Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, tetra-μ-acetato-O:O′-bis{[μ-1,4-bis(2-­pyridyl­oxy)­phenyl­ene-N,C2:N′,C6]dipalladium(II)} bis­(tri­chloro­methane) dihydrate, [Pd4(C16H10N2O2)2(C2H3O2)4]·2CHCl3·2H2O, the product of the reaction of 1,4-bis(2-pyridyl­oxy)­benzene with palladium acetate, is shown to be a tetranuclear, rather than a polymeric, species. It crystallizes about a centre of inversion and has two doubly cyclo­palladated ligands bridged by four acetate groups. The cyclo­palladated ligand is far from planar in the complex and has the central benzene rings π-stacked. The chelate rings exist in shallow boat conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100011768/de1153sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100011768/de1153IIsup2.hkl
Contains datablock II

CCDC reference: 156151

Comment top

For some time we have been interested in the preparation of doubly cyclopalladated compounds (O'Keefe & Steel, 1999), particularly examples involving the double cyclopalladation of a single benzene ring (Caygill & Steel, 1990; Phillips & Steel, 1991; Hartshorn & Steel, 1998). Recently, we reported the cyclopalladation chemistry of all three isomers of bis(2-pyridyloxy)benzene (De Geest et al., 1999). We described therein the preparation of the dinuclear complex, (III), which, due to its insolubilty in common NMR solvents, we were only able to characterize by elemental analysis and mass spectrometry. This complex was prepared (see Scheme) by reaction of 1,4-bis(2-pyridyloxy)benzene, (I), with palladium acetate to give an intermediate, (II), which was converted to the corresponding chloride by metathesis and thereafter to the acetylacetonate complex, (III). The nature of the initially formed product, (II), was a subject of doubt. Related acetate-bridged species have generally been considered to be polymeric in nature (Lydon & Rourke, 1997; Vicente et al., 1997), but we proposed that (II) is a tetranuclear species, based on our previous determination of the structure of the product of the reaction of palladium acetate with 1,4-bis(benzothiazol-2-yl)benzene (O'Keefe & Steel, 1998). To resolve this ambiguity, we now report the X-ray crystal structure of (II), which we have since managed to crystallize by slow evaporation from a chloroform solution. \sch

Complex (II) crystallizes in the monoclinic space group P21/c, the asymmetric unit containing one doubly-palladated molecule of (I), two Pd atoms, two acetates, a molecule of chloroform disordered over three sites and a molecule of water disordered over two sites. The two cyclopalladated units are positioned about a centre of inversion with four acetates bridging the four Pd atoms, so that the molecular structure has the shape of a counter-hinged molecular box (Fig. 1).

The ligand acts as a doubly chelating C,N-donor bridging two Pd atoms through six-membered chelate rings. The benzene ring is dipalladated in a para arrangement, and thus the ligand adopts an anti conformation of the two pyridine rings with respect to the benzene ring. Unlike the situation in a structurally related tetranuclear complex (O'Keefe & Steel, 1998), the cyclopalladated ligand is far from planar. The planes of the pyridine rings are inclined to the benzene ring at angles of 30.1 (5) and 37.7 (5)°, for the pyridines containing N11 and N41, respectively, with one ring being inclined above the plane of the benzene ring and the other below. This lack of planarity is due to flexibility provided by the O atom spacer and the formation of six-membered chelate rings, rather than the five-membered rings of our earlier complex. The six-membered chelate rings have shallow boat conformations, with the Pd and O atoms lying out of the planes of the C and N atoms [Pd1 0.410 (6) and O1 0.288 (8) Å, Pd2 0.821 (6) and O4 0.372 (8) Å].

All Pd-donor bond lengths are normal and show the usual lengthening of the bond trans to the C-donor (Churchill et al., 1980; Navarro-Ranninger et al., 1996). The geometry at each Pd is square-planar and the Pd1—Pd2A separation is 2.918 (1) Å, which is considered non-bonding (Churchill et al., 1980). The two central benzene rings, being related by a centre of inversion, are necessarily parallel and are separated by 3.21 (1) Å. These two rings are offset such that a bond of one ring sits over the centroid of the other ring and a significant π-π interaction is indicated.

This structure determination confirms our earlier proposal (De Geest et al., 1999) that (II) exists as a tetranuclear, rather than a polymeric, species, and suggests that other related compounds may also be so. It represents the first reported example of a crystal structure of a compound containing a doubly-cyclopalladated benzene ring with six-membered N,C-chelate rings.

Experimental top

Complex (II) was prepared as previously described (De Geest et al., 1999). Crystals were obtained by slow evaporation of an acetonitrile solution. Not CHCl3?

Refinement top

Crystal decay was monitored by the measurement of duplicate reflections. The chloroform and water solvate molecules were disordered over three and two sites, respectively. The chloroform molecules were restrained to have the same geometry and their site occupancies refined to sum to 1.0. The H atoms of the water solvate molecules were not included in the refinement; other H atoms were treated as riding?

Computing details top

Data collection: SMART (Siemens 1999); cell refinement: SAINT (Siemens 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view and of (II) with the atom-labelling scheme. H atoms and solvate molecules are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
tetra-µ-acetato-O:O'-bis{[µ-1,4-bis(2-pyridyloxy)phenylene-N,C2:N',C6] dipalladium(II)} bis(trichloromethane) dihydrate top
Crystal data top
[Pd4(C16H10N2O2)2(C2H3O2)4]·2CHCl3·2H2OF(000) = 1432
Mr = 1461.06Dx = 1.861 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.225 (5) ÅCell parameters from 6111 reflections
b = 15.052 (5) Åθ = 2.2–26.4°
c = 14.135 (5) ŵ = 1.74 mm1
β = 91.797 (5)°T = 168 K
V = 2599.7 (16) Å3Plate, yellow
Z = 20.38 × 0.35 × 0.04 mm
Data collection top
Siemens SMART CCD
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube3476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 8.19 pixels mm-1θmax = 26.4°, θmin = 2.2°
Exposures over 0.5° ϕ or ω rotation scansh = 1515
Absorption correction: multi-scan
(SADABS; Siemens, 1999)
k = 1813
Tmin = 0.559, Tmax = 0.934l = 1717
26967 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.2065P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.027
5261 reflectionsΔρmax = 0.96 e Å3
404 parametersΔρmin = 0.95 e Å3
145 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (3)
Crystal data top
[Pd4(C16H10N2O2)2(C2H3O2)4]·2CHCl3·2H2OV = 2599.7 (16) Å3
Mr = 1461.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.225 (5) ŵ = 1.74 mm1
b = 15.052 (5) ÅT = 168 K
c = 14.135 (5) Å0.38 × 0.35 × 0.04 mm
β = 91.797 (5)°
Data collection top
Siemens SMART CCD
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1999)
3476 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.934Rint = 0.089
26967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050145 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.96 e Å3
5261 reflectionsΔρmin = 0.95 e Å3
404 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.31144 (4)0.54255 (3)0.19048 (4)0.02685 (17)
Pd20.80465 (4)0.49483 (3)0.01135 (4)0.02634 (17)
C10.5411 (6)0.5935 (4)0.1517 (5)0.0289 (15)
C20.4638 (5)0.5269 (4)0.1499 (5)0.0262 (15)
C30.4986 (6)0.4466 (4)0.1102 (4)0.0285 (15)
H30.45010.39730.10790.034*
C40.6020 (6)0.4377 (4)0.0746 (4)0.0248 (15)
C50.6764 (6)0.5074 (4)0.0677 (5)0.0282 (15)
C60.6432 (5)0.5865 (5)0.1103 (4)0.0285 (15)
H60.69090.63630.11110.034*
O10.5244 (4)0.6767 (3)0.1959 (4)0.0400 (13)
N110.3325 (5)0.6772 (4)0.1852 (4)0.0317 (14)
C120.4276 (6)0.7198 (4)0.1953 (5)0.0335 (17)
C130.4343 (7)0.8120 (5)0.2058 (6)0.043 (2)
H130.50330.84020.21530.052*
C140.3410 (7)0.8603 (5)0.2024 (6)0.050 (2)
H140.34360.92290.21050.060*
C150.2414 (8)0.8177 (5)0.1868 (6)0.051 (2)
H150.17530.85070.18080.061*
C160.2405 (6)0.7285 (5)0.1805 (5)0.0401 (19)
H160.17180.69950.17220.048*
O40.6256 (4)0.3517 (3)0.0401 (3)0.0317 (11)
N410.8167 (4)0.3706 (4)0.0396 (4)0.0281 (13)
C420.7275 (6)0.3184 (4)0.0505 (4)0.0273 (15)
C430.7377 (7)0.2288 (5)0.0704 (5)0.0369 (17)
H430.67410.19330.07610.044*
C440.8405 (7)0.1908 (5)0.0821 (5)0.0422 (19)
H440.84830.12930.09600.051*
C450.9317 (7)0.2445 (5)0.0731 (6)0.045 (2)
H451.00300.22010.08180.054*
C460.9191 (6)0.3336 (5)0.0513 (5)0.0383 (18)
H460.98200.36970.04440.046*
O1A0.2912 (4)0.4079 (3)0.2043 (3)0.0308 (11)
C1A0.2491 (5)0.3557 (5)0.1423 (5)0.0299 (16)
C2A0.2488 (8)0.2582 (5)0.1683 (7)0.059 (3)
H2A10.21930.25090.23150.089*
H2A20.32380.23510.16810.089*
H2A30.20310.22540.12200.089*
O2A0.2103 (4)0.3768 (3)0.0619 (3)0.0319 (11)
O1B0.1448 (4)0.5543 (3)0.2377 (3)0.0375 (12)
C1B0.0596 (6)0.5397 (5)0.1865 (5)0.0319 (16)
C2B0.0502 (7)0.5541 (7)0.2334 (6)0.063 (3)
H2B10.07270.61620.22560.094*
H2B20.04250.54010.30090.094*
H2B30.10560.51520.20360.094*
O2B0.0568 (4)0.5231 (3)0.1003 (3)0.0368 (12)
C700.8801 (19)0.8743 (11)0.1312 (12)0.056 (8)0.365 (3)
H700.81670.90710.15760.067*0.365 (3)
Cl710.9690 (4)0.8403 (4)0.2261 (4)0.0492 (16)0.365 (3)
Cl720.8314 (6)0.7779 (5)0.0740 (5)0.062 (2)0.365 (3)
Cl730.9463 (7)0.9439 (4)0.0506 (5)0.069 (2)0.365 (3)
C800.7814 (14)0.5897 (10)0.5848 (12)0.115 (6)0.416 (7)
H800.76070.54950.63770.138*0.416 (7)
Cl810.6787 (9)0.6717 (5)0.5660 (6)0.105 (4)0.416 (7)
Cl820.7915 (16)0.5281 (7)0.4797 (7)0.246 (10)0.416 (7)
Cl830.9089 (11)0.6404 (11)0.6123 (13)0.233 (8)0.416 (7)
C900.665 (2)0.6198 (14)0.560 (3)0.134 (11)0.219 (7)
H900.63860.60870.62510.160*0.219 (7)
Cl910.5664 (17)0.6846 (10)0.5001 (12)0.131 (7)0.219 (7)
Cl920.684 (3)0.5162 (10)0.5068 (15)0.181 (13)0.219 (7)
Cl930.789 (2)0.6790 (17)0.573 (2)0.204 (13)0.219 (7)
O70A0.5919 (19)0.5102 (14)0.5751 (14)0.032 (7)0.26 (2)
O70B0.5147 (11)0.4590 (7)0.5992 (5)0.080 (6)0.74 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0298 (3)0.0248 (3)0.0261 (3)0.0027 (2)0.0015 (2)0.0019 (2)
Pd20.0293 (3)0.0236 (3)0.0261 (3)0.0025 (2)0.0013 (2)0.0020 (2)
C10.039 (4)0.020 (3)0.027 (4)0.003 (3)0.004 (3)0.006 (3)
C20.028 (4)0.026 (4)0.024 (3)0.003 (3)0.002 (3)0.002 (3)
C30.037 (4)0.022 (3)0.026 (3)0.006 (3)0.005 (3)0.003 (3)
C40.033 (4)0.015 (3)0.026 (3)0.002 (3)0.003 (3)0.003 (3)
C50.036 (4)0.024 (3)0.024 (3)0.006 (3)0.007 (3)0.000 (3)
C60.029 (4)0.030 (4)0.027 (3)0.008 (3)0.002 (3)0.006 (3)
O10.033 (3)0.030 (3)0.056 (3)0.005 (2)0.002 (2)0.019 (2)
N110.036 (4)0.030 (3)0.030 (3)0.002 (3)0.003 (3)0.001 (3)
C120.044 (5)0.028 (4)0.028 (4)0.005 (3)0.002 (3)0.007 (3)
C130.054 (5)0.027 (4)0.049 (5)0.007 (4)0.004 (4)0.010 (4)
C140.075 (7)0.029 (4)0.045 (5)0.005 (4)0.003 (4)0.005 (4)
C150.068 (6)0.037 (5)0.047 (5)0.012 (4)0.012 (4)0.003 (4)
C160.041 (5)0.038 (4)0.041 (4)0.003 (4)0.006 (4)0.004 (4)
O40.041 (3)0.018 (2)0.037 (3)0.001 (2)0.001 (2)0.001 (2)
N410.032 (3)0.027 (3)0.026 (3)0.002 (3)0.002 (2)0.001 (2)
C420.034 (4)0.026 (4)0.022 (3)0.002 (3)0.000 (3)0.004 (3)
C430.047 (5)0.025 (4)0.039 (4)0.002 (3)0.004 (4)0.000 (3)
C440.062 (6)0.027 (4)0.038 (4)0.007 (4)0.007 (4)0.004 (3)
C450.050 (5)0.040 (5)0.045 (5)0.016 (4)0.005 (4)0.004 (4)
C460.035 (4)0.040 (4)0.039 (4)0.006 (3)0.004 (3)0.000 (3)
O1A0.034 (3)0.028 (3)0.031 (3)0.005 (2)0.001 (2)0.001 (2)
C1A0.023 (4)0.029 (4)0.037 (4)0.004 (3)0.001 (3)0.003 (3)
C2A0.078 (7)0.030 (4)0.069 (6)0.012 (4)0.025 (5)0.014 (4)
O2A0.038 (3)0.024 (2)0.033 (3)0.004 (2)0.002 (2)0.001 (2)
O1B0.035 (3)0.041 (3)0.037 (3)0.001 (2)0.004 (2)0.009 (2)
C1B0.031 (4)0.043 (4)0.021 (3)0.002 (3)0.007 (3)0.001 (3)
C2B0.034 (5)0.094 (8)0.061 (6)0.000 (5)0.015 (4)0.022 (5)
O2B0.031 (3)0.041 (3)0.038 (3)0.002 (2)0.004 (2)0.003 (2)
C700.052 (18)0.015 (10)0.102 (18)0.017 (11)0.005 (12)0.016 (10)
Cl710.031 (3)0.051 (3)0.065 (4)0.003 (2)0.001 (3)0.011 (3)
Cl720.087 (5)0.059 (4)0.039 (3)0.031 (4)0.009 (3)0.002 (3)
Cl730.114 (6)0.035 (3)0.061 (4)0.027 (3)0.052 (4)0.021 (3)
C800.218 (15)0.041 (13)0.092 (14)0.054 (10)0.101 (16)0.052 (8)
Cl810.183 (9)0.055 (4)0.081 (5)0.047 (5)0.053 (6)0.016 (4)
Cl820.54 (3)0.097 (7)0.109 (7)0.178 (11)0.180 (12)0.045 (5)
Cl830.137 (9)0.234 (16)0.334 (19)0.038 (10)0.116 (11)0.161 (12)
C900.22 (3)0.08 (2)0.11 (3)0.002 (19)0.09 (3)0.024 (19)
Cl910.216 (19)0.078 (10)0.103 (13)0.014 (10)0.069 (12)0.011 (9)
Cl920.36 (4)0.083 (11)0.091 (14)0.029 (14)0.11 (2)0.009 (10)
Cl930.28 (2)0.18 (2)0.15 (2)0.07 (2)0.01 (2)0.01 (2)
O70A0.039 (10)0.035 (9)0.021 (9)0.021 (6)0.008 (6)0.010 (6)
O70B0.144 (12)0.069 (8)0.028 (4)0.076 (8)0.004 (5)0.004 (4)
Geometric parameters (Å, º) top
Pd1—C21.980 (7)O4—C421.346 (8)
Pd1—N112.044 (6)N41—C421.356 (8)
Pd1—O1A2.052 (5)N41—C461.375 (9)
Pd1—O1B2.171 (5)C42—C431.383 (9)
Pd1—Pd2i2.9182 (11)C43—C441.386 (10)
Pd2—C51.962 (7)C44—C451.387 (11)
Pd2—N412.007 (5)C45—C461.383 (10)
Pd2—O2Ai2.067 (4)O1A—C1A1.273 (8)
Pd2—O2Bi2.158 (5)C1A—O2A1.258 (8)
Pd2—Pd1i2.9182 (11)C1A—C2A1.514 (9)
C1—C21.378 (9)O2A—Pd2i2.067 (4)
C1—C61.399 (9)O1B—C1B1.269 (8)
C1—O11.417 (8)C1B—O2B1.243 (8)
C2—C31.403 (9)C1B—C2B1.531 (10)
C3—C41.381 (10)O2B—Pd2i2.158 (5)
C4—C51.395 (9)C70—Cl721.756 (14)
C4—O41.417 (7)C70—Cl731.763 (15)
C5—C61.400 (9)C70—Cl711.775 (14)
O1—C121.350 (9)C80—Cl821.759 (13)
N11—C121.332 (9)C80—Cl831.767 (14)
N11—C161.364 (9)C80—Cl811.774 (13)
C12—C131.398 (9)C90—Cl921.749 (16)
C13—C141.352 (11)C90—Cl911.752 (16)
C14—C151.388 (11)C90—Cl931.763 (16)
C15—C161.346 (10)
C2—Pd1—N1189.3 (2)N11—C12—O1122.2 (6)
C2—Pd1—O1A91.6 (2)N11—C12—C13122.6 (7)
N11—Pd1—O1A176.6 (2)O1—C12—C13115.3 (7)
C2—Pd1—O1B177.6 (2)C14—C13—C12118.9 (8)
N11—Pd1—O1B92.9 (2)C13—C14—C15119.5 (7)
O1A—Pd1—O1B86.22 (18)C16—C15—C14118.5 (8)
C2—Pd1—Pd2i99.30 (18)C15—C16—N11123.8 (8)
N11—Pd1—Pd2i102.59 (16)C42—O4—C4120.0 (5)
O1A—Pd1—Pd2i80.51 (12)C42—N41—C46118.9 (6)
O1B—Pd1—Pd2i81.20 (13)C42—N41—Pd2122.0 (4)
C5—Pd2—N4186.4 (2)C46—N41—Pd2118.5 (5)
C5—Pd2—O2Ai92.5 (2)O4—C42—N41121.1 (6)
N41—Pd2—O2Ai178.8 (2)O4—C42—C43117.5 (6)
C5—Pd2—O2Bi178.1 (2)N41—C42—C43121.3 (6)
N41—Pd2—O2Bi92.5 (2)C42—C43—C44120.2 (7)
O2Ai—Pd2—O2Bi88.71 (18)C43—C44—C45118.4 (7)
C5—Pd2—Pd1i97.88 (19)C46—C45—C44120.1 (7)
N41—Pd2—Pd1i99.20 (15)N41—C46—C45121.0 (7)
O2Ai—Pd2—Pd1i81.09 (12)C1A—O1A—Pd1126.2 (4)
O2Bi—Pd2—Pd1i80.77 (13)O2A—C1A—O1A126.8 (6)
C2—C1—C6123.9 (6)O2A—C1A—C2A117.3 (6)
C2—C1—O1122.9 (6)O1A—C1A—C2A115.8 (6)
C6—C1—O1113.2 (6)C1A—O2A—Pd2i125.0 (4)
C1—C2—C3114.7 (6)C1B—O1B—Pd1124.9 (4)
C1—C2—Pd1124.0 (5)O2B—C1B—O1B126.2 (6)
C3—C2—Pd1121.2 (5)O2B—C1B—C2B117.1 (7)
C4—C3—C2121.4 (6)O1B—C1B—C2B116.3 (6)
C3—C4—C5124.0 (6)C1B—O2B—Pd2i126.7 (5)
C3—C4—O4114.4 (5)Cl72—C70—Cl73110.4 (11)
C5—C4—O4121.5 (6)Cl72—C70—Cl71107.4 (9)
C4—C5—C6114.2 (6)Cl73—C70—Cl71112.1 (11)
C4—C5—Pd2120.2 (5)Cl82—C80—Cl83109.2 (10)
C6—C5—Pd2125.1 (5)Cl82—C80—Cl81107.9 (9)
C1—C6—C5121.3 (6)Cl83—C80—Cl81110.4 (9)
C12—O1—C1124.0 (5)Cl92—C90—Cl91112.5 (14)
C12—N11—C16116.6 (6)Cl92—C90—Cl93112.0 (14)
C12—N11—Pd1125.7 (5)Cl91—C90—Cl93110.3 (14)
C16—N11—Pd1117.3 (5)
C6—C1—C2—C35.6 (10)O1—C12—C13—C14177.6 (7)
O1—C1—C2—C3174.6 (6)C12—C13—C14—C151.1 (12)
C6—C1—C2—Pd1170.1 (5)C13—C14—C15—C163.4 (12)
O1—C1—C2—Pd19.6 (9)C14—C15—C16—N112.3 (12)
N11—Pd1—C2—C115.1 (6)C12—N11—C16—C151.1 (11)
O1A—Pd1—C2—C1161.6 (6)Pd1—N11—C16—C15172.6 (6)
Pd2i—Pd1—C2—C1117.8 (5)C3—C4—O4—C42144.7 (6)
N11—Pd1—C2—C3160.4 (5)C5—C4—O4—C4238.5 (8)
O1A—Pd1—C2—C322.9 (5)C5—Pd2—N41—C4241.5 (5)
Pd2i—Pd1—C2—C357.7 (5)O2Bi—Pd2—N41—C42137.0 (5)
C1—C2—C3—C41.3 (9)Pd1i—Pd2—N41—C4255.9 (5)
Pd1—C2—C3—C4174.6 (5)C5—Pd2—N41—C46147.6 (5)
C2—C3—C4—C55.3 (10)O2Bi—Pd2—N41—C4633.9 (5)
C2—C3—C4—O4178.0 (5)Pd1i—Pd2—N41—C46115.0 (5)
C3—C4—C5—C67.2 (9)C4—O4—C42—N4139.1 (8)
O4—C4—C5—C6176.3 (5)C4—O4—C42—C43142.4 (6)
C3—C4—C5—Pd2164.9 (5)C46—N41—C42—O4179.7 (6)
O4—C4—C5—Pd211.6 (8)Pd2—N41—C42—O49.4 (8)
N41—Pd2—C5—C440.8 (5)C46—N41—C42—C431.8 (9)
O2Ai—Pd2—C5—C4139.4 (5)Pd2—N41—C42—C43169.1 (5)
Pd1i—Pd2—C5—C458.1 (5)O4—C42—C43—C44179.8 (6)
N41—Pd2—C5—C6148.0 (6)N41—C42—C43—C441.6 (10)
O2Ai—Pd2—C5—C631.8 (6)C42—C43—C44—C450.2 (11)
Pd1i—Pd2—C5—C6113.2 (6)C43—C44—C45—C461.0 (11)
C2—C1—C6—C53.6 (10)C42—N41—C46—C450.6 (10)
O1—C1—C6—C5176.6 (6)Pd2—N41—C46—C45170.6 (5)
C4—C5—C6—C12.8 (9)C44—C45—C46—N410.9 (11)
Pd2—C5—C6—C1168.8 (5)C2—Pd1—O1A—C1A95.3 (6)
C2—C1—O1—C1236.9 (10)N11—Pd1—O1A—C1A161 (3)
C6—C1—O1—C12142.8 (7)O1B—Pd1—O1A—C1A85.6 (5)
C2—Pd1—N11—C1225.9 (6)Pd2i—Pd1—O1A—C1A3.9 (5)
O1B—Pd1—N11—C12153.1 (6)Pd1—O1A—C1A—O2A1.5 (10)
Pd2i—Pd1—N11—C12125.2 (5)Pd1—O1A—C1A—C2A177.1 (5)
C2—Pd1—N11—C16161.1 (5)O1A—C1A—O2A—Pd2i4.1 (10)
O1B—Pd1—N11—C1619.9 (5)C2A—C1A—O2A—Pd2i177.4 (5)
Pd2i—Pd1—N11—C1661.7 (5)N11—Pd1—O1B—C1B105.9 (6)
C16—N11—C12—O1176.5 (6)O1A—Pd1—O1B—C1B77.4 (6)
Pd1—N11—C12—O110.4 (10)Pd2i—Pd1—O1B—C1B3.6 (5)
C16—N11—C12—C133.5 (10)Pd1—O1B—C1B—O2B5.8 (10)
Pd1—N11—C12—C13169.6 (5)Pd1—O1B—C1B—C2B178.6 (5)
C1—O1—C12—N1125.5 (10)O1B—C1B—O2B—Pd2i4.3 (11)
C1—O1—C12—C13154.5 (6)C2B—C1B—O2B—Pd2i177.0 (5)
N11—C12—C13—C142.4 (11)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd4(C16H10N2O2)2(C2H3O2)4]·2CHCl3·2H2O
Mr1461.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)168
a, b, c (Å)12.225 (5), 15.052 (5), 14.135 (5)
β (°) 91.797 (5)
V3)2599.7 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.38 × 0.35 × 0.04
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1999)
Tmin, Tmax0.559, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
26967, 5261, 3476
Rint0.089
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.03
No. of reflections5261
No. of parameters404
No. of restraints145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.95

Computer programs: SMART (Siemens 1999), SAINT (Siemens 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Pd1—C21.980 (7)C2—C31.403 (9)
Pd1—N112.044 (6)C3—C41.381 (10)
Pd1—O1A2.052 (5)C4—C51.395 (9)
Pd1—O1B2.171 (5)C4—O41.417 (7)
Pd2—C51.962 (7)C5—C61.400 (9)
Pd2—N412.007 (5)O1A—C1A1.273 (8)
Pd2—O2Ai2.067 (4)C1A—O2A1.258 (8)
Pd2—O2Bi2.158 (5)C1A—C2A1.514 (9)
C1—C21.378 (9)O1B—C1B1.269 (8)
C1—C61.399 (9)C1B—O2B1.243 (8)
C1—O11.417 (8)C1B—C2B1.531 (10)
C2—Pd1—N1189.3 (2)C3—C4—C5124.0 (6)
C2—Pd1—O1A91.6 (2)C3—C4—O4114.4 (5)
N11—Pd1—O1A176.6 (2)C5—C4—O4121.5 (6)
C2—Pd1—O1B177.6 (2)C4—C5—C6114.2 (6)
N11—Pd1—O1B92.9 (2)C4—C5—Pd2120.2 (5)
O1A—Pd1—O1B86.22 (18)C6—C5—Pd2125.1 (5)
C5—Pd2—N4186.4 (2)C1—C6—C5121.3 (6)
C5—Pd2—O2Ai92.5 (2)C12—O1—C1124.0 (5)
N41—Pd2—O2Ai178.8 (2)C42—O4—C4120.0 (5)
C5—Pd2—O2Bi178.1 (2)C1A—O1A—Pd1126.2 (4)
N41—Pd2—O2Bi92.5 (2)O2A—C1A—O1A126.8 (6)
O2Ai—Pd2—O2Bi88.71 (18)O2A—C1A—C2A117.3 (6)
C2—C1—C6123.9 (6)O1A—C1A—C2A115.8 (6)
C2—C1—O1122.9 (6)C1A—O2A—Pd2i125.0 (4)
C6—C1—O1113.2 (6)C1B—O1B—Pd1124.9 (4)
C1—C2—C3114.7 (6)O2B—C1B—O1B126.2 (6)
C1—C2—Pd1124.0 (5)O2B—C1B—C2B117.1 (7)
C3—C2—Pd1121.2 (5)O1B—C1B—C2B116.3 (6)
C4—C3—C2121.4 (6)C1B—O2B—Pd2i126.7 (5)
Symmetry code: (i) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds