C4—Fe1—C11—C10163.8 (2)
C1—C2—C3—C40.0 (3)C3—Fe1—C11—C10162.38 (14)
Fe1—C2—C3—C458.67 (16)C10—C11—C12—C130.4 (3)
C1—C2—C3—Fe158.64 (15)Fe1—C11—C12—C1359.84 (16)
C1—Fe1—C3—C237.85 (13)C10—C11—C12—Fe159.41 (16)
C5—Fe1—C3—C282.50 (14)C1—Fe1—C12—C1143.1 (3)
C12—Fe1—C3—C2119.78 (14)C5—Fe1—C12—C11162.6 (2)
C14—Fe1—C3—C2165.6 (2)C2—Fe1—C12—C1178.64 (17)
C10—Fe1—C3—C244.4 (3)C14—Fe1—C12—C1181.39 (16)
C11—Fe1—C3—C277.86 (17)C10—Fe1—C12—C1137.61 (15)
C13—Fe1—C3—C2161.70 (13)C13—Fe1—C12—C11118.9 (2)
C4—Fe1—C3—C2119.9 (2)C4—Fe1—C12—C11162.66 (14)
C1—Fe1—C3—C482.07 (15)C3—Fe1—C12—C11120.58 (15)
C5—Fe1—C3—C437.42 (14)C1—Fe1—C12—C13162.0 (2)
C2—Fe1—C3—C4119.9 (2)C5—Fe1—C12—C1343.7 (3)
C12—Fe1—C3—C4120.31 (15)C2—Fe1—C12—C13162.42 (14)
C14—Fe1—C3—C445.7 (3)C14—Fe1—C12—C1337.55 (15)
C10—Fe1—C3—C4164.3 (2)C10—Fe1—C12—C1381.33 (16)
C11—Fe1—C3—C4162.23 (15)C11—Fe1—C12—C13118.9 (2)
C13—Fe1—C3—C478.38 (17)C4—Fe1—C12—C1378.40 (17)
C2—C3—C4—C50.1 (3)C3—Fe1—C12—C13120.48 (15)
Fe1—C3—C4—C558.62 (16)C11—C12—C13—C140.3 (3)
C2—C3—C4—Fe158.55 (16)Fe1—C12—C13—C1459.46 (16)
C1—Fe1—C4—C538.26 (13)C11—C12—C13—Fe159.74 (17)
C2—Fe1—C4—C582.65 (15)C1—Fe1—C13—C1442.7 (3)
C12—Fe1—C4—C5161.54 (14)C5—Fe1—C13—C1478.23 (16)
C14—Fe1—C4—C578.06 (17)C2—Fe1—C13—C14163.4 (2)
C10—Fe1—C4—C544.7 (3)C12—Fe1—C13—C14119.1 (2)
C11—Fe1—C4—C5165.6 (2)C10—Fe1—C13—C1437.45 (14)
C13—Fe1—C4—C5119.65 (14)C11—Fe1—C13—C1481.26 (16)
C3—Fe1—C4—C5119.8 (2)C4—Fe1—C13—C14120.51 (15)
C1—Fe1—C4—C381.56 (15)C3—Fe1—C13—C14162.51 (14)
C5—Fe1—C4—C3119.8 (2)C1—Fe1—C13—C12161.8 (2)
C2—Fe1—C4—C337.17 (14)C5—Fe1—C13—C12162.72 (14)
C12—Fe1—C4—C378.65 (17)C2—Fe1—C13—C1244.4 (3)
C14—Fe1—C4—C3162.13 (14)C14—Fe1—C13—C12119.1 (2)
C10—Fe1—C4—C3164.5 (2)C10—Fe1—C13—C1281.60 (16)
C11—Fe1—C4—C345.8 (3)C11—Fe1—C13—C1237.79 (15)
C13—Fe1—C4—C3120.54 (15)C4—Fe1—C13—C12120.44 (15)
C3—C4—C5—C10.2 (3)C3—Fe1—C13—C1278.44 (17)
Fe1—C4—C5—C159.03 (15)C12—C13—C14—C100.0 (3)
C3—C4—C5—Fe159.18 (16)Fe1—C13—C14—C1059.38 (16)
C2—C1—C5—C40.2 (2)C12—C13—C14—Fe159.34 (16)
C6—C1—C5—C4171.7 (2)C11—C10—C14—C130.2 (3)
Fe1—C1—C5—C459.72 (15)Fe1—C10—C14—C1359.54 (17)
C2—C1—C5—Fe159.89 (15)C11—C10—C14—Fe159.77 (16)
C6—C1—C5—Fe1112.0 (2)C1—Fe1—C14—C13163.12 (13)
C1—Fe1—C5—C4119.16 (19)C5—Fe1—C14—C13120.16 (14)
C2—Fe1—C5—C480.77 (15)C2—Fe1—C14—C13162.8 (2)
C12—Fe1—C5—C447.1 (3)C12—Fe1—C14—C1337.78 (14)
C14—Fe1—C5—C4120.72 (15)C10—Fe1—C14—C13119.6 (2)
C10—Fe1—C5—C4162.48 (14)C11—Fe1—C14—C1381.65 (16)
C11—Fe1—C5—C4165.7 (2)C4—Fe1—C14—C1378.18 (17)
C13—Fe1—C5—C479.21 (16)C3—Fe1—C14—C1344.4 (3)
C3—Fe1—C5—C437.32 (14)C1—Fe1—C14—C1077.26 (17)
C2—Fe1—C5—C138.39 (13)C5—Fe1—C14—C10120.23 (15)
C12—Fe1—C5—C1166.2 (2)C2—Fe1—C14—C1043.2 (3)
C14—Fe1—C5—C1120.12 (14)C12—Fe1—C14—C1081.83 (16)
C10—Fe1—C5—C178.36 (16)C11—Fe1—C14—C1037.97 (15)
C11—Fe1—C5—C146.5 (3)C13—Fe1—C14—C10119.6 (2)
C13—Fe1—C5—C1161.63 (14)C4—Fe1—C14—C10162.20 (14)
C4—Fe1—C5—C1119.16 (19)C3—Fe1—C14—C10164.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i0.841.842.667 (3)169
O3—H3O···O3ii0.841.832.655 (3)166
C10—H10···O30.952.513.443 (3)168
C13—H13···O1iii0.952.543.326 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C9H9O3)]
Mr286.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)5.673 (2), 26.892 (6), 7.764 (2)
β (°) 100.433 (10)
V3)1164.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.20 × 0.13 × 0.07
Data collection
DiffractometerNonius KappaCCD (fitted with an Oxford Cryosystems Cryostream cooler)
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.804, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
13367, 2673, 2059
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.073, 1.02
No. of reflections2673
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2002).

Selected geometric parameters (Å, º) top
Fe1—C12.032 (2)Fe1—C122.043 (2)
Fe1—C22.043 (2)Fe1—C132.049 (2)
Fe1—C32.058 (2)Fe1—C142.045 (2)
Fe1—C42.051 (2)O1—C61.224 (3)
Fe1—C52.036 (2)O2—C91.274 (3)
Fe1—C102.045 (2)O3—C91.271 (3)
Fe1—C112.046 (2)
O3—C9—O2120.5 (2)O2—C9—C8120.6 (2)
O3—C9—C8118.8 (2)
C2—C1—C6—O111.9 (3)C7—C8—C9—O2155.7 (2)
C6—C7—C8—C962.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i0.841.842.667 (3)169
O3—H3O···O3ii0.841.832.655 (3)166
C10—H10···O30.952.513.443 (3)168
C13—H13···O1iii0.952.543.326 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds