Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structures of the title compounds, 6,7-di­hydro­dibenzo[e,g]­azulen-8(5H)-one, C18H14O, (I), and 12,13-di­hydro­benzo[e]­napth­[2,1-g]­azulen-14(11H)-one, C22H16O, (II), the azulene group is in a boat-envelope conformation. The structures are stabilized by weak C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003954/de1128sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003954/de1128Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003954/de1128IIsup3.hkl
Contains datablock II

CCDC references: 147639; 147640

Comment top

Both the title compounds, (I) and (II), possess an azulene skeleton similar to that found in the natural products extracted from Saussurea lappa, a well known medicinal plant used in the indigenous system of medicine in India for the treatment of coughs, asthma, fever, dyspepsia and leprosy, and as a diuretic and anthelmintic. They are also extensively used in China, as powerful stimulants, carminatives and antispasmodics (Salooja et al., 1950; Kalsi et al., 1983). \sch

The structures of the two molecules are shown in Figs. 1 and 2, for (I) and (II), respectively. Selected bond lengths and angles are given in Tables 1 and 3, and the dimensions of possible hydrogen bonds are in Tables 2 and 4, for (I) and (II), respectively. Query revised text to go here. In both molecules, the cycloheptane rings are in the boat conformation and the cyclopentane rings are in the envelope conformation. The puckering parameters evaluated using PARST (Nardelli, 1995) also confirm the above results. For the seven-membered rings in (I), q2 = 0.527 (1), q3 = 0.082 (2) and QT = 0.534 (1) Å, and ϕ2 = 179.73 (15) and ϕ3 = 148.7 (10)°, while in (II), q2 = 0.652 (1), q3 = 0.149 (1) and QT = 0.669 (1) Å, and ϕ2 = 171.60 (12) and ϕ3 = −166.7 (5)°. For the five-membered rings in (I), q2 = 0.261 (2) Å and ϕ2 = −142.3 (4)°, while in (II), q2 = 0.280 (2) Å and ϕ2 = 38.6 (3)°. The superposition of the non-H atoms in the common parts of the two molecules (Fig. 3) shows that they have practically the same geometry with an r.m.s. deviation of 0.19 Å (the r.m.s. deviation is 0.08 Å when the atoms in the azulene rings alone are superimposed).

From the nature of the molecules in the two compounds it is clear that strong intermolecular hydrogen bonds are not possible, and in such cases C—H···O bonds play an important role in crystal packing (Desiraju, 1991, 1996). The significant shortening of some of the C—C bonds in the molecules [e.g. C9—C10 and C10—C11 in (I), and C3—C4 and C5—C6 in (II)] probably facilitates activation of the adjacent Csp2 atoms to act as donors. In both (I) and (II), the molecules are packed in columns parallel to the c axis. In (I) (Fig. 4), the adjacent columns are interlinked through C—H···O interactions. However, in (II) (Fig. 5), C—H···O interactions are confined to molecules within the columns and the columns are held together purely by van der Waals interactions.

Experimental top

Compounds (I) and (II) were prepared by rearranging the vinyl carbinol with two equivalents of potassium hydride in refluxing tetrahydrofuran (Geetha et al., 1982). Crystals suitable for X-ray diffraction studies were grown by slow evaporation from hexane solution.

Refinement top

Please provide details of H-atom refinement.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Johnson & Burnett, 1998); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II) with 30% probability displacement ellipsoids. H atoms are omitted for clarity.
[Figure 3] Fig. 3. Superposition of the non-H atoms of the two molecules. The black line indicates compound (I), the grey line compound (II).
[Figure 4] Fig. 4. The packing diagram for (I) viewed along the a axis.
[Figure 5] Fig. 5. The packing diagram for (II) viewed along the a axis.
(I) 6,7-Dihydrodibenz[e,g]azulen-8(5H)-one top
Crystal data top
C18H14ODx = 1.304 Mg m3
Mr = 246.29Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 8.0547 (11) Åθ = 14–25°
b = 17.378 (2) ŵ = 0.62 mm1
c = 17.919 (3) ÅT = 273 K
V = 2508.2 (6) Å3Rectangular prism, colourless
Z = 80.40 × 0.18 × 0.05 mm
F(000) = 1040
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 77.7°, θmin = 4.9°
Graphite monochromatorh = 09
ω/2θ scansk = 022
2449 measured reflectionsl = 210
2449 independent reflections3 standard reflections every 120min min
1794 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2676P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2449 reflectionsΔρmax = 0.18 e Å3
229 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (3)
Crystal data top
C18H14OV = 2508.2 (6) Å3
Mr = 246.29Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 8.0547 (11) ŵ = 0.62 mm1
b = 17.378 (2) ÅT = 273 K
c = 17.919 (3) Å0.40 × 0.18 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
2449 measured reflections3 standard reflections every 120min min
2449 independent reflections intensity decay: <1%
1794 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2449 reflectionsΔρmin = 0.14 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90909 (15)0.25092 (6)0.32332 (6)0.0565 (3)
C10.8925 (2)0.04182 (8)0.42316 (10)0.0509 (4)
C20.9632 (2)0.10516 (9)0.39218 (12)0.0623 (5)
C30.9781 (3)0.11203 (9)0.31377 (12)0.0680 (5)
C40.9271 (2)0.05389 (9)0.26744 (10)0.0578 (5)
C50.8143 (2)0.05596 (9)0.15673 (8)0.0466 (4)
C60.7570 (2)0.12968 (10)0.12137 (9)0.0513 (4)
C70.8143 (2)0.18930 (9)0.17847 (9)0.0469 (4)
C80.84742 (17)0.18801 (7)0.32500 (8)0.0396 (3)
C90.7133 (2)0.21353 (9)0.44720 (9)0.0502 (4)
C100.6273 (2)0.19585 (11)0.51310 (10)0.0593 (5)
C110.6032 (2)0.12177 (12)0.53156 (9)0.0594 (5)
C120.6699 (2)0.06669 (10)0.48556 (8)0.0508 (4)
C130.76031 (18)0.08236 (7)0.41822 (7)0.0390 (3)
C140.77629 (17)0.15843 (8)0.39808 (8)0.0389 (3)
C150.82399 (17)0.14700 (7)0.25322 (8)0.0382 (3)
C160.82588 (17)0.07240 (7)0.24188 (7)0.0381 (3)
C170.86120 (18)0.01293 (7)0.29717 (8)0.0417 (3)
C180.83856 (17)0.01847 (7)0.37777 (8)0.0404 (3)
H10.880 (2)0.0366 (8)0.4787 (9)0.050 (4)*
H21.002 (2)0.1453 (10)0.4290 (10)0.070 (5)*
H31.023 (2)0.1582 (11)0.2890 (10)0.080 (6)*
H40.938 (2)0.0582 (10)0.2116 (10)0.073 (6)*
H510.738 (2)0.0144 (10)0.1439 (10)0.060 (5)*
H520.931 (2)0.0401 (9)0.1339 (10)0.065 (5)*
H610.802 (2)0.1390 (9)0.0659 (10)0.064 (5)*
H620.630 (3)0.1313 (10)0.1183 (11)0.073 (6)*
H710.737 (2)0.2313 (11)0.1821 (9)0.066 (6)*
H720.929 (2)0.2107 (10)0.1663 (9)0.063 (5)*
H90.727 (2)0.2652 (10)0.4312 (8)0.054 (5)*
H100.579 (2)0.2367 (11)0.5481 (10)0.077 (6)*
H110.540 (3)0.1060 (10)0.5790 (10)0.074 (6)*
H120.653 (2)0.0137 (10)0.5005 (9)0.054 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0731 (8)0.0347 (5)0.0618 (7)0.0131 (5)0.0059 (6)0.0001 (5)
C10.0560 (9)0.0384 (7)0.0582 (10)0.0082 (7)0.0107 (8)0.0090 (7)
C20.0677 (11)0.0337 (8)0.0855 (13)0.0019 (7)0.0159 (10)0.0103 (8)
C30.0803 (13)0.0337 (7)0.0899 (14)0.0080 (8)0.0078 (11)0.0060 (8)
C40.0727 (12)0.0373 (7)0.0635 (11)0.0062 (8)0.0014 (9)0.0085 (7)
C50.0518 (9)0.0472 (8)0.0408 (8)0.0032 (7)0.0043 (7)0.0069 (6)
C60.0586 (10)0.0577 (9)0.0377 (8)0.0007 (8)0.0000 (8)0.0015 (7)
C70.0517 (9)0.0438 (8)0.0452 (8)0.0026 (7)0.0008 (7)0.0055 (6)
C80.0406 (8)0.0320 (6)0.0463 (8)0.0005 (6)0.0054 (6)0.0007 (5)
C90.0511 (9)0.0493 (9)0.0501 (9)0.0073 (7)0.0056 (7)0.0092 (7)
C100.0552 (10)0.0747 (11)0.0481 (9)0.0115 (9)0.0003 (8)0.0145 (8)
C110.0543 (10)0.0842 (13)0.0397 (9)0.0017 (9)0.0050 (7)0.0008 (8)
C120.0510 (9)0.0595 (9)0.0418 (8)0.0068 (8)0.0005 (7)0.0056 (7)
C130.0372 (7)0.0413 (7)0.0385 (7)0.0044 (6)0.0050 (6)0.0010 (6)
C140.0378 (7)0.0388 (7)0.0402 (7)0.0007 (5)0.0050 (6)0.0027 (5)
C150.0358 (7)0.0378 (6)0.0411 (7)0.0019 (5)0.0015 (6)0.0011 (6)
C160.0360 (7)0.0388 (6)0.0396 (7)0.0026 (5)0.0027 (6)0.0021 (6)
C170.0439 (8)0.0320 (6)0.0491 (8)0.0036 (6)0.0030 (6)0.0031 (6)
C180.0408 (7)0.0325 (6)0.0480 (8)0.0057 (6)0.0044 (6)0.0013 (6)
Geometric parameters (Å, º) top
O1—C81.2011 (16)C7—H710.961 (19)
C1—C21.358 (2)C7—H721.023 (18)
C1—C181.3959 (19)C8—C151.4825 (19)
C1—H11.004 (16)C8—C141.5191 (19)
C2—C31.415 (3)C9—C141.3958 (19)
C2—H21.011 (18)C9—C101.403 (2)
C3—C41.370 (2)C9—H90.949 (16)
C3—H30.985 (19)C10—C111.343 (3)
C4—C171.384 (2)C10—H101.025 (19)
C4—H41.008 (18)C11—C121.373 (2)
C5—C61.502 (2)C11—H111.03 (2)
C5—C161.555 (2)C12—C131.435 (2)
C5—H510.973 (18)C12—H120.968 (17)
C5—H521.063 (18)C13—C141.3765 (18)
C6—C71.527 (2)C13—C181.4681 (19)
C6—H611.070 (17)C15—C161.3123 (18)
C6—H621.02 (2)C16—C171.4596 (19)
C7—C151.530 (2)C17—C181.459 (2)
C2—C1—C18120.05 (16)C15—C8—C14122.50 (12)
C2—C1—H1121.3 (9)C14—C9—C10124.05 (16)
C18—C1—H1118.6 (9)C14—C9—H9114.6 (10)
C1—C2—C3120.65 (16)C10—C9—H9121.3 (10)
C1—C2—H2115.1 (10)C11—C10—C9119.23 (16)
C3—C2—H2124.3 (10)C11—C10—H10117.2 (10)
C4—C3—C2120.92 (16)C9—C10—H10123.5 (11)
C4—C3—H3115.9 (11)C10—C11—C12117.63 (16)
C2—C3—H3123.2 (11)C10—C11—H11122.0 (10)
C3—C4—C17120.03 (17)C12—C11—H11120.3 (11)
C3—C4—H4121.5 (11)C11—C12—C13124.84 (16)
C17—C4—H4118.5 (11)C11—C12—H12116.3 (10)
C6—C5—C16106.01 (12)C13—C12—H12118.9 (10)
C6—C5—H51109.9 (10)C14—C13—C12116.74 (13)
C16—C5—H51114.0 (10)C14—C13—C18123.83 (13)
C6—C5—H52109.3 (9)C12—C13—C18119.31 (12)
C16—C5—H52111.8 (10)C13—C14—C9117.35 (14)
H51—C5—H52105.9 (13)C13—C14—C8125.89 (12)
C5—C6—C7101.73 (13)C9—C14—C8116.65 (13)
C5—C6—H61114.7 (9)C16—C15—C8127.43 (13)
C7—C6—H61114.7 (9)C16—C15—C7109.86 (13)
C5—C6—H62110.7 (11)C8—C15—C7122.35 (11)
C7—C6—H62108.6 (11)C15—C16—C17126.62 (13)
H61—C6—H62106.4 (15)C15—C16—C5109.43 (12)
C6—C7—C15106.02 (12)C17—C16—C5123.21 (12)
C6—C7—H71111.4 (11)C4—C17—C18118.98 (13)
C15—C7—H71109.8 (10)C4—C17—C16114.06 (14)
C6—C7—H72112.2 (10)C18—C17—C16126.94 (12)
C15—C7—H72108.3 (9)C1—C18—C17119.24 (13)
H71—C7—H72109.0 (14)C1—C18—C13114.44 (14)
O1—C8—C15117.94 (13)C17—C18—C13126.32 (12)
O1—C8—C14119.04 (13)
C18—C1—C2—C32.1 (3)C6—C7—C15—C1617.09 (18)
C1—C2—C3—C42.4 (3)C6—C7—C15—C8169.36 (14)
C2—C3—C4—C170.5 (3)C8—C15—C16—C173.8 (2)
C16—C5—C6—C724.55 (17)C7—C15—C16—C17169.33 (14)
C5—C6—C7—C1525.26 (17)C8—C15—C16—C5174.15 (14)
C14—C9—C10—C110.4 (3)C7—C15—C16—C51.01 (17)
C9—C10—C11—C122.2 (3)C6—C5—C16—C1515.70 (18)
C10—C11—C12—C131.6 (3)C6—C5—C16—C17173.56 (14)
C11—C12—C13—C141.8 (2)C3—C4—C17—C183.4 (3)
C11—C12—C13—C18174.35 (16)C3—C4—C17—C16174.89 (16)
C12—C13—C14—C94.2 (2)C15—C16—C17—C4152.49 (15)
C18—C13—C14—C9171.75 (14)C5—C16—C17—C416.6 (2)
C12—C13—C14—C8172.02 (13)C15—C16—C17—C1825.6 (2)
C18—C13—C14—C812.0 (2)C5—C16—C17—C18165.26 (14)
C10—C9—C14—C133.8 (2)C2—C1—C18—C170.9 (2)
C10—C9—C14—C8172.81 (15)C2—C1—C18—C13178.35 (14)
O1—C8—C14—C13153.67 (14)C4—C17—C18—C13.6 (2)
C15—C8—C14—C1334.8 (2)C16—C17—C18—C1174.42 (14)
O1—C8—C14—C930.1 (2)C4—C17—C18—C13175.48 (15)
C15—C8—C14—C9141.46 (14)C16—C17—C18—C136.5 (2)
O1—C8—C15—C16149.69 (16)C14—C13—C18—C1144.32 (14)
C14—C8—C15—C1638.7 (2)C12—C13—C18—C131.53 (19)
O1—C8—C15—C722.7 (2)C14—C13—C18—C1736.5 (2)
C14—C8—C15—C7148.98 (14)C12—C13—C18—C17147.61 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.949 (16)2.438 (16)2.799 (2)102.3 (12)
C3—H3···O1i0.985 (19)2.616 (19)3.540 (2)156.3 (15)
C6—H62···O1ii1.02 (2)2.930 (19)3.643 (2)127.4 (13)
C7—H71···O1ii0.961 (19)2.66 (2)3.435 (2)137.4 (14)
C10—H10···O1iii1.025 (19)2.687 (19)3.541 (2)140.8 (14)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.
(II) 12,13-Dihydrobenzo[e]napth[2,1-g]azulen-14(11H)-one top
Crystal data top
C22H16ODx = 1.285 Mg m3
Mr = 296.35Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 11.8466 (12) Åθ = 14–24°
b = 12.4890 (15) ŵ = 0.60 mm1
c = 20.703 (2) ÅT = 293 K
V = 3063.0 (6) Å3Rectangular prism, colourless
Z = 80.15 × 0.08 × 0.05 mm
F(000) = 1248
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 70.9°, θmin = 4.3°
Graphite monochromatorh = 014
ω/2θ scansk = 015
2949 measured reflectionsl = 025
2948 independent reflections3 standard reflections every 120min min
2160 reflections with I > 2σ(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2784P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2948 reflectionsΔρmax = 0.19 e Å3
273 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (3)
Crystal data top
C22H16OV = 3063.0 (6) Å3
Mr = 296.35Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 11.8466 (12) ŵ = 0.60 mm1
b = 12.4890 (15) ÅT = 293 K
c = 20.703 (2) Å0.15 × 0.08 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.016
2949 measured reflections3 standard reflections every 120min min
2948 independent reflections intensity decay: <1%
2160 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
2948 reflectionsΔρmin = 0.17 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12969 (9)0.21905 (11)0.38557 (5)0.0606 (3)
C10.00641 (14)0.06816 (13)0.30270 (7)0.0490 (4)
C20.00515 (16)0.00963 (14)0.25635 (8)0.0581 (4)
C30.09235 (16)0.00323 (15)0.21051 (8)0.0597 (4)
C40.16637 (15)0.07951 (15)0.21238 (7)0.0558 (4)
C50.23758 (13)0.24400 (14)0.26468 (7)0.0527 (4)
C60.23157 (13)0.31764 (14)0.31247 (7)0.0491 (4)
C70.18932 (14)0.50241 (13)0.39126 (8)0.0546 (4)
C80.20884 (16)0.58344 (14)0.43469 (10)0.0626 (5)
C90.18950 (14)0.56651 (13)0.49943 (9)0.0586 (4)
C100.14778 (13)0.46942 (13)0.51957 (8)0.0499 (4)
C110.07039 (15)0.26395 (15)0.57363 (7)0.0515 (4)
C120.01631 (17)0.15303 (16)0.57657 (8)0.0616 (5)
C130.05923 (15)0.14783 (14)0.51674 (8)0.0526 (4)
C140.03145 (11)0.22950 (11)0.40309 (7)0.0411 (3)
C150.00086 (11)0.22363 (11)0.47119 (6)0.0395 (3)
C160.07015 (11)0.29004 (11)0.50229 (6)0.0395 (3)
C170.12362 (11)0.38606 (11)0.47623 (7)0.0400 (3)
C180.14892 (11)0.40165 (11)0.40997 (7)0.0411 (3)
C190.14428 (11)0.31635 (11)0.36015 (6)0.0397 (3)
C200.06275 (11)0.23692 (11)0.35559 (6)0.0382 (3)
C210.06867 (11)0.15600 (11)0.30612 (6)0.0407 (3)
C220.15761 (12)0.16050 (13)0.26022 (6)0.0460 (3)
H10.0671 (14)0.0616 (13)0.3362 (8)0.059 (5)*
H20.0481 (16)0.0705 (14)0.2563 (9)0.064 (5)*
H30.1028 (16)0.0626 (15)0.1779 (9)0.072 (5)*
H40.2261 (16)0.0911 (14)0.1809 (9)0.064 (5)*
H50.2969 (15)0.2485 (14)0.2323 (9)0.063 (5)*
H60.2896 (14)0.3731 (13)0.3152 (8)0.052 (4)*
H70.2025 (15)0.5154 (14)0.3456 (9)0.061 (5)*
H80.2348 (17)0.6545 (17)0.4197 (9)0.078 (6)*
H90.2034 (16)0.6214 (15)0.5318 (9)0.072 (5)*
H100.1317 (15)0.4579 (14)0.5657 (9)0.061 (5)*
H1110.1505 (16)0.2598 (14)0.5937 (9)0.066 (5)*
H2110.0275 (16)0.3171 (15)0.5979 (9)0.065 (5)*
H1120.0824 (18)0.0939 (17)0.5720 (10)0.080 (6)*
H2120.0247 (18)0.1395 (16)0.6174 (10)0.078 (6)*
H2130.1360 (16)0.1768 (14)0.5263 (9)0.063 (5)*
H1130.0650 (15)0.0726 (15)0.5003 (8)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (5)0.0922 (9)0.0550 (6)0.0056 (5)0.0033 (4)0.0090 (6)
C10.0493 (8)0.0557 (9)0.0421 (7)0.0045 (7)0.0031 (6)0.0015 (6)
C20.0677 (10)0.0571 (9)0.0494 (8)0.0073 (8)0.0095 (7)0.0030 (8)
C30.0746 (11)0.0626 (10)0.0419 (8)0.0080 (9)0.0056 (8)0.0069 (7)
C40.0606 (9)0.0683 (11)0.0386 (8)0.0098 (8)0.0006 (7)0.0006 (7)
C50.0480 (8)0.0676 (10)0.0424 (7)0.0007 (7)0.0101 (7)0.0055 (7)
C60.0441 (8)0.0590 (9)0.0441 (7)0.0073 (7)0.0056 (6)0.0078 (7)
C70.0548 (9)0.0472 (8)0.0617 (10)0.0091 (7)0.0029 (8)0.0086 (7)
C80.0586 (10)0.0429 (9)0.0863 (13)0.0105 (7)0.0039 (9)0.0031 (8)
C90.0489 (9)0.0487 (9)0.0781 (12)0.0064 (7)0.0007 (8)0.0156 (9)
C100.0440 (8)0.0530 (9)0.0528 (8)0.0016 (7)0.0018 (7)0.0100 (7)
C110.0530 (9)0.0639 (10)0.0376 (7)0.0017 (8)0.0007 (6)0.0020 (7)
C120.0705 (11)0.0695 (12)0.0448 (8)0.0083 (9)0.0052 (8)0.0148 (8)
C130.0537 (9)0.0561 (10)0.0480 (8)0.0114 (8)0.0086 (7)0.0052 (7)
C140.0353 (7)0.0453 (8)0.0428 (7)0.0025 (6)0.0005 (6)0.0013 (6)
C150.0361 (6)0.0425 (7)0.0400 (7)0.0012 (6)0.0047 (5)0.0009 (6)
C160.0351 (6)0.0457 (7)0.0378 (7)0.0019 (6)0.0013 (5)0.0004 (6)
C170.0322 (6)0.0431 (7)0.0446 (7)0.0011 (6)0.0017 (5)0.0005 (6)
C180.0347 (6)0.0427 (7)0.0460 (7)0.0019 (6)0.0006 (6)0.0043 (6)
C190.0374 (7)0.0447 (7)0.0370 (6)0.0003 (6)0.0015 (5)0.0078 (6)
C200.0349 (7)0.0465 (7)0.0332 (6)0.0009 (6)0.0026 (5)0.0063 (6)
C210.0415 (7)0.0478 (7)0.0330 (6)0.0025 (6)0.0052 (5)0.0049 (6)
C220.0478 (8)0.0564 (8)0.0340 (7)0.0052 (7)0.0002 (6)0.0053 (6)
Geometric parameters (Å, º) top
O1—C141.2260 (16)C11—C161.5125 (19)
C1—C21.372 (2)C11—C121.527 (3)
C1—C211.414 (2)C12—C131.529 (2)
C2—C31.405 (2)C13—C151.5045 (19)
C3—C41.356 (3)C14—C151.4575 (19)
C4—C221.419 (2)C14—C201.4904 (18)
C5—C61.353 (2)C15—C161.3453 (19)
C5—C221.412 (2)C16—C171.4596 (19)
C6—C191.4297 (19)C17—C181.4175 (19)
C7—C81.373 (2)C18—C191.484 (2)
C7—C181.401 (2)C19—C201.3878 (19)
C8—C91.376 (3)C20—C211.4406 (19)
C9—C101.374 (2)C21—C221.4200 (19)
C10—C171.404 (2)
C2—C1—C21121.43 (15)C15—C16—C11109.61 (13)
C1—C2—C3120.35 (17)C17—C16—C11122.49 (13)
C4—C3—C2119.97 (16)C10—C17—C18118.26 (13)
C3—C4—C22121.05 (16)C10—C17—C16117.48 (13)
C6—C5—C22120.97 (14)C18—C17—C16124.22 (12)
C5—C6—C19122.38 (15)C7—C18—C17117.59 (13)
C8—C7—C18122.57 (16)C7—C18—C19117.74 (13)
C7—C8—C9119.77 (16)C17—C18—C19124.48 (12)
C10—C9—C8119.40 (16)C20—C19—C6117.67 (13)
C9—C10—C17122.27 (16)C20—C19—C18125.90 (12)
C16—C11—C12103.50 (13)C6—C19—C18116.43 (12)
C11—C12—C13104.58 (13)C19—C20—C21121.07 (12)
C15—C13—C12102.23 (13)C19—C20—C14121.38 (12)
O1—C14—C15121.13 (13)C21—C20—C14117.51 (12)
O1—C14—C20121.47 (12)C1—C21—C22117.64 (13)
C15—C14—C20117.08 (11)C1—C21—C20123.32 (13)
C16—C15—C14125.97 (13)C22—C21—C20118.95 (13)
C16—C15—C13112.05 (12)C5—C22—C4121.53 (14)
C14—C15—C13121.57 (12)C5—C22—C21118.91 (13)
C15—C16—C17126.94 (13)C4—C22—C21119.54 (14)
C21—C1—C2—C30.4 (2)C10—C17—C18—C19170.55 (13)
C1—C2—C3—C40.7 (3)C16—C17—C18—C1911.7 (2)
C2—C3—C4—C220.1 (3)C5—C6—C19—C201.1 (2)
C22—C5—C6—C190.9 (2)C5—C6—C19—C18179.53 (14)
C18—C7—C8—C90.6 (3)C7—C18—C19—C20145.12 (14)
C7—C8—C9—C101.8 (3)C17—C18—C19—C2040.0 (2)
C8—C9—C10—C170.1 (3)C7—C18—C19—C634.24 (19)
C16—C11—C12—C1326.59 (18)C17—C18—C19—C6140.63 (13)
C11—C12—C13—C1527.14 (18)C6—C19—C20—C212.55 (19)
O1—C14—C15—C16135.85 (16)C18—C19—C20—C21178.10 (12)
C20—C14—C15—C1650.5 (2)C6—C19—C20—C14179.91 (12)
O1—C14—C15—C1336.2 (2)C18—C19—C20—C140.6 (2)
C20—C14—C15—C13137.42 (14)O1—C14—C20—C19131.77 (15)
C12—C13—C15—C1618.48 (18)C15—C14—C20—C1954.63 (18)
C12—C13—C15—C14168.44 (14)O1—C14—C20—C2150.6 (2)
C14—C15—C16—C175.5 (2)C15—C14—C20—C21123.00 (13)
C13—C15—C16—C17167.24 (13)C2—C1—C21—C220.7 (2)
C14—C15—C16—C11174.39 (14)C2—C1—C21—C20177.19 (14)
C13—C15—C16—C111.68 (18)C19—C20—C21—C1174.34 (13)
C12—C11—C16—C1515.95 (18)C14—C20—C21—C13.29 (19)
C12—C11—C16—C17174.53 (14)C19—C20—C21—C222.15 (19)
C9—C10—C17—C183.3 (2)C14—C20—C21—C22179.78 (12)
C9—C10—C17—C16174.60 (14)C6—C5—C22—C4176.62 (15)
C15—C16—C17—C10149.85 (14)C6—C5—C22—C211.3 (2)
C11—C16—C17—C1017.8 (2)C3—C4—C22—C5176.69 (15)
C15—C16—C17—C1827.9 (2)C3—C4—C22—C211.2 (2)
C11—C16—C17—C18164.49 (13)C1—C21—C22—C5176.50 (13)
C8—C7—C18—C172.5 (2)C20—C21—C22—C50.2 (2)
C8—C7—C18—C19172.70 (15)C1—C21—C22—C41.5 (2)
C10—C17—C18—C74.3 (2)C20—C21—C22—C4178.15 (13)
C16—C17—C18—C7173.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11.002 (17)2.338 (17)2.937 (2)117.4 (12)
C5—H5···O1i0.972 (18)2.617 (18)3.4993 (19)151.0 (14)
C4—H4···O1i0.973 (19)2.714 (19)3.604 (2)152.3 (14)
C9—H9···O1ii0.972 (19)2.768 (19)3.653 (2)151.7 (15)
C11—H111···O1iii1.038 (19)2.652 (19)3.658 (2)163.3 (14)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H14OC22H16O
Mr246.29296.35
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)273293
a, b, c (Å)8.0547 (11), 17.378 (2), 17.919 (3)11.8466 (12), 12.4890 (15), 20.703 (2)
V3)2508.2 (6)3063.0 (6)
Z88
Radiation typeCu KαCu Kα
µ (mm1)0.620.60
Crystal size (mm)0.40 × 0.18 × 0.050.15 × 0.08 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2449, 2449, 1794 2949, 2948, 2160
Rint0.0000.016
(sin θ/λ)max1)0.6340.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.03 0.037, 0.110, 1.03
No. of reflections24492948
No. of parameters229273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.140.19, 0.17

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 SDP (Frenz, 1978), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Johnson & Burnett, 1998), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
O1—C81.2011 (16)C13—C141.3765 (18)
C5—C61.502 (2)C13—C181.4681 (19)
C5—C161.555 (2)C15—C161.3123 (18)
C6—C71.527 (2)C16—C171.4596 (19)
C7—C151.530 (2)C17—C181.459 (2)
C8—C141.5191 (19)
C6—C5—C16106.01 (12)C16—C15—C8127.43 (13)
C5—C6—C7101.73 (13)C16—C15—C7109.86 (13)
C6—C7—C15106.02 (12)C15—C16—C17126.62 (13)
O1—C8—C15117.94 (13)C15—C16—C5109.43 (12)
O1—C8—C14119.04 (13)C18—C17—C16126.94 (12)
C15—C8—C14122.50 (12)C17—C18—C13126.32 (12)
C13—C14—C8125.89 (12)
C16—C5—C6—C724.55 (17)C7—C15—C16—C51.01 (17)
C5—C6—C7—C1525.26 (17)C6—C5—C16—C1515.70 (18)
C18—C13—C14—C812.0 (2)C15—C16—C17—C1825.6 (2)
C15—C8—C14—C1334.8 (2)C16—C17—C18—C136.5 (2)
C14—C8—C15—C1638.7 (2)C14—C13—C18—C1736.5 (2)
C8—C15—C16—C173.8 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.949 (16)2.438 (16)2.799 (2)102.3 (12)
C3—H3···O1i0.985 (19)2.616 (19)3.540 (2)156.3 (15)
C7—H71···O1ii0.961 (19)2.66 (2)3.435 (2)137.4 (14)
C10—H10···O1iii1.025 (19)2.687 (19)3.541 (2)140.8 (14)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C141.2260 (16)C14—C201.4904 (18)
C11—C161.5125 (19)C15—C161.3453 (19)
C11—C121.527 (3)C16—C171.4596 (19)
C12—C131.529 (2)C17—C181.4175 (19)
C13—C151.5045 (19)C18—C191.484 (2)
C14—C151.4575 (19)C19—C201.3878 (19)
C16—C11—C12103.50 (13)C16—C15—C13112.05 (12)
C11—C12—C13104.58 (13)C15—C16—C17126.94 (13)
C15—C13—C12102.23 (13)C15—C16—C11109.61 (13)
O1—C14—C15121.13 (13)C18—C17—C16124.22 (12)
O1—C14—C20121.47 (12)C17—C18—C19124.48 (12)
C15—C14—C20117.08 (11)C20—C19—C18125.90 (12)
C16—C15—C14125.97 (13)C19—C20—C14121.38 (12)
C16—C11—C12—C1326.59 (18)C12—C11—C16—C1515.95 (18)
C11—C12—C13—C1527.14 (18)C15—C16—C17—C1827.9 (2)
C20—C14—C15—C1650.5 (2)C16—C17—C18—C1911.7 (2)
C12—C13—C15—C1618.48 (18)C17—C18—C19—C2040.0 (2)
C14—C15—C16—C175.5 (2)C18—C19—C20—C21178.10 (12)
C13—C15—C16—C111.68 (18)C15—C14—C20—C1954.63 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O11.002 (17)2.338 (17)2.937 (2)117.4 (12)
C5—H5···O1i0.972 (18)2.617 (18)3.4993 (19)151.0 (14)
C4—H4···O1i0.973 (19)2.714 (19)3.604 (2)152.3 (14)
C9—H9···O1ii0.972 (19)2.768 (19)3.653 (2)151.7 (15)
C11—H111···O1iii1.038 (19)2.652 (19)3.658 (2)163.3 (14)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds