Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C20H21NO3, is a derivative of Aib (α-­aminoisobutyric acid) and is cyclized at the Cα position by bi­phenyl rings. The seven-membered ring possesses C2 symmetry. The Cα cyclization causes the backbone to assume a helical conformation in the crystal structure. The packing of the mol­ecules is stabilized by intermolecular C—H...O, C—H...π and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004687/de1181sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004687/de1181Isup2.hkl
Contains datablock I

CCDC reference: 162776

Comment top

In recent years, the synthesis and structural analysis of peptide fragments incorporating α,α-disubstituted glycines have attracted considerable attention (Heimgartner, 1991; Toniolo et al., 1993; Smythe et al., 1995; Crisma et al., 1991; Prasad et al., 1994; Valle et al., 1991), and α-aminoisobutyric acid (Aib or α-methyl alanine) is the best studied member of this family. However, its analogue, α,α-dibenzylglycine (Dbzg), has not been studied extensively (Kotha et al., 2002). We believe that the main reason for this is the non-availablity of simple preparative methods for these α,α-disubstituted aminoacid derivatives (Kotha et al., 2001, 2000; Formaggio et al., 2000; Ridvan et al., 1999). The unique stereochemistry of peptides containing these conformationally restricted amino acids provides a useful spectroscopic probe for the study of conformation-activity relationships (Karle & Balaram, 1990; Polese et al., 1996; Kotha & Brahmachary, 2000). Here, we present the crystal structure of the title compound, (I), a derivative of Aib. \sch

The structure of (I) is shown in Fig. 1. The bond distances and angles are close to the reported values (Allen et al., 1979). Atoms C20 and C7 are coplanar with rings A and C, respectively. The angle between the biphenyl rings A and C is 49.2 (2)°. The seven-membered ring B has C2 symmetry, and the symmetry axis passes through atom C6 and the C13—C14 bond. The amide unit is planar and the backbone torsion angles ϕ and ψ (C22—N21—C6—C4 and N21—C6—C4—O3) are 48.0 (4) and 44.6 (4)°, respectively, indicating a near α-helical conformation (Ramesh & Balaram, 1999).

The packing in (I) is stabilized by intermolecular C—H···O, N—H···O and C—H···π (Desiraju, 1989) hydrogen bonds, shown in Fig. 2 and Table 1. The carbonyl atom O23 forms a bifurcated hydrogen bond with atoms N21 and C24 (Fig. 2).

Experimental top

The Scheme above shows the synthesis of (I) under phase-transfer conditions (PTC), using ethyl isocyanoacetate as a glycine equivalent. Thus, treatment of 2,2'-bis(bromomethyl)-1,1'-biphenyl, (1), with ethyl isocyanoacetate in acetonitrile in the presence of K2CO3 and tetrabutylammonium hydrogen sulfate at room temperature gave the isonitrile compound, (2). Hydrolysis of the coupling product was achieved by treating (2) in ethanolic HCl at room temperature for a few hours. The free amino group in (3) was protected with acetic anhydride in dichloromethane in the presence of a catalytic amount of 4-(dimethylamino)pyridine, to give (I) (m.p. 431–433 K).

Refinement top

H atoms were fixed geometrically at calculated positions, with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C). Are these the correct constraints?

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A stereoview of the packing of the molecules in (I), showing the C—H···O and N—H···O interactions.
6-Acetylamino-6,7-dihydro-5H-dibenzo[a,c]cycloheptene-6-carboxylic acid ethyl ester top
Crystal data top
C20H21NO3F(000) = 688
Mr = 323.38Dx = 1.224 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 7.837 (2) ÅCell parameters from 25 reflections
b = 24.074 (9) Åθ = 7.6–28.4°
c = 9.543 (2) ŵ = 0.66 mm1
β = 102.87 (2)°T = 293 K
V = 1755.2 (9) Å3Rectangular block, colourless
Z = 40.35 × 0.13 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1976 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 71.9°, θmin = 3.7°
non–profiled ω/2θ scansh = 99
Absorption correction: ψ-scan
(North et al., 1968)
k = 029
Tmin = 0.802, Tmax = 0.922l = 1110
3522 measured reflections3 standard reflections every 120 min
3312 independent reflections intensity decay: 16%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.262H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1621P)2 + 0.167P]
where P = (Fo2 + 2Fc2)/3
3312 reflections(Δ/σ)max = 0.046
219 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H21NO3V = 1755.2 (9) Å3
Mr = 323.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.837 (2) ŵ = 0.66 mm1
b = 24.074 (9) ÅT = 293 K
c = 9.543 (2) Å0.35 × 0.13 × 0.10 mm
β = 102.87 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1976 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.047
Tmin = 0.802, Tmax = 0.9223 standard reflections every 120 min
3522 measured reflections intensity decay: 16%
3312 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.262H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
3312 reflectionsΔρmin = 0.28 e Å3
219 parameters
Special details top

Experimental. For the absorption correction: Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0342 (7)0.2792 (2)0.2297 (5)0.1071 (16)
H1A0.06410.27910.14900.161*
H1B0.06290.24180.26040.161*
H1C0.13280.29610.20220.161*
C20.0099 (6)0.31073 (18)0.3473 (4)0.0854 (12)
H2A0.04000.34850.31570.103*
H2B0.11140.29410.37320.103*
O30.1349 (3)0.31184 (10)0.4732 (3)0.0763 (7)
C40.2659 (5)0.34668 (12)0.4701 (3)0.0649 (9)
O50.2660 (4)0.37839 (10)0.3734 (3)0.0898 (9)
C60.4073 (4)0.34408 (11)0.6100 (3)0.0559 (8)
C70.3318 (5)0.37216 (12)0.7286 (3)0.0588 (8)
H7A0.21390.35850.72220.071*
H7B0.40190.36130.82160.071*
C80.3268 (5)0.43492 (12)0.7200 (3)0.0588 (8)
C90.1709 (5)0.46296 (14)0.6760 (4)0.0681 (9)
H90.06730.44290.64970.082*
C100.1654 (6)0.52047 (16)0.6702 (4)0.0794 (11)
H100.05910.53890.64080.095*
C110.3183 (6)0.54984 (14)0.7084 (4)0.0809 (11)
H110.31600.58840.70320.097*
C120.4741 (6)0.52298 (15)0.7540 (4)0.0771 (11)
H120.57650.54360.78090.093*
C130.4827 (5)0.46519 (13)0.7611 (3)0.0649 (9)
C140.6512 (5)0.43511 (14)0.8114 (3)0.0655 (9)
C150.7659 (6)0.45047 (17)0.9383 (4)0.0828 (11)
H150.73960.48080.99020.099*
C160.9189 (6)0.4210 (2)0.9882 (5)0.1008 (15)
H160.99450.43111.07410.121*
C170.9584 (6)0.3767 (3)0.9101 (5)0.1005 (15)
H171.06090.35660.94330.121*
C180.8454 (5)0.36200 (18)0.7817 (4)0.0827 (11)
H180.87420.33220.72930.099*
C190.6924 (5)0.39033 (14)0.7304 (4)0.0638 (8)
C200.5712 (5)0.37480 (14)0.5902 (3)0.0642 (9)
H20A0.63400.35140.53580.077*
H20B0.53610.40830.53470.077*
N210.4457 (4)0.28618 (9)0.6532 (3)0.0562 (7)
H210.44910.27710.74090.067*
C220.4756 (4)0.24690 (13)0.5636 (3)0.0603 (8)
O230.4738 (4)0.25799 (9)0.4360 (2)0.0772 (8)
C240.5110 (5)0.18948 (13)0.6230 (4)0.0716 (10)
H24A0.50370.18920.72210.107*
H24B0.62600.17810.61550.107*
H24C0.42580.16430.56940.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.113 (4)0.104 (3)0.090 (3)0.006 (3)0.007 (3)0.021 (3)
C20.079 (2)0.092 (3)0.072 (3)0.006 (2)0.0121 (19)0.005 (2)
O30.0830 (17)0.0788 (15)0.0571 (15)0.0112 (13)0.0059 (12)0.0090 (11)
C40.092 (2)0.0485 (15)0.0475 (18)0.0008 (16)0.0006 (16)0.0014 (13)
O50.133 (2)0.0707 (15)0.0520 (14)0.0151 (15)0.0085 (14)0.0189 (12)
C60.078 (2)0.0504 (15)0.0366 (16)0.0041 (14)0.0079 (13)0.0005 (12)
C70.078 (2)0.0533 (15)0.0445 (17)0.0041 (15)0.0112 (14)0.0003 (13)
C80.080 (2)0.0530 (16)0.0407 (16)0.0033 (15)0.0085 (14)0.0010 (12)
C90.084 (2)0.066 (2)0.0497 (19)0.0014 (17)0.0070 (16)0.0010 (14)
C100.111 (3)0.067 (2)0.054 (2)0.019 (2)0.0058 (19)0.0044 (16)
C110.124 (3)0.0502 (17)0.067 (2)0.003 (2)0.017 (2)0.0025 (15)
C120.109 (3)0.0605 (19)0.062 (2)0.018 (2)0.018 (2)0.0051 (16)
C130.092 (2)0.0594 (17)0.0435 (18)0.0079 (17)0.0158 (16)0.0030 (13)
C140.076 (2)0.070 (2)0.0487 (19)0.0156 (16)0.0098 (15)0.0021 (15)
C150.092 (3)0.096 (3)0.056 (2)0.020 (2)0.0064 (19)0.0113 (19)
C160.081 (3)0.151 (4)0.063 (3)0.014 (3)0.001 (2)0.002 (3)
C170.071 (3)0.149 (4)0.076 (3)0.009 (3)0.007 (2)0.011 (3)
C180.084 (3)0.102 (3)0.064 (2)0.002 (2)0.022 (2)0.001 (2)
C190.071 (2)0.071 (2)0.0499 (19)0.0112 (16)0.0137 (15)0.0022 (15)
C200.088 (2)0.0616 (17)0.0451 (18)0.0061 (16)0.0181 (16)0.0009 (14)
N210.0837 (18)0.0496 (13)0.0328 (13)0.0017 (12)0.0074 (11)0.0007 (9)
C220.073 (2)0.0610 (17)0.0413 (19)0.0011 (15)0.0017 (14)0.0006 (13)
O230.126 (2)0.0673 (14)0.0379 (14)0.0049 (13)0.0179 (12)0.0022 (10)
C240.102 (3)0.0578 (18)0.051 (2)0.0161 (17)0.0069 (17)0.0008 (14)
Geometric parameters (Å, º) top
C1—C21.459 (6)C12—C131.394 (5)
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—C141.489 (5)
C1—H1C0.9600C14—C151.388 (5)
C2—O31.458 (4)C14—C191.405 (5)
C2—H2A0.9700C15—C161.383 (6)
C2—H2B0.9700C15—H150.9300
O3—C41.331 (4)C16—C171.375 (7)
C4—O51.198 (4)C16—H160.9300
C4—C61.534 (4)C17—C181.389 (6)
C6—N211.466 (4)C17—H170.9300
C6—C201.530 (5)C18—C191.372 (5)
C6—C71.545 (4)C18—H180.9300
C7—C81.513 (4)C19—C201.505 (5)
C7—H7A0.9700C20—H20A0.9700
C7—H7B0.9700C20—H20B0.9700
C8—C91.376 (5)N21—C221.330 (4)
C8—C131.401 (5)N21—H210.8600
C9—C101.386 (5)C22—O231.244 (4)
C9—H90.9300C22—C241.496 (4)
C10—C111.369 (6)C24—H24A0.9600
C10—H100.9300C24—H24B0.9600
C11—C121.364 (6)C24—H24C0.9600
C11—H110.9300
C2—C1—H1A109.5C11—C12—H12119.4
C2—C1—H1B109.5C13—C12—H12119.4
H1A—C1—H1B109.5C12—C13—C8118.4 (4)
C2—C1—H1C109.5C12—C13—C14122.0 (3)
H1A—C1—H1C109.5C8—C13—C14119.5 (3)
H1B—C1—H1C109.5C15—C14—C19120.1 (4)
O3—C2—C1111.7 (4)C15—C14—C13120.5 (3)
O3—C2—H2A109.3C19—C14—C13119.5 (3)
C1—C2—H2A109.3C16—C15—C14120.5 (4)
O3—C2—H2B109.3C16—C15—H15119.8
C1—C2—H2B109.3C14—C15—H15119.8
H2A—C2—H2B107.9C17—C16—C15119.6 (4)
C4—O3—C2117.2 (3)C17—C16—H16120.2
O5—C4—O3123.5 (3)C15—C16—H16120.2
O5—C4—C6124.9 (3)C16—C17—C18120.0 (4)
O3—C4—C6111.5 (3)C16—C17—H17120.0
N21—C6—C20111.7 (3)C18—C17—H17120.0
N21—C6—C4110.3 (2)C19—C18—C17121.6 (4)
C20—C6—C4109.7 (3)C19—C18—H18119.2
N21—C6—C7107.3 (2)C17—C18—H18119.2
C20—C6—C7110.4 (2)C18—C19—C14118.3 (3)
C4—C6—C7107.4 (3)C18—C19—C20121.5 (3)
C8—C7—C6114.0 (3)C14—C19—C20120.2 (3)
C8—C7—H7A108.8C19—C20—C6113.0 (3)
C6—C7—H7A108.8C19—C20—H20A109.0
C8—C7—H7B108.7C6—C20—H20A109.0
C6—C7—H7B108.7C19—C20—H20B109.0
H7A—C7—H7B107.6C6—C20—H20B109.0
C9—C8—C13119.3 (3)H20A—C20—H20B107.8
C9—C8—C7121.1 (3)C22—N21—C6123.4 (3)
C13—C8—C7119.6 (3)C22—N21—H21118.3
C8—C9—C10121.3 (4)C6—N21—H21118.3
C8—C9—H9119.3O23—C22—N21120.8 (3)
C10—C9—H9119.3O23—C22—C24122.0 (3)
C11—C10—C9119.2 (4)N21—C22—C24117.3 (3)
C11—C10—H10120.4C22—C24—H24A109.5
C9—C10—H10120.4C22—C24—H24B109.5
C12—C11—C10120.5 (3)H24A—C24—H24B109.5
C12—C11—H11119.7C22—C24—H24C109.5
C10—C11—H11119.7H24A—C24—H24C109.5
C11—C12—C13121.2 (4)H24B—C24—H24C109.5
C1—C2—O3—C477.9 (5)C12—C13—C14—C1549.2 (5)
C2—O3—C4—O53.6 (5)C8—C13—C14—C15130.5 (4)
C2—O3—C4—C6179.2 (3)C12—C13—C14—C19131.9 (4)
O5—C4—C6—N21139.9 (4)C8—C13—C14—C1948.4 (4)
O3—C4—C6—N2144.6 (4)C19—C14—C15—C161.8 (6)
O5—C4—C6—C2016.6 (5)C13—C14—C15—C16177.2 (4)
O3—C4—C6—C20167.9 (3)C14—C15—C16—C171.0 (7)
O5—C4—C6—C7103.4 (4)C15—C16—C17—C180.3 (7)
O3—C4—C6—C772.1 (3)C16—C17—C18—C190.7 (7)
N21—C6—C7—C8165.7 (3)C17—C18—C19—C140.1 (6)
C20—C6—C7—C843.8 (4)C17—C18—C19—C20179.1 (4)
C4—C6—C7—C875.8 (3)C15—C14—C19—C181.3 (5)
C6—C7—C8—C9107.8 (4)C13—C14—C19—C18177.6 (3)
C6—C7—C8—C1373.9 (4)C15—C14—C19—C20177.9 (3)
C13—C8—C9—C100.7 (5)C13—C14—C19—C203.1 (5)
C7—C8—C9—C10178.9 (3)C18—C19—C20—C6105.0 (4)
C8—C9—C10—C110.3 (5)C14—C19—C20—C675.8 (4)
C9—C10—C11—C121.1 (6)N21—C6—C20—C1976.0 (3)
C10—C11—C12—C131.0 (6)C4—C6—C20—C19161.5 (3)
C11—C12—C13—C80.0 (5)C7—C6—C20—C1943.4 (4)
C11—C12—C13—C14179.6 (3)C20—C6—N21—C2274.2 (4)
C9—C8—C13—C120.8 (5)C4—C6—N21—C2248.0 (4)
C7—C8—C13—C12179.1 (3)C7—C6—N21—C22164.7 (3)
C9—C8—C13—C14178.8 (3)C6—N21—C22—O230.6 (5)
C7—C8—C13—C140.5 (4)C6—N21—C22—C24179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O23i0.862.012.863 (3)169
C24—H24A···O23i0.962.463.316 (4)148
C9—H9···Cg2ii0.933.303.926 (4)127
C15—H15···Cg1iii0.933.033.785 (4)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H21NO3
Mr323.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.837 (2), 24.074 (9), 9.543 (2)
β (°) 102.87 (2)
V3)1755.2 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.35 × 0.13 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.802, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
3522, 3312, 1976
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.262, 1.05
No. of reflections3312
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O23i0.862.012.863 (3)169
C24—H24A···O23i0.962.463.316 (4)148
C9—H9···Cg2ii0.933.303.926 (4)127
C15—H15···Cg1iii0.933.033.785 (4)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds