Download citation
Download citation
link to html
The title compound, C20H10N4S, and its dipyridinium salt, 4,4′-(2,1,3-benzo­diazol-4,7-diyl­diethynyl)­dipyridinium diperchlorate, C20H12N4S2+·2ClO4, display bond alternation in the 2,1,3-benzo­thia­diazo­le rings, which suggests their quinonoid character. The dipyridinium dication mol­ecules stack along the a axis and form a dimer with short S...N interheteroatom contacts [3.146 (4) Å] between the two 1,2,5-thia­diazo­le rings. The dimer is surrounded by the perchlorate anions with which it forms a large number of intermolecular N—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101004802/de1167sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004802/de1167Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004802/de1167IIsup3.hkl
Contains datablock II

CCDC references: 166995; 166996

Comment top

A long, rigid and conjugated bridging ligand has received much current interest for the construction of self-assembling macrocyclic architectures (Lehn, 1995; Fujita, 1999) and the development of molecular wires (Tour, 1996). Additionally, incorporation of redox-active and/or luminescent parts into the ligands is attractive in exploring functional supramolecular systems (Hock et al., 1996; Sun & Lees, 2000). With this in mind we have recently synthesized a novel ligand with a 2,1,3-benzothiadiazole ring and two terminal pyridine rings, 4,7-bis(4-pyridylethynyl)-2,1,3-benzothiadiazole, (I). The S and the N atoms in the 1,2,5-thiadiazole ring of (I) are expected to form short interheteroatom contacts which can bring unique molecular networks (Yamashita & Tomura, 1998). In the course of our studies on (I), we have also isolated its dipyridinium salt, 4,4'-(2,1,3-benzodiazol-4,7-diyldiethynyl)dipyridinium diperchlorate, (II), as single crystals. We report here the molecular structures and the unique crystal structures of (I) and (II). \sch

Compounds (I) and (II) crystallize in the P21/a and the P21/c space groups, respectively, with one molecule in the asymmetric unit. The molecular structures of (I) and (II) are shown in Figs. 1 and 2, and selected geometric parameters are listed in Tables 1 and 2, respectively. Compound (I) and the dipyridinium dication in (II) generally have similar molecular geometries. They are long and linear molecules with lengths of 16.557 (5) Å for (I) and 16.387 (6) Å for (II) (N3—N4 distance). The dipyridinium dication of (II) is more linear [C8—C7—C1 179.4 (6) and C15—C14—C4 178.7 (5)°], while (I) bends slightly [C8—C7—C1 176.2 (4) and C15—C14—C4 174.4 (5)°]. The 2,1,3-benzothiadiazole and two pyridine rings are planar within the deviation of 0.026 (3) for (I) and 0.038 (4) Å for (II). Compound (I) lies in a plane (r.m.s. deviation of fitted atoms; 0.1043 Å), and the angles between the 2,1,3-benzothiadiazole and two pyridine rings are 1.5 (2)° (C9—C10—C11—N3—C12—C13) and 11.6 (2)° (C16—C17—C18—N4—C19—C20). In the dipyridinium dication in (II), the 2,1,3-benzothiadiazole and one pyridine ring (C9—C10—C11—N3—C12—C13) are almost coplanar [r.m.s. deviation of fitted atoms; 0.0541 Å and the angle between the planes for the two rings; 5.4 (3)°], while the other pyridine ring tilts toward the 2,1,3-benzothiadiazole one with the angle of 44.5 (2)°. The C1—C7, C8—C9, C4—C14 and C15—C16 bonds [1.429 (4)–1.445 (4) for (I) and 1.428 (6)–1.438 (6) Å for (II)] are almost the same length as the typical Caromatic—Csp bond, 1.434 Å (Allen et al., 1987).

There is considerable shortening of the C1—C6 and C4—C5 bonds compared to the other bonds in the benzene rings of (I) and (II). Such double bond fixation suggests quinonoid character of the 2,1,3-benzothiadiazole ring in (I) and (II). The geometric parameters of the 1,2,5-thiadiazole rings in (I) and (II) are almost the same as those of 3,4-diphenyl-1,2,5-thiadiazole (Mellini & Merlino, 1976).

Fig. 3 shows the packing diagram of (II) viewed along the a axis. The dipyridinium dication molecules form unistacks along the a axis. The interstack distance (distance between the two 2,1,3-benzothiadiazole ring planes within the stack) is 3.40 (1) Å. The most remarkable feature of the crystal structure of (II) is the existence of short S···N interheteroatom contacts [3.146 (4) Å for S1···N2(-x, -y + 1, -z) and N2···S1(-x, -y + 1, -z)] between the two 1,2,5-thiadiazole rings. The S···N distance is 6.1% shorter, and the S1···S1(-x, -y + 1, -z) [3.960 (3) Å] and the N2···N2(-x, -y + 1, -z) [3.048 (8) Å] between the 1,2,5-thiadiazole rings are 6.5 and 1.6% longer than the sum of the corresponding van der Waals radii (Pauling, 1960), respectively. Thus the dipyridinium dication molecules form a dimer with the short S—N contacts, which is planar and lies in a plane within the deviation of 0.09 (1) Å. No short S—N interheteroatom contact within the sum of the van der Waals radii of the S and the N atoms was observed in the crystal structure of (I) [the shortest S···N interheteroatom contact; S1···N4(-x + 3/2, y + 1/2, -z + 1) 3.380 (3) Å]. Interestingly, the dimer is surrounded by the perchlorate anions, as shown in Fig. 3. A large number of intermolecular N—H···O and C—H···O hydrogen bonds (Taylor & Kennard, 1982; Biradha et al., 1993; Batchelor et al., 2000) are observed between the dipyridinium dication and the oxygen atoms of the perchlorate anions (see Table 3). The intermolecular O···O distances of the perchlorates are in the range of 3.044 (6) to 3.286 (6) Å.

Studies on the construction of new molecular architectures using compound (I) are now in progress.

Experimental top

Compound (I) was synthesized by the reaction of 4,7-dibromo-2,1,3-benzothiadiazole (Pilgram et al., 1970) with 4-ethynylpyridine (Ciana & Haim, 1984). To a solution of 4-ethynylpyridine (1.63 g, 15.9 mmol) and 4,7-dibromo-2,1,3-benzothiadiazole (2.00 g, 6.8 mmol) in triethylamine (150 ml), bis(triphenylphosphine)palladium(II) dichloride (0.115 g, 0.164 mmol) and copper(I) bromide (0.101 g, 0.702 mmol) was added. After stirring for 30 min at 333 K, the reaction mixture was stirred for 2 d at 363 K under argon. Triethylamine was removed in vacuo and the residue was dissolved in CH2Cl2. The solution was washed with aqueous K2CO3, and dried over Na2SO4. After the solvent was evaporated in vacuo, the crude product (yield 1.79 g, 78%) was purified by sublimation (453–473 K, 10-2 torr) to give (I) as a yellow powder. Slow evaporation of a solution of (I) in CH2Cl2-ethyl acetate (5:1) afforded yellow crystals of (I) suitable for X-ray analysis. Physical data for (I): m.p. 523–525 K; 1H NMR (CDCl3, 270 MHz): δ 7.55 (d), 7.88 (s), 8.69 (d); MS (EI): m/z 338 (M+). Slow evaporation of a solution of (I) with copper(II) perchlorate in CH2Cl2-ethyl acetate (5:1) gave orange crystals of (II) suitable for X-ray analysis.

Refinement top

All H atoms of (I) were placed in geometrically calculated positions and refined by using a riding model. All H atoms of (II) were localized in the Fourier map and refined isotropically.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Packing diagram of (II) viewed along the a axis. Dotted lines show the short S···N interheteroatom contacts.
(I) 4,7-bis[(4-pyridyl)ethynyl]-2,1,3-benzothiadiazole top
Crystal data top
C20H10N4SDx = 1.411 Mg m3
Mr = 338.38Melting point: 524 K
Monoclinic, P21/aCu Kα radiation, λ = 1.54178 Å
a = 12.487 (2) ÅCell parameters from 25 reflections
b = 7.5477 (13) Åθ = 18.7–42.4°
c = 17.513 (3) ŵ = 1.88 mm1
β = 105.22 (2)°T = 296 K
V = 1592.8 (5) Å3Prismatic, yellow
Z = 40.50 × 0.30 × 0.10 mm
F(000) = 696
Data collection top
Enraf-Nonius CAD-4
diffractometer
1902 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 74.3°, θmin = 5.2°
ω–2θ scansh = 150
Absorption correction: ψ scan
(North et al., 1968)
k = 90
Tmin = 0.454, Tmax = 0.835l = 2121
3416 measured reflections3 standard reflections every 120 min
3254 independent reflections intensity decay: 2.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.5079P]
where P = (Fo2 + 2Fc2)/3
3254 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H10N4SV = 1592.8 (5) Å3
Mr = 338.38Z = 4
Monoclinic, P21/aCu Kα radiation
a = 12.487 (2) ŵ = 1.88 mm1
b = 7.5477 (13) ÅT = 296 K
c = 17.513 (3) Å0.50 × 0.30 × 0.10 mm
β = 105.22 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1902 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.079
Tmin = 0.454, Tmax = 0.8353 standard reflections every 120 min
3416 measured reflections intensity decay: 2.4%
3254 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.69 e Å3
3254 reflectionsΔρmin = 0.33 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

1.5818 (0.0221) x - 6.6462 (0.0067) y + 7.1354 (0.0259) z = 6.0990 (0.0289)

* 0.0042 (0.0028) N3 * 0.0090 (0.0028) C9 * -0.0040 (0.0029) C10 * -0.0028 (0.0030) C11 * 0.0011 (0.0030) C12 * -0.0076 (0.0030) C13

Rms deviation of fitted atoms = 0.0055

1.2657 (0.0098) x - 6.6518 (0.0049) y + 7.3340 (0.0198) z = 6.2092 (0.0135)

Angle to previous plane (with approximate e.s.d.) = 1.48 (0.18)

* -0.0020 (0.0019) S1 * -0.0044 (0.0026) N1 * 0.0160 (0.0026) N2 * -0.0087 (0.0028) C1 * -0.0016 (0.0032) C2 * 0.0049 (0.0033) C3 * -0.0263 (0.0030) C4 * 0.0078 (0.0031) C5 * 0.0143 (0.0030) C6

Rms deviation of fitted atoms = 0.0122

- 0.8891 (0.0247) x - 7.0043 (0.0055) y + 6.5072 (0.0274) z = 4.6045 (0.0155)

Angle to previous plane (with approximate e.s.d.) = 11.64 (0.15)

* -0.0071 (0.0029) N4 * -0.0028 (0.0030) C16 * -0.0084 (0.0034) C17 * 0.0137 (0.0034) C18 * -0.0046 (0.0030) C19 * 0.0092 (0.0030) C20

Rms deviation of fitted atoms = 0.0084

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73678 (9)0.07406 (18)0.78638 (6)0.0666 (4)
N10.6460 (3)0.1108 (5)0.83501 (18)0.0544 (8)
N20.6621 (3)0.0274 (5)0.70975 (18)0.0548 (8)
N30.3540 (3)0.3989 (5)1.14848 (17)0.0537 (8)
N40.5864 (3)0.4239 (5)0.33033 (18)0.0606 (10)
C10.4457 (3)0.0464 (5)0.81057 (18)0.0433 (8)
C20.5499 (3)0.0443 (5)0.79170 (18)0.0430 (8)
C30.5594 (3)0.0351 (5)0.71896 (19)0.0437 (8)
C40.4642 (3)0.1088 (5)0.66424 (19)0.0465 (9)
C50.3667 (3)0.1089 (6)0.6856 (2)0.0527 (10)
H50.30440.16090.65190.063*
C60.3570 (3)0.0321 (5)0.7579 (2)0.0486 (9)
H60.28860.03510.76970.058*
C70.4348 (3)0.1264 (5)0.8830 (2)0.0471 (9)
C80.4198 (3)0.1887 (5)0.94134 (19)0.0499 (9)
C90.3987 (3)0.2616 (5)1.01131 (18)0.0440 (8)
C100.4800 (3)0.3453 (5)1.0694 (2)0.0505 (9)
H100.55150.35751.06360.061*
C110.4541 (3)0.4102 (6)1.1357 (2)0.0549 (10)
H110.51010.46521.17400.066*
C120.2776 (4)0.3207 (6)1.0921 (2)0.0570 (11)
H120.20690.31141.09970.068*
C130.2930 (3)0.2518 (6)1.0233 (2)0.0546 (10)
H130.23460.20010.98570.065*
C140.4766 (3)0.1775 (5)0.5900 (2)0.0505 (9)
C150.4958 (4)0.2288 (6)0.5320 (2)0.0568 (10)
C160.5251 (4)0.2938 (5)0.4627 (2)0.0512 (10)
C170.6354 (4)0.3077 (7)0.4619 (2)0.0691 (13)
H170.69120.27160.50560.083*
C180.6621 (4)0.3758 (7)0.3957 (3)0.0696 (13)
H180.73660.38840.39700.084*
C190.4815 (4)0.4092 (6)0.3322 (2)0.0585 (11)
H190.42710.44290.28720.070*
C200.4473 (4)0.3482 (6)0.3954 (2)0.0553 (10)
H200.37200.34340.39300.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0588 (6)0.0885 (9)0.0556 (6)0.0093 (6)0.0202 (5)0.0071 (6)
N10.060 (2)0.062 (2)0.0436 (16)0.0068 (17)0.0174 (15)0.0061 (16)
N20.059 (2)0.065 (2)0.0465 (17)0.0000 (17)0.0244 (15)0.0019 (16)
N30.065 (2)0.062 (2)0.0410 (16)0.0010 (17)0.0268 (15)0.0132 (15)
N40.088 (3)0.063 (2)0.0387 (16)0.008 (2)0.0314 (17)0.0103 (16)
C10.059 (2)0.045 (2)0.0295 (15)0.0048 (18)0.0184 (15)0.0021 (15)
C20.057 (2)0.045 (2)0.0288 (15)0.0010 (17)0.0154 (15)0.0001 (14)
C30.058 (2)0.045 (2)0.0334 (16)0.0006 (17)0.0196 (15)0.0009 (15)
C40.064 (2)0.048 (2)0.0318 (16)0.0004 (18)0.0209 (16)0.0027 (15)
C50.064 (2)0.059 (2)0.0358 (18)0.008 (2)0.0136 (17)0.0076 (17)
C60.054 (2)0.058 (2)0.0376 (18)0.0000 (19)0.0192 (16)0.0013 (17)
C70.059 (2)0.051 (2)0.0364 (17)0.0083 (18)0.0213 (16)0.0000 (16)
C80.065 (2)0.056 (2)0.0314 (16)0.009 (2)0.0177 (16)0.0023 (16)
C90.058 (2)0.048 (2)0.0283 (15)0.0090 (18)0.0161 (15)0.0022 (15)
C100.046 (2)0.067 (3)0.0414 (18)0.0070 (19)0.0171 (16)0.0042 (18)
C110.058 (2)0.074 (3)0.0323 (16)0.003 (2)0.0111 (16)0.0126 (18)
C120.059 (2)0.069 (3)0.050 (2)0.004 (2)0.0256 (19)0.012 (2)
C130.062 (2)0.062 (3)0.0407 (19)0.005 (2)0.0153 (17)0.0148 (18)
C140.071 (3)0.048 (2)0.0402 (18)0.0020 (19)0.0272 (18)0.0034 (16)
C150.082 (3)0.052 (2)0.0410 (19)0.003 (2)0.0252 (19)0.0011 (18)
C160.083 (3)0.043 (2)0.0341 (17)0.000 (2)0.0273 (18)0.0008 (16)
C170.082 (3)0.089 (4)0.040 (2)0.024 (3)0.021 (2)0.017 (2)
C180.078 (3)0.085 (4)0.058 (3)0.016 (3)0.040 (2)0.013 (2)
C190.087 (3)0.057 (3)0.0312 (17)0.010 (2)0.0151 (19)0.0051 (17)
C200.065 (2)0.065 (3)0.0363 (18)0.014 (2)0.0147 (17)0.0041 (18)
Geometric parameters (Å, º) top
S1—N11.611 (3)C8—C91.429 (4)
S1—N21.613 (4)C9—C101.386 (5)
N1—C21.338 (5)C9—C131.391 (5)
N2—C31.334 (5)C10—C111.375 (5)
N3—C121.318 (5)C10—H100.9300
N3—C111.329 (5)C11—H110.9300
N4—C191.324 (5)C12—C131.372 (5)
N4—C181.329 (5)C12—H120.9300
C1—C61.376 (5)C13—H130.9300
C1—C21.424 (5)C14—C151.170 (5)
C1—C71.444 (4)C15—C161.442 (5)
C2—C31.441 (4)C16—C201.378 (5)
C3—C41.430 (5)C16—C171.385 (6)
C4—C51.365 (5)C17—C181.387 (5)
C4—C141.445 (4)C17—H170.9300
C5—C61.426 (5)C18—H180.9300
C5—H50.9300C19—C201.367 (5)
C6—H60.9300C19—H190.9300
C7—C81.183 (4)C20—H200.9300
N1—S1—N2100.83 (17)C11—C10—H10120.2
C2—N1—S1106.7 (2)C9—C10—H10120.2
C3—N2—S1106.5 (2)N3—C11—C10124.0 (4)
C12—N3—C11115.5 (3)N3—C11—H11118.0
C19—N4—C18116.1 (3)C10—C11—H11118.0
C6—C1—C2117.6 (3)N3—C12—C13126.0 (4)
C6—C1—C7121.7 (3)N3—C12—H12117.0
C2—C1—C7120.7 (3)C13—C12—H12117.0
N1—C2—C1127.1 (3)C12—C13—C9118.0 (4)
N1—C2—C3112.8 (3)C12—C13—H13121.0
C1—C2—C3120.2 (3)C9—C13—H13121.0
N2—C3—C4126.3 (3)C15—C14—C4174.4 (5)
N2—C3—C2113.2 (3)C14—C15—C16177.1 (5)
C4—C3—C2120.5 (3)C20—C16—C17116.7 (3)
C5—C4—C3117.5 (3)C20—C16—C15122.9 (4)
C5—C4—C14124.1 (4)C17—C16—C15120.4 (4)
C3—C4—C14118.4 (3)C16—C17—C18119.6 (4)
C4—C5—C6122.2 (4)C16—C17—H17120.2
C4—C5—H5118.9C18—C17—H17120.2
C6—C5—H5118.9N4—C18—C17123.3 (4)
C1—C6—C5122.0 (4)N4—C18—H18118.4
C1—C6—H6119.0C17—C18—H18118.4
C5—C6—H6119.0N4—C19—C20124.7 (4)
C8—C7—C1176.2 (4)N4—C19—H19117.6
C7—C8—C9178.5 (5)C20—C19—H19117.6
C10—C9—C13117.0 (3)C19—C20—C16119.5 (4)
C10—C9—C8122.8 (3)C19—C20—H20120.2
C13—C9—C8120.2 (4)C16—C20—H20120.2
C11—C10—C9119.6 (3)
N2—S1—N1—C20.5 (3)C1—C7—C8—C98 (21)
N1—S1—N2—C30.7 (3)C7—C8—C9—C10169 (16)
S1—N1—C2—C1179.7 (3)C7—C8—C9—C1312 (16)
S1—N1—C2—C30.1 (4)C13—C9—C10—C111.4 (6)
C6—C1—C2—N1179.1 (4)C8—C9—C10—C11179.1 (4)
C7—C1—C2—N10.2 (6)C12—N3—C11—C100.4 (6)
C6—C1—C2—C31.1 (5)C9—C10—C11—N30.3 (7)
C7—C1—C2—C3179.6 (3)C11—N3—C12—C130.0 (7)
S1—N2—C3—C4178.0 (3)N3—C12—C13—C91.1 (7)
S1—N2—C3—C20.7 (4)C10—C9—C13—C121.7 (6)
N1—C2—C3—N20.4 (5)C8—C9—C13—C12178.8 (4)
C1—C2—C3—N2179.8 (3)C5—C4—C14—C15178 (4)
N1—C2—C3—C4178.4 (3)C3—C4—C14—C151 (5)
C1—C2—C3—C41.4 (5)C4—C14—C15—C1631 (12)
N2—C3—C4—C5178.1 (4)C14—C15—C16—C20160 (9)
C2—C3—C4—C53.3 (5)C14—C15—C16—C1718 (9)
N2—C3—C4—C142.2 (6)C20—C16—C17—C180.7 (7)
C2—C3—C4—C14176.4 (3)C15—C16—C17—C18178.0 (4)
C3—C4—C5—C62.7 (6)C19—N4—C18—C172.2 (7)
C14—C4—C5—C6177.0 (4)C16—C17—C18—N42.5 (8)
C2—C1—C6—C51.7 (6)C18—N4—C19—C200.4 (7)
C7—C1—C6—C5179.0 (3)N4—C19—C20—C161.2 (7)
C4—C5—C6—C10.2 (6)C17—C16—C20—C190.9 (6)
C6—C1—C7—C84 (6)C15—C16—C20—C19179.6 (4)
C2—C1—C7—C8175 (6)
(II) 4,7-bis[(4-pyridinium)ethynyl]-2,1,3-benzothiadiazole diperchlorate top
Crystal data top
C20H12N4S2+·2ClO4F(000) = 1096
Mr = 539.30Dx = 1.608 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 5.1097 (3) ÅCell parameters from 25 reflections
b = 24.4522 (16) Åθ = 15.9–42.4°
c = 17.8489 (13) ŵ = 4.02 mm1
β = 92.281 (5)°T = 296 K
V = 2228.3 (3) Å3Plate, orange
Z = 40.35 × 0.15 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 74.3°, θmin = 3.1°
ω–2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 030
Tmin = 0.334, Tmax = 0.824l = 220
4684 measured reflections3 standard reflections every 120 min
4543 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.205All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.1212P)2 + 0.9345P]
where P = (Fo2 + 2Fc2)/3
4543 reflections(Δ/σ)max < 0.001
364 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H12N4S2+·2ClO4V = 2228.3 (3) Å3
Mr = 539.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.1097 (3) ŵ = 4.02 mm1
b = 24.4522 (16) ÅT = 296 K
c = 17.8489 (13) Å0.35 × 0.15 × 0.05 mm
β = 92.281 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2774 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.334, Tmax = 0.8243 standard reflections every 120 min
4684 measured reflections intensity decay: 0.4%
4543 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.205All H-atom parameters refined
S = 1.00Δρmax = 0.53 e Å3
4543 reflectionsΔρmin = 0.37 e Å3
364 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.4016 (0.0073) x + 8.4890 (0.0485) y - 12.2532 (0.0277) z = 4.4493 (0.0309)

* 0.0029 (0.0034) N3 * 0.0067 (0.0032) C9 * -0.0050 (0.0037) C10 * 0.0003 (0.0038) C11 * -0.0011 (0.0035) C12 * -0.0037 (0.0035) C13

Rms deviation of fitted atoms = 0.0039

3.3987 (0.0053) x + 6.4008 (0.0261) y - 12.9448 (0.0142) z = 3.1741 (0.0130)

Angle to previous plane (with approximate e.s.d.) = 5.38 (1/4)

* -0.0324 (0.0024) S1 * -0.0075 (0.0032) N1 * 0.0010 (0.0032) N2 * 0.0132 (0.0036) C1 * 0.0289 (0.0040) C2 * 0.0283 (0.0039) C3 * 0.0190 (0.0036) C4 * -0.0377 (0.0041) C5 * -0.0128 (0.0040) C6

Rms deviation of fitted atoms = 0.0232

3.4307 (0.0078) x + 17.9292 (0.0352) y - 2.3964 (0.0406) z = 11.6039 (0.0294)

Angle to previous plane (with approximate e.s.d.) = 44.46 (0.17)

* 0.0004 (0.0035) N4 * -0.0078 (0.0035) C16 * -0.0024 (0.0040) C17 * 0.0062 (0.0042) C18 * -0.0108 (0.0035) C19 * 0.0144 (0.0037) C20

Rms deviation of fitted atoms = 0.0085

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0095 (2)0.27338 (5)0.26293 (6)0.0502 (3)
Cl20.1575 (2)0.38122 (4)0.53621 (6)0.0480 (3)
O10.2857 (7)0.2713 (2)0.2756 (2)0.0826 (12)
O20.1122 (8)0.27617 (18)0.3331 (2)0.0737 (11)
O30.0782 (8)0.22629 (15)0.2218 (2)0.0738 (11)
O40.0575 (9)0.32089 (16)0.2197 (2)0.0773 (11)
O50.4337 (7)0.38644 (16)0.5441 (2)0.0723 (11)
O60.0869 (7)0.36157 (17)0.4616 (2)0.0712 (11)
O70.0369 (8)0.43301 (17)0.5439 (3)0.0860 (13)
O80.0685 (9)0.3431 (2)0.5882 (3)0.1015 (17)
S10.2860 (3)0.46762 (5)0.06362 (8)0.0669 (4)
N10.5192 (8)0.47523 (16)0.1267 (2)0.0572 (10)
N20.1687 (8)0.52864 (16)0.0604 (2)0.0536 (10)
N31.6612 (8)0.41586 (19)0.3859 (2)0.0563 (11)
H31.783 (13)0.399 (2)0.413 (4)0.079 (19)*
N40.6422 (8)0.76057 (18)0.0713 (2)0.0545 (10)
H40.750 (12)0.785 (3)0.097 (4)0.09 (2)*
C10.6761 (8)0.55280 (19)0.2046 (2)0.0458 (10)
C20.5133 (8)0.52731 (18)0.1481 (2)0.0435 (9)
C30.3094 (8)0.55849 (18)0.1100 (2)0.0429 (10)
C40.2712 (8)0.61377 (18)0.1280 (2)0.0444 (10)
C50.4246 (10)0.6368 (2)0.1841 (3)0.0546 (12)
H50.425 (10)0.672 (2)0.193 (3)0.050 (14)*
C60.6303 (10)0.6068 (2)0.2213 (3)0.0529 (11)
H60.743 (9)0.6239 (18)0.254 (2)0.045 (12)*
C70.8839 (8)0.5230 (2)0.2425 (3)0.0479 (10)
C81.0566 (9)0.4987 (2)0.2742 (3)0.0485 (10)
C91.2644 (8)0.47005 (17)0.3130 (2)0.0414 (9)
C101.3244 (10)0.4170 (2)0.2939 (3)0.0525 (11)
H101.233 (10)0.4023 (19)0.260 (3)0.050 (14)*
C111.5289 (11)0.3904 (2)0.3318 (3)0.0579 (13)
H111.573 (10)0.360 (2)0.322 (3)0.056 (15)*
C121.6093 (10)0.4661 (2)0.4067 (3)0.0556 (12)
H121.710 (9)0.4800 (19)0.447 (3)0.048 (13)*
C131.4108 (9)0.4946 (2)0.3715 (3)0.0497 (11)
H131.384 (7)0.5304 (16)0.385 (2)0.025 (9)*
C140.0728 (9)0.64459 (19)0.0872 (3)0.0483 (10)
C150.0881 (9)0.67010 (19)0.0523 (3)0.0510 (11)
C160.2799 (8)0.70171 (18)0.0103 (2)0.0440 (10)
C170.3046 (11)0.6964 (2)0.0669 (3)0.0595 (13)
H170.210 (12)0.669 (2)0.090 (3)0.082 (19)*
C180.4878 (11)0.7266 (3)0.1068 (3)0.0641 (15)
H180.483 (11)0.727 (2)0.154 (3)0.072 (18)*
C190.6266 (10)0.7669 (2)0.0029 (3)0.0514 (11)
H190.751 (11)0.791 (2)0.024 (3)0.067 (16)*
C200.4410 (10)0.7384 (2)0.0448 (3)0.0518 (11)
H200.429 (9)0.7397 (19)0.094 (3)0.048 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0471 (6)0.0586 (7)0.0444 (6)0.0004 (5)0.0055 (4)0.0005 (5)
Cl20.0413 (5)0.0453 (5)0.0566 (6)0.0052 (4)0.0095 (4)0.0056 (5)
O10.046 (2)0.129 (4)0.072 (3)0.002 (2)0.0047 (18)0.001 (2)
O20.072 (2)0.102 (3)0.048 (2)0.014 (2)0.0081 (17)0.001 (2)
O30.092 (3)0.059 (2)0.069 (2)0.004 (2)0.020 (2)0.0066 (18)
O40.090 (3)0.061 (2)0.079 (3)0.011 (2)0.014 (2)0.011 (2)
O50.0388 (18)0.080 (3)0.097 (3)0.0069 (17)0.0122 (18)0.000 (2)
O60.065 (2)0.086 (3)0.061 (2)0.0151 (19)0.0187 (18)0.0068 (19)
O70.069 (3)0.063 (2)0.125 (4)0.008 (2)0.014 (2)0.022 (2)
O80.094 (3)0.124 (4)0.084 (3)0.052 (3)0.027 (2)0.047 (3)
S10.0742 (9)0.0495 (7)0.0752 (9)0.0038 (6)0.0179 (7)0.0041 (6)
N10.059 (2)0.047 (2)0.065 (3)0.0106 (18)0.003 (2)0.0064 (19)
N20.051 (2)0.053 (2)0.055 (2)0.0023 (18)0.0121 (18)0.0009 (18)
N30.043 (2)0.063 (3)0.063 (3)0.0074 (19)0.0073 (19)0.026 (2)
N40.049 (2)0.058 (2)0.055 (2)0.0085 (19)0.0082 (18)0.015 (2)
C10.035 (2)0.058 (3)0.044 (2)0.0069 (19)0.0057 (17)0.012 (2)
C20.038 (2)0.048 (2)0.045 (2)0.0045 (18)0.0019 (17)0.0093 (19)
C30.035 (2)0.047 (2)0.046 (2)0.0033 (18)0.0049 (17)0.0096 (18)
C40.041 (2)0.046 (2)0.046 (2)0.0052 (18)0.0055 (18)0.0093 (19)
C50.059 (3)0.046 (3)0.058 (3)0.008 (2)0.008 (2)0.002 (2)
C60.046 (2)0.057 (3)0.054 (3)0.000 (2)0.014 (2)0.002 (2)
C70.034 (2)0.061 (3)0.049 (2)0.0032 (19)0.0019 (18)0.010 (2)
C80.042 (2)0.053 (3)0.050 (2)0.003 (2)0.0042 (19)0.010 (2)
C90.036 (2)0.044 (2)0.044 (2)0.0052 (17)0.0015 (17)0.0094 (18)
C100.057 (3)0.048 (3)0.052 (3)0.001 (2)0.014 (2)0.002 (2)
C110.064 (3)0.040 (3)0.069 (3)0.017 (2)0.001 (3)0.004 (2)
C120.048 (3)0.064 (3)0.053 (3)0.010 (2)0.014 (2)0.012 (2)
C130.051 (3)0.046 (3)0.051 (3)0.002 (2)0.004 (2)0.003 (2)
C140.041 (2)0.050 (3)0.053 (3)0.0049 (19)0.0048 (19)0.007 (2)
C150.048 (2)0.049 (3)0.056 (3)0.004 (2)0.009 (2)0.004 (2)
C160.039 (2)0.046 (2)0.046 (2)0.0015 (18)0.0074 (18)0.0050 (19)
C170.060 (3)0.067 (3)0.051 (3)0.021 (3)0.003 (2)0.003 (2)
C180.057 (3)0.095 (4)0.039 (3)0.006 (3)0.014 (2)0.003 (3)
C190.046 (2)0.047 (3)0.061 (3)0.005 (2)0.002 (2)0.002 (2)
C200.061 (3)0.053 (3)0.041 (2)0.010 (2)0.006 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl1—O11.421 (4)C4—C141.438 (6)
Cl1—O21.423 (4)C5—C61.424 (7)
Cl1—O31.428 (4)C5—H50.87 (5)
Cl1—O41.429 (4)C6—H60.91 (5)
Cl2—O81.405 (4)C7—C81.188 (6)
Cl2—O71.417 (4)C8—C91.428 (6)
Cl2—O51.418 (3)C9—C101.378 (6)
Cl2—O61.447 (4)C9—C131.395 (6)
S1—N21.608 (4)C10—C111.385 (7)
S1—N11.617 (4)C10—H100.83 (5)
N1—C21.330 (6)C11—H110.80 (5)
N2—C31.335 (6)C12—C131.362 (7)
N3—C121.314 (7)C12—H120.94 (5)
N3—C111.314 (7)C13—H130.92 (4)
N3—H30.88 (7)C14—C151.188 (6)
N4—C181.324 (7)C15—C161.435 (6)
N4—C191.332 (6)C16—C201.379 (6)
N4—H40.91 (6)C16—C171.385 (7)
C1—C61.375 (7)C17—C181.370 (7)
C1—C21.426 (6)C17—H170.93 (6)
C1—C71.434 (6)C18—H180.84 (6)
C2—C31.440 (5)C19—C201.374 (7)
C3—C41.405 (6)C19—H190.95 (6)
C4—C51.367 (7)C20—H200.88 (5)
O1—Cl1—O2109.2 (2)C1—C6—H6118 (3)
O1—Cl1—O3110.0 (3)C5—C6—H6120 (3)
O2—Cl1—O3110.6 (3)C8—C7—C1179.4 (6)
O1—Cl1—O4109.2 (3)C7—C8—C9179.3 (6)
O2—Cl1—O4109.5 (3)C10—C9—C13118.1 (4)
O3—Cl1—O4108.3 (2)C10—C9—C8120.6 (4)
O8—Cl2—O7112.1 (3)C13—C9—C8121.2 (4)
O8—Cl2—O5110.0 (3)C9—C10—C11119.5 (5)
O7—Cl2—O5110.2 (2)C9—C10—H10118 (3)
O8—Cl2—O6108.2 (3)C11—C10—H10123 (3)
O7—Cl2—O6107.0 (3)N3—C11—C10119.6 (5)
O5—Cl2—O6109.4 (2)N3—C11—H11118 (4)
N2—S1—N1100.4 (2)C10—C11—H11123 (4)
C2—N1—S1106.6 (3)N3—C12—C13120.1 (5)
C3—N2—S1107.1 (3)N3—C12—H12117 (3)
C12—N3—C11123.1 (4)C13—C12—H12123 (3)
C12—N3—H3115 (4)C12—C13—C9119.6 (5)
C11—N3—H3121 (4)C12—C13—H13118 (2)
C18—N4—C19122.4 (4)C9—C13—H13122 (2)
C18—N4—H4121 (4)C15—C14—C4178.7 (5)
C19—N4—H4116 (4)C14—C15—C16179.1 (5)
C6—C1—C2118.2 (4)C20—C16—C17118.2 (4)
C6—C1—C7121.0 (4)C20—C16—C15121.6 (4)
C2—C1—C7120.7 (4)C17—C16—C15120.1 (4)
N1—C2—C1127.1 (4)C18—C17—C16120.0 (5)
N1—C2—C3113.3 (4)C18—C17—H17121 (4)
C1—C2—C3119.6 (4)C16—C17—H17119 (4)
N2—C3—C4127.0 (4)N4—C18—C17119.8 (5)
N2—C3—C2112.6 (4)N4—C18—H18121 (4)
C4—C3—C2120.4 (4)C17—C18—H18119 (4)
C5—C4—C3118.9 (4)N4—C19—C20119.7 (5)
C5—C4—C14121.8 (4)N4—C19—H19117 (3)
C3—C4—C14119.3 (4)C20—C19—H19123 (3)
C4—C5—C6121.4 (5)C16—C20—C19119.9 (5)
C4—C5—H5123 (3)C16—C20—H20117 (3)
C6—C5—H5115 (3)C19—C20—H20123 (3)
C1—C6—C5121.5 (5)
N2—S1—N1—C20.0 (4)C1—C7—C8—C919 (96)
N1—S1—N2—C30.3 (4)C7—C8—C9—C10168 (100)
S1—N1—C2—C1177.6 (4)C7—C8—C9—C1311 (54)
S1—N1—C2—C30.3 (5)C13—C9—C10—C111.3 (7)
C6—C1—C2—N1176.7 (5)C8—C9—C10—C11179.2 (5)
C7—C1—C2—N14.0 (7)C12—N3—C11—C100.1 (8)
C6—C1—C2—C30.5 (7)C9—C10—C11—N30.7 (8)
C7—C1—C2—C3178.8 (4)C11—N3—C12—C130.2 (8)
S1—N2—C3—C4177.8 (4)N3—C12—C13—C90.4 (8)
S1—N2—C3—C20.4 (5)C10—C9—C13—C121.2 (7)
N1—C2—C3—N20.5 (6)C8—C9—C13—C12179.3 (4)
C1—C2—C3—N2178.0 (4)C5—C4—C14—C15105 (24)
N1—C2—C3—C4177.9 (4)C3—C4—C14—C1575 (24)
C1—C2—C3—C40.3 (7)C4—C14—C15—C1675 (48)
N2—C3—C4—C5175.7 (5)C14—C15—C16—C2072 (35)
C2—C3—C4—C52.3 (7)C14—C15—C16—C17107 (35)
N2—C3—C4—C144.3 (7)C20—C16—C17—C180.9 (8)
C2—C3—C4—C14177.6 (4)C15—C16—C17—C18180.0 (5)
C3—C4—C5—C63.5 (8)C19—N4—C18—C170.1 (9)
C14—C4—C5—C6176.4 (5)C16—C17—C18—N40.4 (9)
C2—C1—C6—C50.6 (7)C18—N4—C19—C201.5 (8)
C7—C1—C6—C5180.0 (5)C17—C16—C20—C192.5 (7)
C4—C5—C6—C12.7 (8)C15—C16—C20—C19178.4 (5)
C6—C1—C7—C83 (60)N4—C19—C20—C162.8 (8)
C2—C1—C7—C8177 (100)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.88 (7)1.97 (7)2.843 (5)171 (4)
N4—H4···O8ii0.91 (6)2.18 (6)2.975 (6)145 (5)
C5—H5···O3iii0.87 (5)2.73 (5)3.314 (7)126 (3)
C10—H10···O4iv0.83 (5)2.57 (5)3.299 (7)148 (3)
C11—H11···O1iv0.80 (5)2.73 (5)3.307 (7)131 (4)
C11—H11···O2i0.80 (5)2.61 (5)3.341 (6)153 (4)
C12—H12···O7v0.94 (5)2.49 (5)3.162 (7)129 (3)
C12—H12···O7i0.94 (5)2.62 (5)3.317 (7)132 (3)
C13—H13···O5v0.92 (4)2.55 (4)3.358 (6)147 (2)
C13—H13···O7vi0.92 (4)2.69 (4)3.306 (7)125 (2)
C17—H17···O4vii0.93 (6)2.74 (6)3.382 (7)127 (4)
C18—H18···O1vii0.84 (6)2.43 (6)3.223 (7)157 (4)
C18—H18···O3viii0.84 (6)2.75 (6)3.177 (6)113 (4)
C18—H18···O4viii0.84 (6)2.84 (6)3.230 (7)110 (4)
C19—H19···O2ii0.95 (6)2.69 (5)3.273 (6)120 (3)
C19—H19···O6ii0.95 (6)2.46 (6)3.378 (7)162 (3)
C19—H19···O8ii0.95 (6)2.84 (5)3.305 (6)111 (3)
C20—H20···O1iii0.88 (5)2.54 (5)3.370 (7)159 (3)
C20—H20···O2ii0.88 (5)2.87 (5)3.348 (6)116 (3)
Symmetry codes: (i) x+2, y, z; (ii) x1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H10N4SC20H12N4S2+·2ClO4
Mr338.38539.30
Crystal system, space groupMonoclinic, P21/aMonoclinic, P21/c
Temperature (K)296296
a, b, c (Å)12.487 (2), 7.5477 (13), 17.513 (3)5.1097 (3), 24.4522 (16), 17.8489 (13)
β (°) 105.22 (2) 92.281 (5)
V3)1592.8 (5)2228.3 (3)
Z44
Radiation typeCu KαCu Kα
µ (mm1)1.884.02
Crystal size (mm)0.50 × 0.30 × 0.100.35 × 0.15 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.454, 0.8350.334, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
3416, 3254, 1902 4684, 4543, 2774
Rint0.0790.062
(sin θ/λ)max1)0.6240.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.209, 1.07 0.061, 0.205, 1.00
No. of reflections32544543
No. of parameters226364
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.69, 0.330.53, 0.37

Computer programs: CAD-4 EXPRESS Software (Enraf-Nonius, 1992), CAD-4 EXPRESS Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
S1—N11.611 (3)C3—C41.430 (5)
S1—N21.613 (4)C4—C51.365 (5)
N1—C21.338 (5)C4—C141.445 (4)
N2—C31.334 (5)C5—C61.426 (5)
C1—C61.376 (5)C7—C81.183 (4)
C1—C21.424 (5)C8—C91.429 (4)
C1—C71.444 (4)C14—C151.170 (5)
C2—C31.441 (4)C15—C161.442 (5)
N1—S1—N2100.83 (17)C4—C3—C2120.5 (3)
C2—N1—S1106.7 (2)C5—C4—C3117.5 (3)
C3—N2—S1106.5 (2)C5—C4—C14124.1 (4)
C6—C1—C2117.6 (3)C3—C4—C14118.4 (3)
C6—C1—C7121.7 (3)C4—C5—C6122.2 (4)
C2—C1—C7120.7 (3)C1—C6—C5122.0 (4)
N1—C2—C1127.1 (3)C8—C7—C1176.2 (4)
N1—C2—C3112.8 (3)C7—C8—C9178.5 (5)
C1—C2—C3120.2 (3)C15—C14—C4174.4 (5)
N2—C3—C4126.3 (3)C14—C15—C16177.1 (5)
N2—C3—C2113.2 (3)
Selected geometric parameters (Å, º) for (II) top
S1—N21.608 (4)C3—C41.405 (6)
S1—N11.617 (4)C4—C51.367 (7)
N1—C21.330 (6)C4—C141.438 (6)
N2—C31.335 (6)C5—C61.424 (7)
C1—C61.375 (7)C7—C81.188 (6)
C1—C21.426 (6)C8—C91.428 (6)
C1—C71.434 (6)C14—C151.188 (6)
C2—C31.440 (5)C15—C161.435 (6)
N2—S1—N1100.4 (2)C4—C3—C2120.4 (4)
C2—N1—S1106.6 (3)C5—C4—C3118.9 (4)
C3—N2—S1107.1 (3)C5—C4—C14121.8 (4)
C6—C1—C2118.2 (4)C3—C4—C14119.3 (4)
C6—C1—C7121.0 (4)C4—C5—C6121.4 (5)
C2—C1—C7120.7 (4)C1—C6—C5121.5 (5)
N1—C2—C1127.1 (4)C8—C7—C1179.4 (6)
N1—C2—C3113.3 (4)C7—C8—C9179.3 (6)
C1—C2—C3119.6 (4)C15—C14—C4178.7 (5)
N2—C3—C4127.0 (4)C14—C15—C16179.1 (5)
N2—C3—C2112.6 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.88 (7)1.97 (7)2.843 (5)171 (4)
N4—H4···O8ii0.91 (6)2.18 (6)2.975 (6)145 (5)
C5—H5···O3iii0.87 (5)2.73 (5)3.314 (7)126 (3)
C10—H10···O4iv0.83 (5)2.57 (5)3.299 (7)148 (3)
C11—H11···O1iv0.80 (5)2.73 (5)3.307 (7)131 (4)
C11—H11···O2i0.80 (5)2.61 (5)3.341 (6)153 (4)
C12—H12···O7v0.94 (5)2.49 (5)3.162 (7)129 (3)
C12—H12···O7i0.94 (5)2.62 (5)3.317 (7)132 (3)
C13—H13···O5v0.92 (4)2.55 (4)3.358 (6)147 (2)
C13—H13···O7vi0.92 (4)2.69 (4)3.306 (7)125 (2)
C17—H17···O4vii0.93 (6)2.74 (6)3.382 (7)127 (4)
C18—H18···O1vii0.84 (6)2.43 (6)3.223 (7)157 (4)
C18—H18···O3viii0.84 (6)2.75 (6)3.177 (6)113 (4)
C18—H18···O4viii0.84 (6)2.84 (6)3.230 (7)110 (4)
C19—H19···O2ii0.95 (6)2.69 (5)3.273 (6)120 (3)
C19—H19···O6ii0.95 (6)2.46 (6)3.378 (7)162 (3)
C19—H19···O8ii0.95 (6)2.84 (5)3.305 (6)111 (3)
C20—H20···O1iii0.88 (5)2.54 (5)3.370 (7)159 (3)
C20—H20···O2ii0.88 (5)2.87 (5)3.348 (6)116 (3)
Symmetry codes: (i) x+2, y, z; (ii) x1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z; (viii) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds