Download citation
Download citation
link to html
The title compound, C24H12N6·CHCl3, crystallizes in the monoclinic system in space group P21/c. The structure consists of one mol­ecule of diquinoxalino­[2,3-a:2′,3′-c]­phenazine (Dqpz), which is a large delocalized π-electron system, and a chloro­form solvent mol­ecule. There exist weak intermolecular C—H...N and π–π interactions between adjacent Dqpz mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017443/de1159sup1.cif
Contains datablocks default, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017443/de1159Isup2.hkl
Contains datablock I

CCDC reference: 160004

Comment top

Bridging ligands providing three bidentate metal-binding sites, such as 1,4,5,8,9,12-hexaazatriphenylene (Hat) (Moucheron et al., 1996; Baxter et al., 1997), are particularly promising as building blocks for the construction of multidimensional structures because they provide robust networks with good electronic communication between the metal centers. Much pioneering work in this field has been done by Robson and co-workers (Batten et al., 1998; Abrahams et al., 1999). In our efforts to construct novel extended multi-dimensional networks, the compound, diquinoxalino[2,3 - a:2*,3*-c]phenazine, (I), attracts our attention. This compound has a very similar backbone and coordination sites with Hat. But it has a bigger delocalized π-electron system than Hat which may provide more facile electronic communication between attached metal centres. The crystal structure of the title compound is the focus of our present report. \sch

The structure of (I) comprises the diquinoxalino[2,3 - a:2*,3*-c]phenazine and a chloroform molecule in the crystal lattice. A perspective view of (I) including the atomic numbering scheme is shown in Fig. 1. In the central C6 ring, the maximum deviation of any atoms from the best-fit plane is 0.0106 (1) Å, while the average deviation is 0.0068 (2) Å. Furthermore, all non-hydrogen atoms lie roughly in a plane: the mean deviation of any non-H atoms in Dqpz from the best-fit plane describing them is 0.1282 (4) Å, forming a dihedral angle of 2.30 (2)° with the central C6ring. The distortions from planarity should have a noticeable effect on the electronic communication provided by this bridging ligand. The main molecule has a C3 symmetry and the bond distances and angles are quite similar in three different directions. The C—N bond distances lie in the range of 1.323 (3)–1.363 (3) Å, which are remarkable shorter than normal C—N single bond (1.47 Å) (Sasada et al., 1984) and longer than the value of C—N double bond distance (1.28 Å) (Wang et al., 1998) due to the π-electron repulsion of the bulky system. The C—C bond distances are in the range 1.351 (4)–1.483 (3) Å and all the bond angles are about 120°, falling within normal limits. All the features mentioned above indicate that Dqpz molecule has a very large delocalized π-electron system which may provide facile electronic communication. [Weak intermolecular interaction exists between C44—H44···N22 with C···N nonbond separation of 3.355 (4) Å and C—H···N angle of 141.0 (3)°]. The chloroform molecule also donates C—H···N hydrogen bonds to Dqpz (C1—H1···N31 and C1—H1···N41) with C···N separations of 3.256 (3) and 3.330 (4) and bond angles of 145.4 (2) and 143.6 (14)°. In addition, there are π···π stacks of parallel molecules along the b axis with an interplanar spacing of 3.481 (2) Å which stabilize the crystal (Fig. 2).

Related literature top

For related literature, see: Abrahams et al. (1999); Batten & Robson (1998); Baxter et al. (1997); Moucheron & Mesmaeker (1996); Sasada (1984); Skujins & Webb (1969); Wang et al. (1998).

Experimental top

The title compound was synthesized by stirring hexaketocyclohexane octahydrate (0.50 g, 1.6 mmol) and 1,2-phenylenediamine (0.52 g, 4.8 mmol) in the presence of several drops of acetic acid in ethanol solution (50 ml) at room temperature for 2 h. The solvent was concentrated in vacuo to afford colorless solid which was purified by recrystallization from CH2Cl2/CH3OH to obtain the single crystals suitable for X-ray diffraction. The product was characterized by NMR and mass spectrometry, giving results consistent with those in the literature (Skujins et al., 1969).

Refinement top

H atoms were located by geometry and take part in the structure factor calculations.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) view of the title compound with 30% probability.
[Figure 2] Fig. 2. Molecular packing diagram in the unit cell of the title compound.
Diquinoxalino[2,3 - a:2*,3*-c]phenazine chloroform top
Crystal data top
C24N6H12·CHCl3F(000) = 1024
Mr = 503.76Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.5061 (19) ÅCell parameters from 10967 reflections
b = 5.3820 (5) Åθ = 2.0–27.9°
c = 20.976 (2) ŵ = 0.46 mm1
β = 103.897 (2)°T = 193 K
V = 2137.7 (4) Å3Prism, colorless
Z = 40.15 × 0.15 × 0.15 mm
Data collection top
Siemens CCD X-ray
diffractometer
1991 reflections with I > 2.0σ(I)
ω scansRint = 0.062
Absorption correction: integration
(North et al., 1968)
θmax = 27.9°
Tmin = 0.736, Tmax = 0.935h = 2514
11035 measured reflectionsk = 67
4988 independent reflectionsl = 2627
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max = 0.016
wR(F2) = 0.093Δρmax = 0.29 e Å3
S = 0.81Δρmin = 0.39 e Å3
4988 reflectionsExtinction correction: SHELXL
307 parametersExtinction coefficient: none
H-atom parameters constrained
Crystal data top
C24N6H12·CHCl3V = 2137.7 (4) Å3
Mr = 503.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.5061 (19) ŵ = 0.46 mm1
b = 5.3820 (5) ÅT = 193 K
c = 20.976 (2) Å0.15 × 0.15 × 0.15 mm
β = 103.897 (2)°
Data collection top
Siemens CCD X-ray
diffractometer
4988 independent reflections
Absorption correction: integration
(North et al., 1968)
1991 reflections with I > 2.0σ(I)
Tmin = 0.736, Tmax = 0.935Rint = 0.062
11035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047307 parameters
wR(F2) = 0.093H-atom parameters constrained
S = 0.81Δρmax = 0.29 e Å3
4988 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Full-MATRIX

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08673 (16)0.3004 (5)0.16002 (15)0.0416 (8)
C110.34734 (14)1.0470 (5)0.27639 (13)0.0234 (7)
C120.31673 (14)1.0649 (5)0.33152 (13)0.0258 (7)
C130.26202 (13)0.8850 (5)0.33840 (13)0.0237 (6)
C140.23973 (14)0.6941 (5)0.29059 (13)0.0260 (7)
C150.27072 (14)0.6808 (5)0.23266 (13)0.0262 (7)
C160.32331 (14)0.8541 (5)0.22615 (12)0.0244 (7)
C210.42143 (14)1.3692 (5)0.31644 (13)0.0269 (7)
C220.39075 (14)1.3875 (5)0.37131 (13)0.0264 (7)
C230.41616 (15)1.5693 (5)0.41980 (14)0.0358 (8)
C240.46966 (16)1.7219 (5)0.41387 (14)0.0396 (8)
C250.50065 (15)1.7006 (6)0.36006 (15)0.0380 (8)
C260.47744 (14)1.5303 (5)0.31240 (14)0.0318 (8)
C310.16644 (14)0.5388 (5)0.35126 (14)0.0285 (7)
C320.18800 (14)0.7285 (5)0.39822 (14)0.0301 (7)
C330.15949 (15)0.7380 (5)0.45420 (14)0.0352 (8)
C340.11209 (16)0.5653 (6)0.46233 (14)0.0393 (8)
C350.09150 (15)0.3718 (6)0.41647 (14)0.0381 (8)
C360.11796 (14)0.3578 (5)0.36193 (14)0.0344 (8)
C410.27983 (15)0.4879 (5)0.13784 (13)0.0296 (7)
C420.33183 (14)0.6641 (5)0.13051 (13)0.0281 (7)
C430.36117 (15)0.6520 (6)0.07533 (13)0.0356 (8)
C440.34001 (16)0.4700 (6)0.03003 (14)0.0374 (8)
C450.28956 (15)0.2933 (5)0.03687 (14)0.0358 (8)
C460.25945 (15)0.3001 (5)0.08959 (14)0.0355 (8)
N210.39870 (11)1.1967 (4)0.26873 (11)0.0275 (6)
N220.33764 (12)1.2331 (4)0.37813 (11)0.0283 (6)
N310.19245 (11)0.5239 (4)0.29684 (10)0.0277 (6)
N320.23610 (12)0.9038 (4)0.39124 (10)0.0300 (6)
N410.24902 (11)0.4985 (4)0.18952 (11)0.0289 (6)
N420.35316 (11)0.8471 (4)0.17550 (11)0.0308 (6)
Cl10.01552 (4)0.37462 (17)0.19364 (4)0.0559 (3)
Cl20.06941 (5)0.39668 (17)0.07751 (4)0.0579 (3)
Cl30.10451 (5)0.01777 (17)0.16619 (6)0.0820 (4)
H10.12940.39130.18530.050*
H230.39581.58460.45650.043*
H240.48641.84460.44640.048*
H250.53851.80770.35720.046*
H260.49871.51890.27630.038*
H330.17370.86550.48600.042*
H340.09230.57440.49950.047*
H350.05890.24990.42360.046*
H360.10380.22680.33130.041*
H430.39550.77030.06990.043*
H440.35990.46230.00710.045*
H450.27600.16720.00460.043*
H460.22520.17980.09380.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.034 (2)0.046 (2)0.0009 (16)0.0102 (17)0.0011 (16)
C110.0206 (16)0.0240 (18)0.0242 (16)0.0024 (13)0.0023 (13)0.0040 (13)
C120.0257 (17)0.0283 (19)0.0246 (16)0.0032 (14)0.0087 (14)0.0034 (14)
C130.0214 (16)0.0275 (17)0.0222 (15)0.0017 (14)0.0054 (13)0.0026 (15)
C140.0265 (17)0.0281 (19)0.0228 (16)0.0033 (14)0.0048 (14)0.0053 (14)
C150.0224 (16)0.0302 (19)0.0254 (16)0.0061 (14)0.0046 (14)0.0000 (14)
C160.0255 (16)0.0271 (18)0.0209 (15)0.0033 (14)0.0060 (14)0.0019 (14)
C210.0249 (17)0.0272 (17)0.0280 (16)0.0052 (15)0.0054 (14)0.0019 (15)
C220.0233 (16)0.0275 (18)0.0278 (16)0.0019 (15)0.0051 (14)0.0055 (16)
C230.042 (2)0.037 (2)0.0301 (18)0.0068 (16)0.0119 (16)0.0058 (16)
C240.043 (2)0.037 (2)0.036 (2)0.0098 (17)0.0049 (17)0.0081 (16)
C250.0296 (18)0.038 (2)0.046 (2)0.0086 (15)0.0092 (17)0.0019 (17)
C260.0276 (17)0.036 (2)0.0350 (18)0.0038 (15)0.0132 (15)0.0004 (16)
C310.0220 (17)0.032 (2)0.0318 (18)0.0019 (14)0.0075 (15)0.0031 (15)
C320.0286 (18)0.0338 (19)0.0289 (17)0.0015 (15)0.0087 (15)0.0054 (15)
C330.040 (2)0.038 (2)0.0298 (18)0.0065 (16)0.0136 (16)0.0003 (15)
C340.041 (2)0.048 (2)0.0339 (19)0.0001 (18)0.0191 (16)0.0075 (18)
C350.0356 (19)0.036 (2)0.043 (2)0.0074 (16)0.0101 (17)0.0070 (18)
C360.0354 (19)0.0332 (19)0.0347 (18)0.0034 (16)0.0087 (16)0.0031 (16)
C410.0301 (18)0.0341 (19)0.0234 (17)0.0070 (15)0.0041 (15)0.0015 (15)
C420.0319 (18)0.0302 (19)0.0212 (16)0.0067 (15)0.0045 (15)0.0023 (15)
C430.0351 (19)0.045 (2)0.0288 (17)0.0018 (16)0.0119 (16)0.0026 (17)
C440.040 (2)0.049 (2)0.0240 (17)0.0127 (18)0.0093 (16)0.0006 (17)
C450.040 (2)0.038 (2)0.0267 (18)0.0076 (17)0.0032 (16)0.0042 (15)
C460.0341 (19)0.037 (2)0.0333 (18)0.0026 (15)0.0040 (16)0.0058 (16)
N210.0250 (14)0.0294 (15)0.0278 (14)0.0000 (12)0.0054 (12)0.0005 (12)
N220.0307 (15)0.0275 (15)0.0276 (14)0.0030 (12)0.0086 (12)0.0003 (12)
N310.0272 (14)0.0322 (15)0.0240 (14)0.0028 (12)0.0066 (12)0.0013 (12)
N320.0314 (15)0.0333 (15)0.0271 (14)0.0042 (13)0.0103 (12)0.0004 (12)
N410.0305 (14)0.0282 (15)0.0273 (14)0.0015 (12)0.0052 (12)0.0014 (12)
N420.0325 (15)0.0353 (16)0.0260 (13)0.0013 (12)0.0097 (12)0.0036 (13)
Cl10.0527 (6)0.0692 (7)0.0497 (5)0.0080 (5)0.0197 (5)0.0077 (5)
Cl20.0631 (6)0.0707 (7)0.0418 (5)0.0130 (5)0.0166 (5)0.0041 (5)
Cl30.0726 (7)0.0364 (6)0.1281 (10)0.0117 (5)0.0068 (7)0.0068 (6)
Geometric parameters (Å, º) top
C11—N211.325 (3)N31—C311.358 (3)
C11—C121.427 (3)N32—C321.363 (3)
C11—C161.473 (3)C31—C361.412 (4)
C12—N221.323 (3)C31—C321.411 (4)
C12—C131.474 (3)C32—C331.416 (4)
C13—C141.429 (3)C33—C341.351 (4)
C13—N321.328 (3)C34—C351.409 (4)
C14—N311.328 (3)C35—C361.366 (4)
C14—C151.483 (3)N41—C411.361 (3)
C15—N411.333 (3)N42—C421.358 (3)
C15—C161.417 (3)C41—C461.418 (4)
C16—N421.329 (3)C41—C421.424 (4)
N21—C211.359 (3)C42—C431.411 (3)
N22—C221.362 (3)C43—C441.358 (4)
C21—C261.413 (3)C44—C451.400 (4)
C21—C221.422 (3)C45—C461.372 (4)
C22—C231.413 (3)C1—Cl11.749 (3)
C23—C241.357 (4)C1—Cl31.746 (3)
C24—C251.407 (4)C1—Cl21.760 (3)
C25—C261.352 (4)
N21—C11—C12122.2 (3)C25—C26—C21119.9 (3)
N21—C11—C16117.5 (2)C14—N31—C31116.8 (2)
C12—C11—C16120.3 (2)C13—N32—C32116.5 (2)
N22—C12—C11122.0 (2)N31—C31—C36119.5 (3)
N22—C12—C13118.6 (2)N31—C31—C32121.4 (3)
C11—C12—C13119.3 (3)C36—C31—C32119.1 (3)
N32—C13—C14121.9 (2)N32—C32—C31121.6 (2)
N32—C13—C12117.5 (2)N32—C32—C33118.8 (3)
C14—C13—C12120.6 (2)C31—C32—C33119.6 (3)
N31—C14—C13121.9 (2)C34—C33—C32119.8 (3)
N31—C14—C15118.5 (3)C33—C34—C35120.9 (3)
C13—C14—C15119.6 (2)C36—C35—C34120.6 (3)
N41—C15—C16122.6 (2)C35—C36—C31119.8 (3)
N41—C15—C14117.8 (2)C15—N41—C41116.3 (2)
C16—C15—C14119.6 (3)C16—N42—C42117.1 (2)
N42—C16—C15121.6 (3)N41—C41—C46119.8 (3)
N42—C16—C11117.8 (2)N41—C41—C42121.4 (3)
C15—C16—C11120.5 (2)C46—C41—C42118.9 (3)
C11—N21—C21116.7 (2)N42—C42—C43119.1 (3)
C12—N22—C22116.5 (2)N42—C42—C41121.0 (2)
N21—C21—C26119.7 (2)C43—C42—C41119.9 (3)
N21—C21—C22121.1 (2)C44—C43—C42119.5 (3)
C26—C21—C22119.2 (3)C43—C44—C45121.4 (3)
N22—C22—C23119.4 (2)C46—C45—C44120.8 (3)
N22—C22—C21121.4 (3)C45—C46—C41119.6 (3)
C23—C22—C21119.2 (3)Cl1—C1—Cl3110.92 (16)
C24—C23—C22119.9 (3)Cl1—C1—Cl2110.23 (16)
C23—C24—C25120.8 (3)Cl3—C1—Cl2110.46 (16)
C26—C25—C24121.1 (3)

Experimental details

Crystal data
Chemical formulaC24N6H12·CHCl3
Mr503.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)19.5061 (19), 5.3820 (5), 20.976 (2)
β (°) 103.897 (2)
V3)2137.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerSiemens CCD X-ray
diffractometer
Absorption correctionIntegration
(North et al., 1968)
Tmin, Tmax0.736, 0.935
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
11035, 4988, 1991
Rint0.062
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.093, 0.81
No. of reflections4988
No. of parameters307
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1997).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds