Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A cyano-bridged bimetallic 4f–3d complex, tri­aqua-1κ3O-μ-cyano-1:2κ2N:C-penta­cyano-2κ5C-tetrakis(2-pyrrolidone-1κO)­chromium(III)­dysprosium(III) dihydrate, [CrDy(C4H7NO)4(CN)6(H2O)3]·2H2O, has been prepared and characterized by X-ray crystallographic analysis. The structure consists of a neutral cyano-bridged Dy–Cr dimer. A hydrogen-bonded three-dimensional architecture is formed through N—H...O, O—H...N and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005966/de1183sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005966/de1183Isup2.hkl
Contains datablock I

CCDC reference: 188592

Comment top

Recently, there has been considerable interest in lanthanide(III) hexacyanoferrates, and the analogous cobalt(III) and chromium(III) complexes, because of their potential as catalytic, semiconductor and magnetic materials (Hulliger et al., 1976). Also, some of these cyanides can form semipermeable membranes, which are very important in connection with the desalination of sea water. In particular, a series of three-dimensional cyano-bridged 4f-3 d complexes, Ln[M(CN)6].nH2O (M is CrIII or FeIII), exhibit magnetic ordering (Hulliger et al., 1976). Incorporation of organic ligands into these three-dimensional 4f-3 d adducts may reduce the dimensionality of the parent complexes and give various molecular structures. Along this line, we have employed the simple ligand dimethylformamide (dmf) to prepare cyano-bridged 4f-3 d dimers, [Ln(dmf)4(H2O)4Fe(CN)6]·H2O (Kou et al., 1998; Kautz et al., 2000) and [Pr(dmf)4(H2O)3Cr(CN)6]·H2O (Combs et al., 2000), a one-dimensional zigzag chain, [Sm(dmf)4(H2O)2Cr(CN)6]·H2O (Kou, Gao & Jin, 2001), and two-dimensional brick-wall-like complexes, [Ln(dmf)2(H2O)3Cr(CN)6]·H2O (Ln is Sm or Gd; Kou, Gao & Jin, 2001; Kou, Gao, Sun & Zhang, 2001). In the present study, we used 2-pyrrolidone (pyr) to synthesize the cyano-bridged bimetallic complex [Dy(pyr)4(H2O)3Cr(CN)6]·2H2O, (I).

A perspective view of (I) is shown in Fig. 1, and selected bond distances and angles are listed in Table 1. The crystal structure of (I) consists of a neutral cyano-bridged bimetallic fragment. The lanthanide ion is eight-coordinate and the coordination polyhedron can be described as a distorted square antiprism. Seven O atoms of three water molecules and four pyr molecules, and one N atom of the bridging CN ligand, coordinate to DyIII. The bridging cyanide coordinates to the DyIII ion in a bent fashion, with a bond angle of 162.4 (3)° for C1—N1—Dy. The Cr···Dy metal–metal distance is 5.592 (2) Å.

The N1—Dy—O(H2O) angles range from 83.68 (13) to 141.33 (11)°, generally larger than the average value for N1—Dy—O(pyr) [96.36 (6)°]. This reflects the fact that small water molecules are more polar than bulky 2-pyrrolidone ligands, and the electrostatic repulsion force may be significant.

The Cr—C—N bond angles are nearly linear and range from 174.2 (4) to 179.5 (5)°, indicative of directional bonding involving the π orbitals of the metal centre. The Cr—C bond distances are in the range 2.061 (4)–2.088 (4) Å, consistent with the corresponding literature values (Combs et al., 2000; Kou, Gao & Jin, 2001; Kou, Gao, Sun & Zhang, 2001).

The coordinated and uncoordinated water molecules are hydrogen bonded to the non-bridging cyanide N atom and to water molecules to produce a hydrogen-bonded three-dimensional network; details are available in Table 2.

Experimental top

Complex (I) was obtained as yellow crystals by the reaction between an aqueous solution (10 ml) of K3[Cr(CN)6] (0.2 mmol), 2-pyrrolidone (0.4 mmol) and an aqueous solution (10 ml) of [Dy(H2O)6]Cl3 (0.2 mmol) at room tempetature.

Refinement top

The coordinates of the water H atoms were found from difference Fourier maps and were normalized to have O—H distances of 0.88 Å. H atoms bound to C and N atoms were also visible in difference maps and were placed using the HFIX commands in SHELXL97 (Sheldrick, 1997). All H atoms were allowed for as riding atoms (C—H = 0.97 Å and N—H 0.86 Å). Residual peaks in the final Fourier map shows were adjacent (1.12 Å) to the Dy atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds within the asymmetric unit are indicated by dashed lines.
triaqua-1κ3O-µ-cyano-1:2κ2N:C-pentacyano-2κ5C-tetrakis -(2-pyrrolidone-1κO)chromium(III)dysprosium(III) dihydrate top
Crystal data top
[CrDy(C4H7NO)4(CN)6(H2O)3]·2H2OZ = 2
Mr = 801.12F(000) = 804
Triclinic, P1Dx = 1.612 Mg m3
a = 9.1442 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.448 (3) Åθ = 3.5–25.0°
c = 14.518 (3) ŵ = 2.64 mm1
α = 90.19 (3)°T = 293 K
β = 92.40 (3)°Platelet, yellow
γ = 91.10 (3)°0.20 × 0.10 × 0.08 mm
V = 1650.8 (6) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
5798 independent reflections
Radiation source: fine-focus sealed tube5457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 0.76 pixels mm-1θmax = 25.0°, θmin = 3.5°
CCD scansh = 1010
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995, 1997)
k = 1414
Tmin = 0.625, Tmax = 0.812l = 017
9078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0281P)2 + 3.8796P]
where P = (Fo2 + 2Fc2)/3
5798 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 2.25 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[CrDy(C4H7NO)4(CN)6(H2O)3]·2H2Oγ = 91.10 (3)°
Mr = 801.12V = 1650.8 (6) Å3
Triclinic, P1Z = 2
a = 9.1442 (18) ÅMo Kα radiation
b = 12.448 (3) ŵ = 2.64 mm1
c = 14.518 (3) ÅT = 293 K
α = 90.19 (3)°0.20 × 0.10 × 0.08 mm
β = 92.40 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5798 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995, 1997)
5457 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.812Rint = 0.046
9078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.13Δρmax = 2.25 e Å3
5798 reflectionsΔρmin = 0.95 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy0.557981 (18)0.234345 (14)0.249405 (11)0.02406 (7)
Cr0.21126 (6)0.14059 (5)0.25114 (4)0.02209 (13)
O10.6484 (4)0.3850 (3)0.3299 (2)0.0543 (9)
O20.4831 (3)0.2048 (3)0.40197 (19)0.0375 (7)
O30.4588 (4)0.1971 (3)0.1015 (2)0.0594 (10)
O40.3229 (3)0.3073 (3)0.2551 (2)0.0525 (9)
O50.5930 (4)0.3839 (2)0.1488 (2)0.0404 (7)
O60.7567 (3)0.1824 (3)0.15911 (19)0.0429 (8)
O70.7513 (3)0.1570 (3)0.33933 (19)0.0483 (9)
N10.4533 (4)0.0510 (3)0.2503 (2)0.0379 (8)
N20.2270 (5)0.1762 (4)0.0324 (3)0.0589 (12)
N30.4579 (5)0.3197 (4)0.2634 (4)0.0635 (13)
N40.0446 (5)0.3199 (4)0.2494 (4)0.0711 (14)
N50.2279 (4)0.1323 (3)0.4716 (2)0.0460 (10)
N60.0214 (4)0.0515 (4)0.2428 (3)0.0498 (10)
N70.6979 (7)0.3761 (4)0.4842 (3)0.0765 (17)
H70.67220.30970.49040.092*
N80.2384 (5)0.1669 (4)0.4150 (3)0.0611 (12)
H80.21400.17650.35780.073*
N90.4174 (5)0.1295 (4)0.0435 (3)0.0669 (13)
H90.50770.12540.05720.080*
N100.2623 (5)0.4325 (4)0.1488 (4)0.0658 (13)
H100.34990.44750.13300.079*
C10.3725 (4)0.0196 (3)0.2497 (3)0.0301 (8)
C20.2162 (4)0.1592 (4)0.1088 (3)0.0343 (9)
C30.3696 (5)0.2561 (4)0.2593 (3)0.0361 (9)
C40.0467 (5)0.2566 (4)0.2520 (3)0.0392 (10)
C50.2190 (4)0.1334 (3)0.3934 (3)0.0310 (9)
C60.0582 (4)0.0182 (3)0.2442 (3)0.0315 (9)
C70.6885 (6)0.4252 (4)0.4049 (3)0.0439 (11)
C80.7326 (9)0.5391 (5)0.4202 (4)0.076 (2)
H8A0.65290.58610.40250.092*
H8B0.81670.55780.38450.092*
C90.7704 (11)0.5489 (5)0.5221 (4)0.094 (3)
H9A0.87000.57570.53230.112*
H9B0.70480.59800.55090.112*
C100.7544 (10)0.4410 (5)0.5609 (4)0.087 (2)
H10A0.84810.41490.58430.104*
H10B0.68660.44070.61060.104*
C110.3786 (5)0.1633 (4)0.0389 (3)0.0444 (11)
C120.2172 (7)0.1542 (7)0.0380 (5)0.087 (2)
H12A0.18650.10970.08870.105*
H12B0.17510.22460.04420.105*
C130.1688 (7)0.1051 (6)0.0504 (5)0.078 (2)
H13A0.09390.14800.08090.093*
H13B0.12880.03340.04090.093*
C140.3018 (7)0.1005 (6)0.1074 (4)0.0719 (17)
H14A0.31450.02880.13180.086*
H14B0.29550.15100.15810.086*
C150.3774 (5)0.1777 (4)0.4476 (3)0.0382 (10)
C160.3847 (7)0.1514 (6)0.5458 (4)0.0732 (18)
H16A0.43350.20840.58170.088*
H16B0.43600.08480.55680.088*
C170.2227 (10)0.1398 (6)0.5695 (6)0.105 (3)
H17A0.20670.07370.60310.126*
H17B0.19520.19950.60770.126*
C180.1333 (8)0.1383 (6)0.4817 (6)0.089 (2)
H18A0.09080.06750.46920.107*
H18B0.05560.19020.48290.107*
C190.2340 (5)0.3613 (4)0.2112 (3)0.0444 (11)
C200.0706 (6)0.3554 (6)0.2217 (5)0.0748 (19)
H20A0.04430.38680.27990.090*
H20B0.03460.28160.21860.090*
C210.0094 (7)0.4198 (6)0.1412 (6)0.096 (3)
H21A0.03020.37220.09290.115*
H21B0.06790.46580.16080.115*
C220.1335 (7)0.4852 (6)0.1074 (6)0.087 (2)
H22A0.13460.48370.04060.105*
H22B0.12870.55920.12800.105*
O80.6882 (4)0.5915 (3)0.1705 (2)0.0501 (8)
O90.5662 (5)0.3900 (3)0.0407 (3)0.0655 (10)
H510.62680.44880.16300.094*
H520.59300.37960.08830.094*
H610.83310.14280.17310.094*
H620.76160.17910.09880.094*
H710.82990.12030.32810.094*
H720.73960.12950.39430.094*
H810.62660.60970.21250.094*
H820.78030.60540.18700.094*
H910.62860.34060.05560.094*
H920.47580.39280.06380.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy0.02291 (10)0.02860 (11)0.02033 (10)0.00276 (7)0.00165 (6)0.00127 (7)
Cr0.0228 (3)0.0265 (3)0.0170 (3)0.0005 (2)0.0011 (2)0.0005 (2)
O10.086 (3)0.0430 (19)0.0316 (17)0.0200 (17)0.0101 (16)0.0031 (14)
O20.0334 (16)0.0525 (19)0.0269 (15)0.0011 (13)0.0069 (12)0.0020 (13)
O30.076 (3)0.061 (2)0.0371 (18)0.0250 (19)0.0300 (17)0.0049 (16)
O40.0336 (17)0.081 (3)0.0438 (19)0.0156 (17)0.0037 (14)0.0176 (17)
O50.060 (2)0.0311 (16)0.0298 (15)0.0085 (14)0.0007 (13)0.0047 (12)
O60.0421 (17)0.068 (2)0.0195 (14)0.0189 (15)0.0055 (12)0.0020 (14)
O70.0387 (17)0.086 (3)0.0212 (15)0.0286 (17)0.0023 (12)0.0089 (15)
N10.042 (2)0.036 (2)0.035 (2)0.0107 (17)0.0027 (15)0.0006 (15)
N20.054 (3)0.099 (4)0.024 (2)0.015 (2)0.0051 (17)0.004 (2)
N30.061 (3)0.056 (3)0.075 (3)0.026 (2)0.003 (2)0.001 (2)
N40.054 (3)0.071 (3)0.087 (4)0.031 (3)0.012 (2)0.012 (3)
N50.053 (2)0.064 (3)0.022 (2)0.011 (2)0.0007 (16)0.0024 (17)
N60.045 (2)0.057 (3)0.048 (2)0.020 (2)0.0014 (18)0.001 (2)
N70.143 (5)0.042 (3)0.041 (3)0.024 (3)0.021 (3)0.006 (2)
N80.039 (2)0.082 (3)0.063 (3)0.006 (2)0.007 (2)0.007 (2)
N90.046 (3)0.084 (4)0.070 (3)0.007 (2)0.007 (2)0.017 (3)
N100.041 (2)0.066 (3)0.091 (4)0.006 (2)0.006 (2)0.029 (3)
C10.032 (2)0.034 (2)0.024 (2)0.0005 (17)0.0030 (15)0.0003 (16)
C20.030 (2)0.046 (3)0.026 (2)0.0054 (17)0.0020 (16)0.0004 (18)
C30.040 (2)0.037 (2)0.032 (2)0.0067 (19)0.0008 (17)0.0026 (18)
C40.035 (2)0.045 (3)0.037 (2)0.009 (2)0.0049 (18)0.004 (2)
C50.028 (2)0.036 (2)0.030 (2)0.0031 (16)0.0022 (16)0.0031 (17)
C60.031 (2)0.039 (2)0.023 (2)0.0025 (18)0.0003 (15)0.0021 (16)
C70.060 (3)0.038 (3)0.033 (2)0.009 (2)0.005 (2)0.0003 (19)
C80.132 (6)0.046 (3)0.048 (3)0.022 (3)0.021 (3)0.001 (3)
C90.163 (8)0.060 (4)0.055 (4)0.025 (4)0.021 (4)0.015 (3)
C100.147 (7)0.071 (4)0.040 (3)0.022 (4)0.025 (4)0.001 (3)
C110.055 (3)0.038 (3)0.038 (3)0.008 (2)0.012 (2)0.005 (2)
C120.061 (4)0.125 (6)0.076 (4)0.016 (4)0.009 (3)0.039 (4)
C130.050 (3)0.104 (5)0.077 (4)0.000 (3)0.023 (3)0.025 (4)
C140.080 (4)0.089 (5)0.045 (3)0.015 (3)0.009 (3)0.019 (3)
C150.040 (2)0.037 (2)0.039 (2)0.0035 (18)0.0153 (19)0.0013 (19)
C160.076 (4)0.112 (5)0.033 (3)0.019 (4)0.011 (3)0.011 (3)
C170.146 (8)0.083 (5)0.093 (6)0.018 (5)0.096 (6)0.003 (4)
C180.060 (4)0.071 (4)0.140 (7)0.003 (3)0.052 (4)0.011 (4)
C190.035 (2)0.050 (3)0.049 (3)0.007 (2)0.001 (2)0.003 (2)
C200.031 (3)0.109 (5)0.085 (5)0.012 (3)0.001 (3)0.010 (4)
C210.051 (4)0.087 (5)0.148 (8)0.019 (3)0.021 (4)0.023 (5)
C220.069 (4)0.081 (5)0.112 (6)0.027 (4)0.018 (4)0.034 (4)
O80.0438 (19)0.0431 (19)0.063 (2)0.0055 (14)0.0020 (16)0.0070 (16)
O90.090 (3)0.063 (2)0.043 (2)0.007 (2)0.0016 (19)0.0001 (18)
Geometric parameters (Å, º) top
Dy—O12.326 (3)N10—H100.86
Dy—O32.337 (3)C7—C81.480 (7)
Dy—O42.354 (3)C8—C91.510 (8)
Dy—O22.373 (3)C8—H8A0.97
Dy—O72.374 (3)C8—H8B0.97
Dy—O62.383 (3)C9—C101.465 (9)
Dy—O52.394 (3)C9—H9A0.97
Dy—N12.458 (4)C9—H9B0.97
Cr—C32.061 (4)C10—H10A0.97
Cr—C52.064 (4)C10—H10B0.97
Cr—C42.066 (4)C11—C121.478 (8)
Cr—C22.081 (4)C12—C131.467 (8)
Cr—C12.088 (4)C12—H12A0.97
Cr—C62.088 (4)C12—H12B0.97
O1—C71.236 (5)C13—C141.502 (9)
O2—C151.237 (5)C13—H13A0.97
O3—C111.213 (5)C13—H13B0.97
O4—C191.224 (6)C14—H14A0.97
O5—H510.88C14—H14B0.97
O5—H520.88C15—C161.463 (7)
O6—H610.88C16—C171.539 (10)
O6—H620.88C16—H16A0.97
O7—H710.88C16—H16B0.97
O7—H720.88C17—C181.485 (12)
N1—C11.138 (5)C17—H17A0.97
N2—C21.137 (6)C17—H17B0.97
N3—C31.141 (6)C18—H18A0.97
N4—C41.137 (6)C18—H18B0.97
N5—C51.136 (5)C19—C201.509 (7)
N6—C61.142 (6)C20—C211.513 (9)
N7—C71.306 (6)C20—H20A0.97
N7—C101.446 (7)C20—H20B0.97
N7—H70.86C21—C221.486 (10)
N8—C151.341 (6)C21—H21A0.97
N8—C181.434 (8)C21—H21B0.97
N8—H80.86C22—H22A0.97
N9—C111.331 (7)C22—H22B0.97
N9—C141.417 (7)O8—H810.88
N9—H90.86O8—H820.88
N10—C191.300 (7)O9—H910.88
N10—C221.467 (7)O9—H920.88
O1—Dy—O3136.65 (12)C7—C8—H8B110.7
O1—Dy—O488.05 (14)C9—C8—H8B110.7
O3—Dy—O477.80 (14)H8A—C8—H8B108.8
O1—Dy—O276.31 (11)C10—C9—C8106.7 (5)
O3—Dy—O2135.47 (12)C10—C9—H9A110.4
O4—Dy—O274.29 (11)C8—C9—H9A110.4
O1—Dy—O779.61 (13)C10—C9—H9B110.4
O3—Dy—O7132.63 (13)C8—C9—H9B110.4
O4—Dy—O7144.12 (11)H9A—C9—H9B108.6
O2—Dy—O770.10 (10)N7—C10—C9104.2 (5)
O1—Dy—O6103.88 (13)N7—C10—H10A110.9
O3—Dy—O673.53 (13)C9—C10—H10A110.9
O4—Dy—O6148.46 (11)N7—C10—H10B110.9
O2—Dy—O6136.60 (10)C9—C10—H10B110.9
O7—Dy—O667.39 (10)H10A—C10—H10B108.9
O1—Dy—O568.44 (11)O3—C11—N9127.2 (5)
O3—Dy—O569.05 (11)O3—C11—C12126.7 (5)
O4—Dy—O581.61 (12)N9—C11—C12106.1 (4)
O2—Dy—O5137.63 (11)C13—C12—C11107.2 (5)
O7—Dy—O5123.17 (12)C13—C12—H12A110.3
O6—Dy—O576.14 (11)C11—C12—H12A110.3
O1—Dy—N1149.59 (12)C13—C12—H12B110.3
O3—Dy—N172.28 (12)C11—C12—H12B110.3
O4—Dy—N190.87 (13)H12A—C12—H12B108.5
O2—Dy—N174.17 (12)C12—C13—C14106.4 (5)
O7—Dy—N183.68 (13)C12—C13—H13A110.5
O6—Dy—N192.71 (13)C14—C13—H13A110.5
O5—Dy—N1141.33 (11)C12—C13—H13B110.5
C3—Cr—C588.60 (16)C14—C13—H13B110.5
C3—Cr—C491.26 (18)H13A—C13—H13B108.6
C5—Cr—C490.87 (17)N9—C14—C13103.0 (5)
C3—Cr—C286.29 (17)N9—C14—H14A111.2
C5—Cr—C2174.87 (16)C13—C14—H14A111.2
C4—Cr—C288.73 (17)N9—C14—H14B111.2
C3—Cr—C190.55 (17)C13—C14—H14B111.2
C5—Cr—C189.26 (16)H14A—C14—H14B109.1
C4—Cr—C1178.18 (17)O2—C15—N8125.6 (4)
C2—Cr—C191.30 (16)O2—C15—C16125.1 (5)
C3—Cr—C6177.40 (17)N8—C15—C16109.2 (4)
C5—Cr—C690.80 (16)C15—C16—C17103.3 (5)
C4—Cr—C691.27 (17)C15—C16—H16A111.1
C2—Cr—C694.32 (16)C17—C16—H16A111.1
C1—Cr—C686.91 (16)C15—C16—H16B111.1
C7—O1—Dy147.6 (3)C17—C16—H16B111.1
C15—O2—Dy143.3 (3)H16A—C16—H16B109.1
C11—O3—Dy161.8 (4)C18—C17—C16108.0 (5)
C19—O4—Dy142.7 (3)C18—C17—H17A110.1
Dy—O5—H51128.3C16—C17—H17A110.1
Dy—O5—H52124.8C18—C17—H17B110.1
H51—O5—H52105.7C16—C17—H17B110.1
Dy—O6—H61130.8H17A—C17—H17B108.4
Dy—O6—H62129.2N8—C18—C17102.7 (5)
H61—O6—H6297.5N8—C18—H18A111.2
Dy—O7—H71135.9C17—C18—H18A111.2
Dy—O7—H72123.2N8—C18—H18B111.2
H71—O7—H7295.2C17—C18—H18B111.2
C1—N1—Dy162.4 (3)H18A—C18—H18B109.1
C7—N7—C10115.3 (5)O4—C19—N10126.8 (5)
C7—N7—H7122.3O4—C19—C20124.7 (5)
C10—N7—H7122.3N10—C19—C20108.5 (5)
C15—N8—C18115.7 (6)C19—C20—C21104.0 (5)
C15—N8—H8122.2C19—C20—H20A111.0
C18—N8—H8122.2C21—C20—H20A111.0
C11—N9—C14116.4 (5)C19—C20—H20B111.0
C11—N9—H9121.8C21—C20—H20B111.0
C14—N9—H9121.8H20A—C20—H20B109.0
C19—N10—C22115.0 (5)C22—C21—C20106.3 (5)
C19—N10—H10122.5C22—C21—H21A110.5
C22—N10—H10122.5C20—C21—H21A110.5
N1—C1—Cr175.4 (4)C22—C21—H21B110.5
N2—C2—Cr174.2 (4)C20—C21—H21B110.5
N3—C3—Cr179.5 (5)H21A—C21—H21B108.7
N4—C4—Cr177.7 (5)N10—C22—C21103.1 (5)
N5—C5—Cr177.2 (4)N10—C22—H22A111.1
N6—C6—Cr177.0 (4)C21—C22—H22A111.1
O1—C7—N7126.6 (4)N10—C22—H22B111.1
O1—C7—C8125.3 (4)C21—C22—H22B111.1
N7—C7—C8108.1 (4)H22A—C22—H22B109.1
C7—C8—C9105.4 (5)H81—O8—H82113.3
C7—C8—H8A110.7H91—O9—H92123.8
C9—C8—H8A110.7
O3—Dy—O1—C7168.0 (6)Dy—O1—C7—C8175.6 (5)
O4—Dy—O1—C798.2 (7)C10—N7—C7—O1177.4 (6)
O2—Dy—O1—C723.9 (7)C10—N7—C7—C83.5 (9)
O7—Dy—O1—C748.0 (7)O1—C7—C8—C9179.4 (6)
O6—Dy—O1—C7111.4 (7)N7—C7—C8—C90.3 (8)
O5—Dy—O1—C7179.9 (7)C7—C8—C9—C102.8 (9)
N1—Dy—O1—C79.8 (9)C7—N7—C10—C95.2 (10)
O1—Dy—O2—C15133.1 (5)C8—C9—C10—N74.5 (10)
O3—Dy—O2—C1511.9 (6)Dy—O3—C11—N9145.2 (10)
O4—Dy—O2—C1541.3 (5)Dy—O3—C11—C1236.7 (16)
O7—Dy—O2—C15143.2 (5)C14—N9—C11—O3175.8 (6)
O6—Dy—O2—C15131.1 (5)C14—N9—C11—C122.7 (8)
O5—Dy—O2—C1599.0 (5)O3—C11—C12—C13177.7 (6)
N1—Dy—O2—C1554.3 (5)N9—C11—C12—C133.8 (8)
O1—Dy—O3—C11131.5 (12)C11—C12—C13—C148.3 (9)
O4—Dy—O3—C1157.7 (12)C11—N9—C14—C137.8 (8)
O2—Dy—O3—C115.7 (13)C12—C13—C14—N99.4 (8)
O7—Dy—O3—C11100.3 (12)Dy—O2—C15—N810.6 (8)
O6—Dy—O3—C11135.6 (12)Dy—O2—C15—C16168.7 (4)
O5—Dy—O3—C11143.3 (13)C18—N8—C15—O2177.9 (5)
N1—Dy—O3—C1137.2 (12)C18—N8—C15—C162.7 (7)
O1—Dy—O4—C1995.0 (6)O2—C15—C16—C17172.2 (5)
O3—Dy—O4—C1943.7 (6)N8—C15—C16—C178.4 (7)
O2—Dy—O4—C19171.4 (6)C15—C16—C17—C1811.1 (8)
O7—Dy—O4—C19164.3 (5)C15—N8—C18—C174.5 (8)
O6—Dy—O4—C1918.8 (7)C16—C17—C18—N89.5 (8)
O5—Dy—O4—C1926.6 (6)Dy—O4—C19—N1026.1 (10)
N1—Dy—O4—C19115.4 (6)Dy—O4—C19—C20154.1 (5)
O1—Dy—N1—C191.9 (11)C22—N10—C19—O4179.9 (6)
O3—Dy—N1—C172.6 (11)C22—N10—C19—C200.1 (8)
O4—Dy—N1—C14.3 (11)O4—C19—C20—C21169.4 (6)
O2—Dy—N1—C177.7 (11)N10—C19—C20—C2110.8 (7)
O7—Dy—N1—C1148.7 (11)C19—C20—C21—C2217.1 (8)
O6—Dy—N1—C1144.4 (11)C19—N10—C22—C2110.8 (9)
O5—Dy—N1—C173.3 (11)C20—C21—C22—N1016.8 (9)
Dy—O1—C7—N73.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O20.862.463.075 (6)129
N7—H7···N5i0.862.463.183 (7)142
N8—H8···O40.862.443.028 (6)126
N9—H9···N2ii0.862.513.290 (7)152
N10—H10···O50.862.383.096 (6)141
N10—H10···O9iii0.862.553.147 (6)127
O5—H51···O80.881.852.724 (4)170
O5—H52···O90.881.882.754 (5)169
O6—H61···N6iv0.882.012.861 (5)162
O6—H62···N2ii0.881.912.792 (5)178
O7—H71···N6iv0.882.072.890 (5)154
O7—H72···N5i0.881.962.762 (5)152
O8—H81···N3v0.881.962.792 (6)157
O8—H82···N4vi0.882.022.855 (6)159
O9—H91···N2ii0.882.473.294 (6)156
O9—H92···O8iii0.882.122.945 (5)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[CrDy(C4H7NO)4(CN)6(H2O)3]·2H2O
Mr801.12
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1442 (18), 12.448 (3), 14.518 (3)
α, β, γ (°)90.19 (3), 92.40 (3), 91.10 (3)
V3)1650.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995, 1997)
Tmin, Tmax0.625, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
9078, 5798, 5457
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.13
No. of reflections5798
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.25, 0.95

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Dy—O12.326 (3)Dy—N12.458 (4)
Dy—O32.337 (3)Cr—C32.061 (4)
Dy—O42.354 (3)Cr—C52.064 (4)
Dy—O22.373 (3)Cr—C42.066 (4)
Dy—O72.374 (3)Cr—C22.081 (4)
Dy—O62.383 (3)Cr—C12.088 (4)
Dy—O52.394 (3)Cr—C62.088 (4)
O1—Dy—O3136.65 (12)O7—Dy—O667.39 (10)
O1—Dy—O488.05 (14)O1—Dy—O568.44 (11)
O3—Dy—O477.80 (14)O3—Dy—O569.05 (11)
O1—Dy—O276.31 (11)O4—Dy—O581.61 (12)
O3—Dy—O2135.47 (12)O2—Dy—O5137.63 (11)
O4—Dy—O274.29 (11)O7—Dy—O5123.17 (12)
O1—Dy—O779.61 (13)O6—Dy—O576.14 (11)
O3—Dy—O7132.63 (13)O1—Dy—N1149.59 (12)
O4—Dy—O7144.12 (11)O3—Dy—N172.28 (12)
O2—Dy—O770.10 (10)O4—Dy—N190.87 (13)
O1—Dy—O6103.88 (13)O2—Dy—N174.17 (12)
O3—Dy—O673.53 (13)O7—Dy—N183.68 (13)
O4—Dy—O6148.46 (11)O6—Dy—N192.71 (13)
O2—Dy—O6136.60 (10)O5—Dy—N1141.33 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O20.862.463.075 (6)129
N7—H7···N5i0.862.463.183 (7)142
N8—H8···O40.862.443.028 (6)126
N9—H9···N2ii0.862.513.290 (7)152
N10—H10···O50.862.383.096 (6)141
N10—H10···O9iii0.862.553.147 (6)127
O5—H51···O80.881.852.724 (4)170
O5—H52···O90.881.882.754 (5)169
O6—H61···N6iv0.882.012.861 (5)162
O6—H62···N2ii0.881.912.792 (5)178
O7—H71···N6iv0.882.072.890 (5)154
O7—H72···N5i0.881.962.762 (5)152
O8—H81···N3v0.881.962.792 (6)157
O8—H82···N4vi0.882.022.855 (6)159
O9—H91···N2ii0.882.473.294 (6)156
O9—H92···O8iii0.882.122.945 (5)155.
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds