Download citation
Download citation
link to html
The crystal structure of the title compound, C20H18N2O, reveals a distorted half-chair conformation of the central tetra­hydro­pyridine (THP) ring, with the cyano- and adjacent phenyl-substituted C atoms displaced by 0.329 (1) and -0.315 (1) Å, respectively, from the THP best plane. Steric interactions force the phenyl rings out of the THP plane by 49.21 (9) and 65.76 (5)°. The cyano moiety is coplanar with the THP plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000185/de1177sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000185/de1177Isup2.hkl
Contains datablock I

CCDC reference: 183036

Comment top

In order to study the influence of substituents of different sizes upon the structural parameters of the molecule, we report here the crystal structure of 1,3-dimethyl-2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile, (I). The crystal structures of the analogous diethyl and dibenzyl derivatives of tetrahydropyridine have previously been reported (Patel et al., 2001b,c). \sch

Fig. 1. depicts the structure of the molecule of (I), and selected bond lengths and angles are given in Table 1. The structure of (I) has the same characteristic molecular dimensions as observed for similar compounds of this class (Patel et al., 2001b,c). The bonds C1—C2, C2—C3 and C3—C4 [1.548 (2), 1.554 (2) and 1.494 (2) Å, respectively] have predominantly single-bond character, whereas the C1—N1 distance of 1.361 (2) Å is a partial double bond. The lengthening of C2—C3 and C3—C4, and the contraction of the C2—C3—C4 angle, [107.9 (1)°] may be attributed to the comparatively heavy substituent at C3 (a phenyl ring). These values are similar to those found in the other derivatives of THP that we have recently reported (Patel et al., 2001b,c).

The triple-bond character of C18—N2 [1.135 (3) Å], and the C2—C18—N2 angle of 177.8 (2)° defining the linearity of the cyano moiety, are typical of this group of 3-cyano-2-pyridine compounds (Black et al., 1992; Hussain et al., 1996; Patel, 2001a).

The methyl group at C2 is out of the plane of the THP ring by 0.627 (3) Å, whereas that at N1 is coplanar with the THP plane. Both the phenyl rings are planar within themselves. Steric interactions force the phenyl rings out of the THP plane by 49.21 (9) and 65.76 (5)°, respectively. However, these dihedral angles are in a much smaller range than those reported for similar compounds (Patel et al., 2001b,c; Hursthouse et al., 1992).

The torsion angles about C2—C18 are as follows, with values for the diethyl and dibenzyl substituents, respectively, given inside the brackets: C1—C2—C18—N2 = 107 (5)° [-126 (8) and -164 (2)°] and C3—C2—C18—N2 = -136 (5)° [113 (8) and 74 (2)°]. These observations reveal that the molecular conformation in all these compounds differs significantly about the C2—C18 bond.

In summary, these results show that, although the molecule of (I) preserves the same characteristic molecular dimensions as analogous compounds, the molecular conformation is influenced by the size of the substituents. As usual in heterocyclic compounds, weak van der Waals forces are responsible for the stability of the structure.

The three Patel et al. (2001) references each need a unique identifier. The a, b and c used above need careful checking to ensure the correct citation is given in each place. Please provide any corrections necessary.

Experimental top

Compound (I) was synthesized according to the method of Shah (2000). Full details of the synthesis will be published elsewhere by Dave et al. Thin needle-shaped crystals of (I) were grown from chloroform-ethanol solution by slow evaporation. The crystal density was measured by flotation in an aqueous potassium iodide solution.

Refinement top

H atoms were treated as riding, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for all others. Are these the correct constraints?

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software (Enraf-Nonius, 1989); data reduction: MolEN (Nonius, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick 1990); program(s) used to refine structure: SHELXL97 (Sheldrick 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
1,3-dimethyl-2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyridine-3-carbonitrile top
Crystal data top
C20H18N2OF(000) = 640
Mr = 302.36Dx = 1.214 Mg m3
Dm = 1.204 Mg m3
Dm measured by flotation
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 13.738 (3) ÅCell parameters from 25 reflections
b = 7.4751 (16) Åθ = 25–35°
c = 17.1566 (18) ŵ = 0.60 mm1
β = 110.117 (13)°T = 293 K
V = 1654.4 (5) Å3Needle, colourless
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2548 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 68.0°, θmin = 3.4°
ω/2θ scansh = 016
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 08
Tmin = 0.931, Tmax = 0.942l = 2019
3141 measured reflections2 standard reflections every 60 min
3141 independent reflections intensity decay: 1%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max = 0.034
wR(F2) = 0.141Δρmax = 0.36 or 0.46? e Å3
S = 1.06Δρmin = 0.23 or 0.18? e Å3
3010 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
220 parametersExtinction coefficient: 0.0042 (5)
Crystal data top
C20H18N2OV = 1654.4 (5) Å3
Mr = 302.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.738 (3) ŵ = 0.60 mm1
b = 7.4751 (16) ÅT = 293 K
c = 17.1566 (18) Å0.2 × 0.1 × 0.1 mm
β = 110.117 (13)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2548 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.029
Tmin = 0.931, Tmax = 0.9422 standard reflections every 60 min
3141 measured reflections intensity decay: 1%
3141 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046220 parameters
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.36 or 0.46? e Å3
3010 reflectionsΔρmin = 0.23 or 0.18? e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.77347 (14)0.2377 (2)0.43189 (12)0.0884 (8)1.013 (6)
N10.82256 (11)0.0167 (2)0.38443 (9)0.0534 (4)
N20.73306 (17)0.2059 (3)0.56059 (12)0.0863 (6)
C50.79970 (13)0.1966 (2)0.35755 (10)0.0479 (4)
C40.70478 (12)0.2589 (2)0.34080 (10)0.0481 (4)
H40.69070.37770.32470.058*
C30.61949 (13)0.1424 (2)0.34718 (10)0.0467 (4)
H30.59910.06410.29840.056*
C20.66548 (14)0.0194 (2)0.42420 (11)0.0512 (4)
C10.75905 (15)0.0806 (3)0.41405 (12)0.0574 (5)
C200.90697 (17)0.0788 (3)0.36906 (14)0.0701 (6)
H20A0.94620.00350.34860.105*
H20B0.95140.13150.41990.105*
H20C0.87880.17100.32860.105*
C120.88503 (13)0.3076 (2)0.34924 (10)0.0485 (4)
C130.97872 (15)0.3286 (3)0.41369 (12)0.0635 (5)
H130.99080.26630.46310.076*
C141.05406 (16)0.4411 (3)0.40519 (14)0.0718 (6)
H141.11670.45340.44880.086*
C151.03754 (16)0.5343 (3)0.33358 (15)0.0681 (6)
H151.08830.61110.32850.082*
C160.94566 (16)0.5142 (3)0.26894 (13)0.0630 (5)
H160.93430.57720.21990.076*
C170.86985 (14)0.4009 (2)0.27638 (11)0.0521 (4)
H170.80810.38720.23200.062*
C60.52275 (12)0.2408 (2)0.34581 (10)0.0453 (4)
C70.52640 (13)0.3973 (2)0.38960 (11)0.0489 (4)
H70.59020.44700.42010.059*
C80.43610 (14)0.4808 (3)0.38843 (12)0.0562 (5)
H80.43980.58590.41830.067*
C90.34157 (14)0.4106 (3)0.34381 (13)0.0640 (5)
H90.28110.46570.34430.077*
C100.33677 (15)0.2578 (3)0.29831 (17)0.0760 (7)
H100.27270.21060.26660.091*
C110.42643 (15)0.1743 (3)0.29955 (14)0.0661 (5)
H110.42210.07070.26850.079*
C180.70442 (15)0.1267 (3)0.50049 (12)0.0578 (5)
C190.58755 (18)0.1167 (3)0.43317 (15)0.0721 (6)
H19A0.56200.18740.38360.108*
H19B0.62070.19320.47970.108*
H19C0.53080.05520.44190.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1115 (14)0.0549 (10)0.1181 (15)0.0284 (8)0.0642 (11)0.0326 (9)
N10.0604 (9)0.0502 (9)0.0569 (8)0.0159 (7)0.0296 (7)0.0095 (7)
N20.0972 (15)0.1006 (16)0.0549 (10)0.0116 (12)0.0182 (10)0.0084 (10)
C50.0538 (9)0.0494 (9)0.0436 (8)0.0082 (8)0.0207 (7)0.0062 (7)
C40.0505 (9)0.0482 (9)0.0490 (9)0.0073 (7)0.0213 (7)0.0094 (7)
C30.0545 (9)0.0441 (9)0.0439 (8)0.0028 (7)0.0199 (7)0.0018 (7)
C20.0629 (10)0.0438 (9)0.0532 (9)0.0020 (8)0.0279 (8)0.0031 (7)
C10.0715 (12)0.0470 (10)0.0590 (10)0.0134 (9)0.0292 (9)0.0095 (8)
C200.0729 (13)0.0680 (13)0.0803 (14)0.0278 (11)0.0404 (11)0.0133 (11)
C120.0491 (9)0.0521 (10)0.0494 (9)0.0088 (7)0.0234 (7)0.0033 (7)
C130.0592 (11)0.0770 (14)0.0533 (10)0.0043 (10)0.0181 (9)0.0077 (10)
C140.0522 (11)0.0845 (15)0.0765 (13)0.0015 (10)0.0193 (10)0.0058 (12)
C150.0623 (12)0.0640 (12)0.0905 (15)0.0002 (10)0.0423 (11)0.0014 (11)
C160.0734 (13)0.0620 (12)0.0680 (12)0.0109 (10)0.0427 (10)0.0106 (9)
C170.0556 (10)0.0564 (10)0.0497 (9)0.0102 (8)0.0251 (8)0.0047 (8)
C60.0461 (9)0.0450 (9)0.0459 (8)0.0028 (7)0.0171 (7)0.0025 (7)
C70.0468 (9)0.0471 (9)0.0522 (9)0.0036 (7)0.0165 (7)0.0052 (7)
C80.0592 (11)0.0522 (10)0.0627 (11)0.0042 (8)0.0280 (9)0.0031 (8)
C90.0482 (10)0.0673 (13)0.0819 (13)0.0059 (9)0.0294 (9)0.0069 (11)
C100.0444 (10)0.0729 (14)0.1014 (17)0.0118 (10)0.0134 (10)0.0086 (13)
C110.0555 (11)0.0585 (12)0.0763 (13)0.0086 (9)0.0122 (9)0.0191 (10)
C180.0653 (11)0.0619 (12)0.0491 (10)0.0101 (9)0.0233 (9)0.0072 (9)
C190.0837 (14)0.0550 (12)0.0917 (15)0.0041 (10)0.0481 (13)0.0091 (11)
Geometric parameters (Å, º) top
O1—C11.212 (2)C14—C151.362 (3)
N1—C11.361 (2)C14—H140.9300
N1—C51.421 (2)C15—C161.372 (3)
N1—C201.461 (2)C15—H150.9300
N2—C181.135 (3)C16—C171.382 (3)
C5—C41.320 (2)C16—H160.9300
C5—C121.482 (2)C17—H170.9300
C4—C31.494 (2)C6—C111.380 (2)
C4—H40.9300C6—C71.382 (2)
C3—C61.512 (2)C7—C81.383 (2)
C3—C21.555 (2)C7—H70.9300
C3—H30.9800C8—C91.366 (3)
C2—C181.470 (3)C8—H80.9300
C2—C191.522 (3)C9—C101.372 (3)
C2—C11.548 (2)C9—H90.9300
C20—H20A0.9600C10—C111.374 (3)
C20—H20B0.9600C10—H100.9300
C20—H20C0.9600C11—H110.9300
C12—C171.383 (2)C19—H19A0.9600
C12—C131.387 (3)C19—H19B0.9600
C13—C141.380 (3)C19—H19C0.9600
C13—H130.9300
C1—N1—C5121.87 (14)C15—C14—H14119.7
C1—N1—C20117.20 (16)C13—C14—H14119.7
C5—N1—C20120.27 (15)C14—C15—C16119.7 (2)
C4—C5—N1119.75 (16)C14—C15—H15120.2
C4—C5—C12122.43 (16)C16—C15—H15120.2
N1—C5—C12117.83 (14)C15—C16—C17120.35 (19)
C5—C4—C3121.28 (16)C15—C16—H16119.8
C5—C4—H4119.4C17—C16—H16119.8
C3—C4—H4119.4C16—C17—C12120.56 (18)
C4—C3—C6115.00 (14)C16—C17—H17119.7
C4—C3—C2107.90 (13)C12—C17—H17119.7
C6—C3—C2113.52 (13)C11—C6—C7117.76 (16)
C4—C3—H3106.6C11—C6—C3119.83 (16)
C6—C3—H3106.6C7—C6—C3122.41 (15)
C2—C3—H3106.6C6—C7—C8120.64 (16)
C18—C2—C19109.14 (16)C6—C7—H7119.7
C18—C2—C1107.56 (15)C8—C7—H7119.7
C19—C2—C1109.21 (15)C9—C8—C7120.66 (18)
C18—C2—C3110.55 (14)C9—C8—H8119.7
C19—C2—C3112.75 (16)C7—C8—H8119.7
C1—C2—C3107.49 (13)C8—C9—C10119.31 (18)
O1—C1—N1122.78 (18)C8—C9—H9120.3
O1—C1—C2120.61 (18)C10—C9—H9120.3
N1—C1—C2116.61 (15)C9—C10—C11120.10 (18)
N1—C20—H20A109.5C9—C10—H10119.9
N1—C20—H20B109.5C11—C10—H10119.9
H20A—C20—H20B109.5C10—C11—C6121.49 (19)
N1—C20—H20C109.5C10—C11—H11119.3
H20A—C20—H20C109.5C6—C11—H11119.3
H20B—C20—H20C109.5N2—C18—C2177.8 (2)
C17—C12—C13118.25 (17)C2—C19—H19A109.5
C17—C12—C5119.38 (15)C2—C19—H19B109.5
C13—C12—C5122.30 (16)H19A—C19—H19B109.5
C14—C13—C12120.59 (19)C2—C19—H19C109.5
C14—C13—H13119.7H19A—C19—H19C109.5
C12—C13—H13119.7H19B—C19—H19C109.5
C15—C14—C13120.6 (2)
C1—N1—C5—C417.3 (3)C4—C5—C12—C13126.4 (2)
C20—N1—C5—C4153.18 (18)N1—C5—C12—C1353.8 (2)
C1—N1—C5—C12162.90 (16)C17—C12—C13—C140.6 (3)
C20—N1—C5—C1226.7 (2)C5—C12—C13—C14176.27 (19)
N1—C5—C4—C31.8 (2)C12—C13—C14—C150.4 (3)
C12—C5—C4—C3178.07 (14)C13—C14—C15—C160.9 (3)
C5—C4—C3—C6166.41 (16)C14—C15—C16—C170.3 (3)
C5—C4—C3—C238.6 (2)C15—C16—C17—C120.7 (3)
C4—C3—C2—C1862.22 (18)C13—C12—C17—C161.1 (3)
C6—C3—C2—C1866.46 (19)C5—C12—C17—C16175.85 (16)
C4—C3—C2—C19175.31 (15)C4—C3—C6—C11137.37 (18)
C6—C3—C2—C1956.0 (2)C2—C3—C6—C1197.7 (2)
C4—C3—C2—C154.90 (18)C4—C3—C6—C742.6 (2)
C6—C3—C2—C1176.42 (14)C2—C3—C6—C782.3 (2)
C5—N1—C1—O1174.80 (19)C11—C6—C7—C81.7 (3)
C20—N1—C1—O14.1 (3)C3—C6—C7—C8178.33 (16)
C5—N1—C1—C25.1 (3)C6—C7—C8—C90.2 (3)
C20—N1—C1—C2175.85 (17)C7—C8—C9—C101.5 (3)
C18—C2—C1—O1102.1 (2)C8—C9—C10—C111.7 (4)
C19—C2—C1—O116.2 (3)C9—C10—C11—C60.1 (4)
C3—C2—C1—O1138.8 (2)C7—C6—C11—C101.5 (3)
C18—C2—C1—N177.9 (2)C3—C6—C11—C10178.5 (2)
C19—C2—C1—N1163.74 (18)C19—C2—C18—N212 (6)
C3—C2—C1—N141.1 (2)C1—C2—C18—N2107 (6)
C4—C5—C12—C1750.4 (2)C3—C2—C18—N2136 (6)
N1—C5—C12—C17129.39 (17)

Experimental details

Crystal data
Chemical formulaC20H18N2O
Mr302.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.738 (3), 7.4751 (16), 17.1566 (18)
β (°) 110.117 (13)
V3)1654.4 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.60
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.931, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
3141, 3141, 2548
Rint0.029
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.06
No. of reflections3010
No. of parameters220
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36 or 0.46?, 0.23 or 0.18?

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), MolEN (Nonius, 1997), SHELXS97 (Sheldrick 1990), SHELXL97 (Sheldrick 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C11.212 (2)C5—C121.482 (2)
N1—C11.361 (2)C3—C61.512 (2)
N1—C51.421 (2)C2—C181.470 (3)
N1—C201.461 (2)C2—C191.522 (3)
N2—C181.135 (3)C2—C11.548 (2)
C1—N1—C5121.87 (14)C18—C2—C19109.14 (16)
C5—C4—C3121.28 (16)C1—C2—C3107.49 (13)
C4—C3—C2107.90 (13)N2—C18—C2177.8 (2)
C5—N1—C1—O1174.80 (19)N1—C5—C12—C1353.8 (2)
C18—C2—C1—O1102.1 (2)C2—C3—C6—C782.3 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds