Download citation
Download citation
link to html
A selection of stereoisomeric 2-hydroxy-1-cyclopentanecarboxamides, a 4-tert-butyl derivative and three tert-butyl derivatives of the respective carboxylic acid were subjected to X-ray crystallography. The optically active molecules (I)–(VI) form racemic crystals. Each racemic structure is basically determined by two intermolecular hydrogen bonds of O—H...O=C—XH and O=C—X—H...OH types (X = O, NH). The partially similar patterns of close packing observed reflect five basic forms of supramolecular self-assembly. In the racemic crystals of chiral molecules, there are homo- and heterochiral chains of molecules formed by the principal (O—H...O=C) hydrogen bonds. These chains assemble either in a parallel or antiparallel mode. The parallel homochiral chains (hop) observed in structure (II), (1R*,2R*)-2-hydroxy-1-cyclopentanecarboxamide, demand the polar space group Pca21, while the parallel heterochiral chains (hep) are organized in antiparallel layers with space group P21/n in structure (VI), (1R*,2S*,5R*-5-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid). Heterochiral chains in an antiparallel array (hea) are found in (I), (1R*,2S*)-2-hydroxy-1-cyclopentanecarboxamide, and (V) [(1R*,2S*4S*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid, space group P21/c]. Structures (IV), (1R*,2S*,4R*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid, and (III), (1R*,2R*,4S*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxamide, reveal that homochiral chains in an antiparallel array (hoa; cross-linked by heterochiral dimers held together by the second hydrogen bonds) can be formed by either translation (space group P\bar 1) or a screw axis (space group P21/c). These alternatives are denoted hoa1 and hoa2. Similarly, within each pattern (hea, hep and hop) two slightly different alternatives can be expected. The partial similarities in the identified five patterns of hydrogen bonding are described by graph-set notations. Structures (I), (IV) and (V) can be characterized by a common supramolecular synthon, while the highest degree of similarity is shown by the isostructurality of (I) and (V).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768101006723/de0011sup1.cif
Contains datablocks 1, 2, 3, 4, 5, 6, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00111sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00112sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00113sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00114sup5.hkl
Contains datablock 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00115sup6.hkl
Contains datablock 5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101006723/de00116sup7.hkl
Contains datablock 6

CCDC references: 146938; 146939; 146940; 154300; 154301; 154302

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1992); data reduction: XCAD4 (Harms 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTO in CSD(Allen F.H & Kennard O.(1993)) and PLATON(Spek A.L(1998)).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
(1) cis(1R*,2S*)-2-hydroxy-1-cyclopentanecarboxamide top
Crystal data top
C6H11NO2F(000) = 280
Mr = 129.16Dx = 1.323 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.693 (2) ÅCell parameters from 25 reflections
b = 7.225 (1) Åθ = 26.1–29.9°
c = 7.902 (2) ŵ = 0.82 mm1
β = 103.70 (3)°T = 293 K
V = 648.6 (2) Å3Block, colourless
Z = 40.30 × 0.15 × 0.08 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1149 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 74.9°, θmin = 3.9°
ω–2θ scansh = 1414
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 90
Tmin = 0.791, Tmax = 0.937l = 09
1431 measured reflections3 standard reflections every 60 min
1274 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1274 reflectionsΔρmax = 0.31 e Å3
84 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (5)
Crystal data top
C6H11NO2V = 648.6 (2) Å3
Mr = 129.16Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.693 (2) ŵ = 0.82 mm1
b = 7.225 (1) ÅT = 293 K
c = 7.902 (2) Å0.30 × 0.15 × 0.08 mm
β = 103.70 (3)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1149 reflections with I > 2σ(I)
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
Rint = 0.017
Tmin = 0.791, Tmax = 0.9373 standard reflections every 60 min
1431 measured reflections intensity decay: 2%
1274 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.31 e Å3
1274 reflectionsΔρmin = 0.17 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23443 (9)0.10209 (13)0.21888 (12)0.0326 (3)
H10.24220.21900.15970.042*
C20.21510 (11)0.05220 (14)0.08134 (14)0.0402 (3)
H20.15800.01520.02520.052*
C30.33844 (14)0.07217 (19)0.0504 (2)0.0586 (4)
H3A0.34780.19180.00030.076*
H3B0.35360.02400.02710.076*
C40.42132 (12)0.0536 (2)0.2300 (2)0.0612 (4)
H4A0.49280.01030.22210.080*
H4B0.44220.17460.28110.080*
C50.35446 (10)0.05796 (15)0.34001 (17)0.0433 (3)
H5A0.34480.01380.43940.056*
H5B0.39640.17110.38180.056*
C60.13312 (8)0.12307 (12)0.30682 (12)0.0299 (3)
O10.17852 (8)0.21545 (11)0.15460 (11)0.0435 (3)
H1A0.17850.30290.08840.057*
O20.12981 (7)0.03954 (10)0.44220 (10)0.0384 (3)
N30.04795 (8)0.23645 (14)0.22708 (12)0.0415 (3)
H3C0.01250.25410.26940.054*
H3D0.05320.29220.13310.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (5)0.0265 (5)0.0378 (6)0.0009 (4)0.0173 (4)0.0016 (3)
C20.0521 (7)0.0376 (6)0.0352 (5)0.0010 (4)0.0189 (5)0.0025 (4)
C30.0745 (9)0.0452 (7)0.0739 (9)0.0031 (6)0.0528 (8)0.0085 (6)
C40.0445 (7)0.0541 (8)0.0946 (11)0.0043 (5)0.0358 (7)0.0074 (7)
C50.0345 (6)0.0383 (6)0.0586 (7)0.0010 (4)0.0140 (5)0.0053 (5)
C60.0336 (5)0.0264 (5)0.0312 (5)0.0018 (3)0.0109 (4)0.0039 (3)
O10.0519 (5)0.0357 (5)0.0478 (5)0.0104 (3)0.0215 (4)0.0110 (3)
O20.0471 (5)0.0359 (5)0.0371 (5)0.0025 (3)0.0196 (3)0.0038 (3)
N30.0396 (5)0.0452 (6)0.0422 (5)0.0102 (4)0.0147 (4)0.0054 (4)
Geometric parameters (Å, º) top
C1—C61.5163 (13)C3—C41.523 (3)
C1—C51.5334 (16)C4—C51.5294 (18)
C1—C21.5358 (14)C6—O21.2368 (12)
C2—O11.4236 (13)C6—N31.3277 (14)
C2—C31.5257 (18)
C6—C1—C5115.70 (9)C4—C3—C2105.03 (11)
C6—C1—C2113.38 (8)C3—C4—C5106.15 (11)
C5—C1—C2104.50 (9)C1—C5—C4105.68 (11)
O1—C2—C3111.92 (10)O2—C6—N3122.55 (9)
O1—C2—C1108.76 (8)O2—C6—C1122.37 (9)
C3—C2—C1101.29 (10)N3—C6—C1115.07 (9)
C6—C1—C2—O148.69 (12)C6—C1—C5—C4150.64 (9)
C5—C1—C2—O178.17 (11)C2—C1—C5—C425.24 (12)
C6—C1—C2—C3166.72 (9)C3—C4—C5—C10.49 (14)
C5—C1—C2—C339.86 (11)C5—C1—C6—O229.54 (13)
O1—C2—C3—C476.02 (12)C2—C1—C6—O291.18 (12)
C1—C2—C3—C439.70 (12)C5—C1—C6—N3150.96 (9)
C2—C3—C4—C524.67 (14)C2—C1—C6—N388.32 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.072.8586 (11)162
N3—H3C···O1ii0.862.173.0299 (14)173
N3—H3D···O2iii0.862.283.1023 (13)160
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
(2) trans(1S*,2S*)-2-hydroxy-1-cyclopentanecarboxamide top
Crystal data top
C6H11NO2Dx = 1.252 Mg m3
Mr = 129.16Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pca21Cell parameters from 25 reflections
a = 9.879 (2) Åθ = 17.5–24.1°
b = 8.410 (2) ŵ = 0.78 mm1
c = 8.250 (2) ÅT = 293 K
V = 685.4 (3) Å3Block, colourless
Z = 40.15 × 0.12 × 0.05 mm
F(000) = 280
Data collection top
Enraf-Nonius CAD4
diffractometer
1145 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 74.8°, θmin = 5.3°
ω–2θ scansh = 1212
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 1010
Tmin = 0.944, Tmax = 1.000l = 910
1569 measured reflections3 standard reflections every 60 min
1375 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
1375 reflectionsΔρmax = 0.13 e Å3
83 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Crystal data top
C6H11NO2V = 685.4 (3) Å3
Mr = 129.16Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 9.879 (2) ŵ = 0.78 mm1
b = 8.410 (2) ÅT = 293 K
c = 8.250 (2) Å0.15 × 0.12 × 0.05 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1375 independent reflections
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
1145 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.009
1569 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113Δρmax = 0.13 e Å3
S = 0.86Δρmin = 0.13 e Å3
1375 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
83 parametersAbsolute structure parameter: 0.1 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05343 (18)0.2870 (2)0.2612 (2)0.0387 (4)
H10.10940.32910.34940.050*
C20.02949 (17)0.1463 (2)0.3261 (2)0.0407 (4)
H20.06970.08750.23560.053*
C30.1409 (3)0.2272 (3)0.4250 (4)0.0672 (7)
H3A0.22040.15990.43200.087*
H3B0.10950.25070.53380.087*
C40.1724 (2)0.3786 (3)0.3338 (4)0.0696 (7)
H4A0.18260.46650.40890.090*
H4B0.25600.36690.27340.090*
C50.0542 (2)0.4102 (3)0.2178 (3)0.0605 (6)
H5A0.08290.39780.10600.079*
H5B0.01940.51710.23250.079*
C60.14426 (18)0.2349 (2)0.1256 (2)0.0373 (4)
O10.05542 (15)0.04453 (19)0.4167 (2)0.0533 (4)
H1A0.01280.03470.44410.069*
O20.09957 (15)0.21887 (19)0.01527 (15)0.0482 (4)
N30.27140 (16)0.2017 (2)0.1626 (2)0.0482 (4)
H3C0.32580.16800.08880.063*
H3D0.29970.21370.26040.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (9)0.0372 (8)0.0364 (9)0.0037 (7)0.0012 (7)0.0010 (7)
C20.0416 (8)0.0429 (9)0.0375 (9)0.0074 (7)0.0013 (8)0.0012 (8)
C30.0529 (13)0.0730 (16)0.0758 (17)0.0035 (11)0.0223 (12)0.0049 (14)
C40.0508 (10)0.0718 (15)0.0862 (18)0.0088 (11)0.0064 (12)0.0150 (14)
C50.0594 (12)0.0530 (12)0.0691 (14)0.0126 (10)0.0032 (11)0.0071 (11)
C60.0447 (9)0.0332 (8)0.0341 (8)0.0062 (6)0.0023 (8)0.0003 (7)
O10.0543 (7)0.0527 (8)0.0530 (8)0.0143 (6)0.0073 (7)0.0157 (7)
O20.0520 (7)0.0593 (9)0.0334 (7)0.0092 (6)0.0039 (6)0.0008 (6)
N30.0449 (9)0.0651 (10)0.0345 (7)0.0063 (7)0.0021 (7)0.0007 (7)
Geometric parameters (Å, º) top
C1—C61.499 (3)C3—C41.512 (4)
C1—C51.528 (3)C4—C51.533 (4)
C1—C21.535 (2)C6—O21.251 (2)
C2—O11.412 (2)C6—N31.322 (3)
C2—C31.529 (3)
C6—C1—C5116.08 (18)C4—C3—C2104.9 (2)
C6—C1—C2110.77 (15)C3—C4—C5107.47 (19)
C5—C1—C2103.49 (16)C1—C5—C4105.4 (2)
O1—C2—C1109.55 (14)O2—C6—N3121.79 (18)
O1—C2—C3114.49 (18)O2—C6—C1120.91 (17)
C1—C2—C3103.12 (17)N3—C6—C1117.25 (16)
C6—C1—C2—O173.10 (19)C6—C1—C5—C4150.6 (2)
C5—C1—C2—O1161.83 (18)C2—C1—C5—C429.0 (2)
C6—C1—C2—C3164.59 (19)C3—C4—C5—C17.5 (3)
C5—C1—C2—C339.5 (2)C5—C1—C6—O236.9 (3)
O1—C2—C3—C4153.89 (19)C2—C1—C6—O280.7 (2)
C1—C2—C3—C435.0 (2)C5—C1—C6—N3145.42 (18)
C2—C3—C4—C517.1 (3)C2—C1—C6—N396.97 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.932.751 (2)173
N3—H3C···O1ii0.862.112.964 (2)170
N3—H3D···O2iii0.862.102.951 (2)169
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2.
(3) (1S*,2S*,4R*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxamide top
Crystal data top
C10H19NO2F(000) = 408
Mr = 185.26Dx = 1.092 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 13.246 (5) ÅCell parameters from 25 reflections
b = 6.988 (2) Åθ = 10.0–12.6°
c = 13.299 (6) ŵ = 0.08 mm1
β = 113.78 (8)°T = 293 K
V = 1126.5 (7) Å3Block, colourless
Z = 40.55 × 0.30 × 0.15 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
844 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.0°, θmin = 3.1°
ω–2θ scansh = 1615
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 08
Tmin = 0.960, Tmax = 0.989l = 016
2449 measured reflections3 standard reflections every 60 min
2350 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.002P)2 + 6.5P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2350 reflectionsΔρmax = 0.27 e Å3
123 parametersΔρmin = 0.25 e Å3
18 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (6)
Crystal data top
C10H19NO2V = 1126.5 (7) Å3
Mr = 185.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.246 (5) ŵ = 0.08 mm1
b = 6.988 (2) ÅT = 293 K
c = 13.299 (6) Å0.55 × 0.30 × 0.15 mm
β = 113.78 (8)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2350 independent reflections
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
844 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.018
2449 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.05018 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.27 e Å3
2350 reflectionsΔρmin = 0.25 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8615 (2)0.0359 (4)0.3566 (2)0.0538 (7)
H10.88840.00540.43340.070*
C20.8880 (2)0.2464 (4)0.3532 (2)0.0549 (7)
H20.87240.28440.27740.071*
C30.8077 (2)0.3450 (4)0.3918 (3)0.0677 (8)
H3A0.83740.34980.47140.088*
H3B0.79270.47450.36340.088*
C40.7023 (2)0.2231 (5)0.3464 (3)0.0696 (9)
H4A0.65010.28860.28090.090*
C50.7363 (2)0.0350 (5)0.3070 (3)0.0674 (8)
H5A0.70760.03120.22740.088*
H5B0.70860.07500.33240.088*
C60.9114 (2)0.0894 (4)0.2970 (2)0.0529 (6)
C70.6451 (3)0.2005 (6)0.4266 (3)0.0834 (11)
C80.5352 (3)0.0982 (8)0.3671 (3)0.1189 (17)
H8A0.49470.09780.41290.178*
H8B0.49330.16350.29960.178*
H8C0.54860.03120.35150.178*
C90.6222 (4)0.3986 (8)0.4616 (4)0.1255 (18)
H9A0.58130.38540.50650.188*
H9B0.69080.46220.50260.188*
H9C0.58010.47270.39750.188*
C100.7160 (3)0.0828 (7)0.5270 (3)0.1032 (14)
H10A0.67690.06420.57330.155*
H10B0.73190.03920.50360.155*
H10C0.78370.14950.56720.155*
O11.00075 (16)0.2885 (3)0.42247 (15)0.0613 (6)
H1A1.03070.33850.38580.080*
O20.90901 (18)0.0430 (3)0.20623 (16)0.0655 (6)
N30.9570 (2)0.2510 (3)0.34585 (19)0.0644 (7)
H3D0.98630.32750.31460.084*
H3C0.95750.27970.40890.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0586 (15)0.0474 (14)0.0582 (15)0.0014 (12)0.0265 (13)0.0016 (12)
C20.0568 (16)0.0512 (15)0.0563 (14)0.0009 (12)0.0222 (13)0.0036 (12)
C30.0690 (18)0.0536 (16)0.086 (2)0.0051 (14)0.0372 (17)0.0039 (15)
C40.0582 (17)0.085 (2)0.0631 (17)0.0112 (16)0.0223 (14)0.0000 (16)
C50.0573 (16)0.0734 (19)0.0729 (19)0.0082 (14)0.0279 (15)0.0080 (16)
C60.0633 (16)0.0421 (13)0.0567 (15)0.0034 (12)0.0276 (13)0.0012 (11)
C70.0536 (17)0.128 (3)0.0689 (19)0.0025 (19)0.0248 (15)0.010 (2)
C80.067 (2)0.196 (5)0.095 (3)0.028 (3)0.034 (2)0.017 (3)
C90.107 (3)0.172 (5)0.122 (4)0.024 (3)0.073 (3)0.030 (3)
C100.089 (3)0.148 (4)0.075 (2)0.009 (3)0.036 (2)0.011 (3)
O10.0629 (12)0.0633 (13)0.0575 (11)0.0110 (9)0.0240 (9)0.0013 (10)
O20.0872 (14)0.0598 (12)0.0558 (11)0.0060 (10)0.0353 (10)0.0019 (9)
N30.0843 (18)0.0513 (13)0.0610 (14)0.0094 (12)0.0328 (13)0.0033 (11)
Geometric parameters (Å, º) top
C1—C61.501 (4)C4—C51.547 (4)
C1—C21.517 (4)C6—O21.239 (3)
C1—C51.517 (4)C6—N31.321 (3)
C2—O11.435 (3)C7—C81.525 (5)
C2—C31.520 (4)C7—C101.526 (5)
C3—C41.536 (4)C7—C91.529 (6)
C4—C71.547 (4)
C6—C1—C2113.2 (2)C1—C5—C4105.4 (2)
C6—C1—C5113.9 (2)O2—C6—N3122.0 (2)
C2—C1—C5102.5 (2)O2—C6—C1121.2 (2)
O1—C2—C1111.9 (2)N3—C6—C1116.8 (2)
O1—C2—C3112.3 (2)C8—C7—C10108.8 (4)
C1—C2—C3103.2 (2)C8—C7—C9108.5 (3)
C2—C3—C4105.3 (2)C10—C7—C9110.5 (3)
C3—C4—C7113.9 (3)C8—C7—C4108.7 (3)
C3—C4—C5105.2 (2)C10—C7—C4111.0 (3)
C7—C4—C5115.9 (3)C9—C7—C4109.3 (3)
C6—C1—C2—O172.7 (3)C7—C4—C5—C1113.0 (3)
C5—C1—C2—O1164.3 (2)C2—C1—C6—O243.3 (4)
C6—C1—C2—C3166.4 (2)C5—C1—C6—O273.2 (3)
C5—C1—C2—C343.4 (3)C2—C1—C6—N3137.0 (3)
O1—C2—C3—C4155.5 (2)C5—C1—C6—N3106.5 (3)
C1—C2—C3—C434.9 (3)C3—C4—C7—C8173.2 (3)
C2—C3—C4—C7140.9 (3)C5—C4—C7—C864.5 (4)
C2—C3—C4—C512.9 (3)C3—C4—C7—C1067.1 (4)
C6—C1—C5—C4157.9 (2)C5—C4—C7—C1055.2 (4)
C2—C1—C5—C435.3 (3)C3—C4—C7—C954.9 (4)
C3—C4—C5—C113.9 (3)C5—C4—C7—C9177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.902.719 (3)176
N3—H3D···O2ii0.862.142.964 (3)161
N3—H3C···O1iii0.862.082.913 (3)162
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y, z+1.
(4) (1R*,2S*,4R*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid top
Crystal data top
C10H18O3Z = 2
Mr = 186.24F(000) = 204
Triclinic, P1Dx = 1.199 Mg m3
a = 5.931 (1) ÅMo Kα radiation, λ = 0.71070 Å
b = 6.200 (1) ÅCell parameters from 25 reflections
c = 15.951 (3) Åθ = 11.0–13.2°
α = 84.30 (4)°µ = 0.09 mm1
β = 89.97 (4)°T = 293 K
γ = 62.28 (4)°Block, colourless
V = 515.97 (15) Å30.40 × 0.20 × 0.09 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1971 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 30.0°, θmin = 2.6°
ω–2θ scansh = 08
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 78
Tmin = 0.966, Tmax = 0.992l = 2222
3107 measured reflections3 standard reflections every 60 min
2998 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.1708P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2998 reflectionsΔρmax = 0.30 e Å3
124 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (11)
Crystal data top
C10H18O3γ = 62.28 (4)°
Mr = 186.24V = 515.97 (15) Å3
Triclinic, P1Z = 2
a = 5.931 (1) ÅMo Kα radiation
b = 6.200 (1) ŵ = 0.09 mm1
c = 15.951 (3) ÅT = 293 K
α = 84.30 (4)°0.40 × 0.20 × 0.09 mm
β = 89.97 (4)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2998 independent reflections
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
1971 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.992Rint = 0.019
3107 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.30 e Å3
2998 reflectionsΔρmin = 0.27 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7882 (3)0.3707 (3)0.36328 (11)0.0474 (4)
H10.72880.24690.37030.062*
C20.5662 (3)0.6158 (3)0.38003 (10)0.0463 (4)
H20.48130.59870.43110.060*
C30.3899 (3)0.6885 (3)0.30148 (11)0.0495 (4)
H3A0.30630.86510.28730.064*
H3B0.26010.63650.31100.064*
C40.5580 (3)0.5598 (3)0.22890 (10)0.0460 (4)
H40.50430.44090.21340.060*
C50.8292 (3)0.4107 (3)0.27038 (11)0.0571 (5)
H5A0.92000.25530.24730.074*
H5B0.92530.50110.26180.074*
C61.0209 (3)0.2834 (2)0.42122 (11)0.0458 (4)
C70.5363 (3)0.7255 (3)0.14759 (11)0.0498 (4)
C80.7260 (4)0.5711 (5)0.08542 (14)0.0751 (6)
H8A0.70340.67060.03290.113*
H8B0.69640.43550.07610.113*
H8C0.89690.51040.10840.113*
C90.2666 (4)0.8324 (4)0.10708 (13)0.0669 (5)
H9A0.23610.70160.09220.100*
H9B0.25020.94020.05730.100*
H9C0.14450.92230.14640.100*
C100.5879 (5)0.9360 (4)0.16529 (16)0.0689 (6)
H10A0.58351.02940.11300.103*
H10B0.75280.87130.19360.103*
H10C0.45971.03990.20040.103*
O10.6676 (2)0.7837 (2)0.38681 (8)0.0512 (3)
H1A0.55090.91980.39270.067*
O21.2327 (2)0.2288 (2)0.39724 (9)0.0587 (4)
O30.9693 (2)0.2736 (2)0.50166 (8)0.0525 (3)
H3C1.09250.25390.53090.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0436 (8)0.0361 (7)0.0557 (9)0.0133 (6)0.0028 (6)0.0037 (6)
C20.0362 (7)0.0475 (8)0.0454 (8)0.0120 (6)0.0045 (5)0.0016 (6)
C30.0384 (7)0.0520 (9)0.0521 (9)0.0165 (6)0.0024 (6)0.0038 (7)
C40.0469 (8)0.0389 (7)0.0507 (8)0.0182 (6)0.0011 (6)0.0085 (6)
C50.0481 (9)0.0483 (9)0.0520 (9)0.0014 (7)0.0031 (7)0.0163 (7)
C60.0429 (7)0.0263 (6)0.0565 (9)0.0064 (5)0.0009 (6)0.0052 (6)
C70.0469 (8)0.0501 (9)0.0502 (8)0.0203 (7)0.0037 (6)0.0074 (7)
C80.0714 (13)0.0813 (15)0.0585 (11)0.0221 (12)0.0121 (10)0.0173 (10)
C90.0584 (11)0.0728 (13)0.0583 (11)0.0225 (10)0.0072 (8)0.0004 (9)
C100.0745 (13)0.0591 (11)0.0808 (14)0.0386 (10)0.0112 (11)0.0024 (10)
O10.0387 (6)0.0374 (6)0.0614 (7)0.0032 (4)0.0034 (5)0.0114 (5)
O20.0404 (6)0.0468 (7)0.0698 (8)0.0035 (5)0.0041 (5)0.0112 (6)
O30.0493 (6)0.0468 (6)0.0537 (7)0.0172 (5)0.0038 (5)0.0012 (5)
Geometric parameters (Å, º) top
C1—C61.503 (2)C4—C51.541 (2)
C1—C51.516 (3)C6—O21.212 (2)
C1—C21.527 (2)C6—O31.321 (2)
C2—O11.436 (2)C7—C101.523 (3)
C2—C31.522 (2)C7—C91.531 (3)
C3—C41.554 (2)C7—C81.533 (3)
C4—C71.538 (2)
C6—C1—C5115.18 (15)C1—C5—C4104.55 (14)
C6—C1—C2114.76 (14)O2—C6—O3123.41 (16)
C5—C1—C2103.37 (14)O2—C6—C1124.04 (16)
O1—C2—C3111.47 (14)O3—C6—C1112.55 (14)
O1—C2—C1107.25 (12)C10—C7—C9108.72 (17)
C3—C2—C1103.32 (14)C10—C7—C8109.87 (18)
C2—C3—C4107.04 (13)C9—C7—C8108.30 (16)
C7—C4—C5115.09 (15)C10—C7—C4111.62 (15)
C7—C4—C3116.37 (14)C9—C7—C4109.08 (15)
C5—C4—C3104.57 (13)C8—C7—C4109.17 (16)
C6—C1—C2—O148.47 (18)C3—C4—C5—C123.63 (18)
C5—C1—C2—O177.77 (16)C5—C1—C6—O25.6 (2)
C6—C1—C2—C3166.34 (14)C2—C1—C6—O2125.45 (17)
C5—C1—C2—C340.09 (17)C5—C1—C6—O3174.09 (14)
O1—C2—C3—C489.62 (16)C2—C1—C6—O354.21 (19)
C1—C2—C3—C425.25 (17)C5—C4—C7—C1067.9 (2)
C2—C3—C4—C7126.96 (15)C3—C4—C7—C1054.9 (2)
C2—C3—C4—C51.20 (18)C5—C4—C7—C9171.94 (15)
C6—C1—C5—C4165.72 (13)C3—C4—C7—C965.22 (19)
C2—C1—C5—C439.75 (17)C5—C4—C7—C853.8 (2)
C7—C4—C5—C1152.56 (15)C3—C4—C7—C8176.60 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O1i0.821.852.664 (2)170
O1—H1A···O2ii0.821.972.786 (2)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y+1, z.
(5) (1S*,2R*,4R*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid top
Crystal data top
C10H18O3F(000) = 408
Mr = 186.24Dx = 1.195 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 16.862 (2) ÅCell parameters from 25 reflections
b = 6.104 (1) Åθ = 24.5–28.3°
c = 10.519 (3) ŵ = 0.70 mm1
β = 107.03 (4)°T = 293 K
V = 1035.2 (4) Å3Block, colourless
Z = 40.35 × 0.20 × 0.12 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1598 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 75.0°, θmin = 2.7°
ω–2θ scansh = 021
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 07
Tmin = 0.791, Tmax = 0.937l = 1312
2137 measured reflections3 standard reflections every 60 min
2084 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1017P)2 + 0.4219P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2084 reflectionsΔρmax = 0.25 e Å3
125 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (9)
Crystal data top
C10H18O3V = 1035.2 (4) Å3
Mr = 186.24Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.862 (2) ŵ = 0.70 mm1
b = 6.104 (1) ÅT = 293 K
c = 10.519 (3) Å0.35 × 0.20 × 0.12 mm
β = 107.03 (4)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2084 independent reflections
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
1598 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.937Rint = 0.022
2137 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.25 e Å3
2084 reflectionsΔρmin = 0.24 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35505 (10)0.0958 (3)0.58254 (16)0.0398 (4)
H10.35050.24800.55160.052*
C20.38233 (10)0.0392 (3)0.48141 (16)0.0418 (4)
H20.42860.02950.45770.054*
C30.30370 (10)0.0451 (3)0.36427 (16)0.0443 (4)
H3A0.29800.08880.31270.058*
H3B0.30470.16850.30670.058*
C40.23157 (10)0.0685 (3)0.42660 (16)0.0412 (4)
H40.22090.22550.43230.054*
C50.26735 (11)0.0175 (4)0.57051 (17)0.0505 (5)
H5A0.26840.09840.63410.066*
H5B0.23390.13720.58700.066*
C60.41419 (10)0.0947 (2)0.72128 (16)0.0398 (4)
C70.14966 (10)0.0382 (3)0.34636 (18)0.0455 (4)
C80.08188 (13)0.0187 (5)0.4114 (3)0.0735 (7)
H8A0.09710.03740.50050.096*
H8B0.03030.04570.36090.096*
H8C0.07580.17490.41330.096*
C90.12460 (14)0.0530 (4)0.2045 (2)0.0672 (6)
H9A0.12140.20990.20740.087*
H9B0.07150.00520.15580.087*
H9C0.16520.01160.16130.087*
C100.15631 (15)0.2882 (4)0.3396 (2)0.0633 (6)
H10A0.16700.34860.42730.082*
H10B0.20090.32600.30420.082*
H10C0.10520.34650.28320.082*
O10.40347 (9)0.2564 (2)0.53654 (13)0.0551 (4)
H1A0.40670.34060.47750.092 (10)*
O20.39432 (8)0.0464 (2)0.81974 (12)0.0499 (4)
O30.48924 (8)0.1578 (3)0.72425 (13)0.0553 (4)
H3C0.51820.16720.80170.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (9)0.0366 (8)0.0393 (8)0.0000 (6)0.0158 (6)0.0004 (6)
C20.0389 (8)0.0466 (9)0.0418 (8)0.0051 (6)0.0146 (6)0.0009 (7)
C30.0413 (9)0.0524 (10)0.0390 (8)0.0075 (7)0.0116 (7)0.0022 (7)
C40.0401 (8)0.0361 (8)0.0476 (9)0.0011 (6)0.0130 (7)0.0060 (6)
C50.0420 (9)0.0697 (12)0.0429 (9)0.0001 (8)0.0175 (7)0.0028 (8)
C60.0452 (8)0.0302 (7)0.0440 (8)0.0015 (6)0.0131 (7)0.0045 (6)
C70.0378 (8)0.0484 (10)0.0497 (9)0.0005 (7)0.0118 (7)0.0043 (7)
C80.0407 (10)0.1004 (19)0.0809 (15)0.0053 (10)0.0201 (10)0.0118 (13)
C90.0544 (11)0.0800 (15)0.0573 (12)0.0032 (10)0.0010 (9)0.0064 (11)
C100.0732 (13)0.0489 (11)0.0717 (13)0.0159 (9)0.0275 (11)0.0091 (9)
O10.0626 (8)0.0488 (8)0.0475 (7)0.0195 (6)0.0062 (6)0.0053 (6)
O20.0573 (7)0.0515 (7)0.0423 (6)0.0009 (6)0.0169 (5)0.0008 (5)
O30.0528 (7)0.0614 (9)0.0488 (7)0.0201 (6)0.0105 (6)0.0044 (6)
Geometric parameters (Å, º) top
C1—C61.507 (2)C4—C51.548 (2)
C1—C21.519 (2)C6—O21.215 (2)
C1—C51.524 (2)C6—O31.314 (2)
C2—O11.449 (2)C7—C91.532 (3)
C2—C31.523 (2)C7—C101.533 (3)
C3—C41.548 (2)C7—C81.534 (3)
C4—C71.537 (2)
C6—C1—C2115.17 (14)C1—C5—C4106.16 (13)
C6—C1—C5115.45 (14)O2—C6—O3123.71 (16)
C2—C1—C5104.90 (14)O2—C6—C1123.86 (15)
O1—C2—C1107.78 (13)O3—C6—C1112.40 (14)
O1—C2—C3110.85 (14)C9—C7—C10108.66 (18)
C1—C2—C3102.06 (13)C9—C7—C8108.84 (18)
C2—C3—C4105.38 (13)C10—C7—C8108.68 (18)
C7—C4—C5115.05 (15)C9—C7—C4109.14 (16)
C7—C4—C3114.80 (14)C10—C7—C4112.41 (16)
C5—C4—C3104.68 (13)C8—C7—C4109.04 (16)
C6—C1—C2—O151.46 (18)C3—C4—C5—C12.76 (18)
C5—C1—C2—O176.59 (16)C2—C1—C6—O2126.22 (18)
C6—C1—C2—C3168.25 (14)C5—C1—C6—O23.6 (2)
C5—C1—C2—C340.19 (17)C2—C1—C6—O355.56 (19)
O1—C2—C3—C476.09 (16)C5—C1—C6—O3178.13 (16)
C1—C2—C3—C438.46 (17)C5—C4—C7—C9176.78 (16)
C2—C3—C4—C7149.25 (14)C3—C4—C7—C955.2 (2)
C2—C3—C4—C522.15 (18)C5—C4—C7—C1056.1 (2)
C6—C1—C5—C4154.62 (14)C3—C4—C7—C1065.5 (2)
C2—C1—C5—C426.74 (18)C5—C4—C7—C864.4 (2)
C7—C4—C5—C1124.19 (15)C3—C4—C7—C8173.95 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O1i0.821.882.686 (2)166
O1—H1A···O2ii0.822.042.8550 (19)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2.
(6) (1S*,2R*,5R*)-5-tert-butyl-2-hydroxy-1-cyclopentanecarboxylic acid top
Crystal data top
C10H18O3F(000) = 408
Mr = 186.24Dx = 1.213 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
a = 6.170 (2) ÅCell parameters from 25 reflections
b = 21.749 (2) Åθ = 10.3–13.1°
c = 7.892 (1) ŵ = 0.09 mm1
β = 105.57 (4)°T = 293 K
V = 1020.2 (4) Å3Block, colourless
Z = 40.40 × 0.25 × 0.12 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1239 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.0°, θmin = 1.9°
ω–2θ scansh = 07
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
k = 027
Tmin = 0.966, Tmax = 0.990l = 109
2276 measured reflections3 standard reflections every 60 min
2204 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.030P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.002
2204 reflectionsΔρmax = 0.26 e Å3
124 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Crystal data top
C10H18O3V = 1020.2 (4) Å3
Mr = 186.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.170 (2) ŵ = 0.09 mm1
b = 21.749 (2) ÅT = 293 K
c = 7.892 (1) Å0.40 × 0.25 × 0.12 mm
β = 105.57 (4)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2204 independent reflections
Absorption correction: ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
1239 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.990Rint = 0.016
2276 measured reflections3 standard reflections every 60 min
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.26 e Å3
2204 reflectionsΔρmin = 0.24 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6250 (4)0.31218 (10)0.8842 (3)0.0344 (5)
H10.49880.31390.77790.045*
C20.5288 (4)0.30755 (11)1.0448 (3)0.0369 (5)
H20.39580.28091.02020.048*
C30.4682 (5)0.37350 (13)1.0719 (4)0.0511 (7)
H3A0.32640.38470.98960.066*
H3B0.45650.37981.19080.066*
C40.6600 (6)0.41078 (13)1.0387 (4)0.0565 (8)
H4A0.77780.41631.14710.073*
H4B0.60710.45090.99190.073*
C50.7497 (4)0.37398 (10)0.9037 (3)0.0364 (5)
H50.90930.36550.95830.047*
C60.7618 (4)0.25627 (11)0.8733 (3)0.0364 (5)
C70.7340 (5)0.40780 (12)0.7287 (3)0.0457 (6)
C80.8729 (6)0.46661 (13)0.7643 (4)0.0598 (8)
H8A0.88200.48410.65480.090*
H8B1.02160.45730.83560.090*
H8C0.80270.49540.82500.090*
C90.8332 (6)0.36606 (15)0.6105 (4)0.0622 (8)
H9A0.84150.38840.50760.093*
H9B0.73860.33070.57610.093*
H9C0.98140.35310.67420.093*
C100.4922 (6)0.42351 (16)0.6307 (5)0.0762 (11)
H10A0.49050.44510.52420.114*
H10B0.42750.44900.70360.114*
H10C0.40630.38630.60260.114*
O10.7016 (3)0.28528 (9)1.1917 (2)0.0457 (5)
H1A0.64730.27761.27350.059*
O20.9648 (3)0.25560 (9)0.9175 (2)0.0475 (5)
O30.6533 (3)0.20464 (8)0.8141 (3)0.0471 (5)
H3C0.51790.21160.78000.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (12)0.0369 (11)0.0312 (11)0.0001 (9)0.0088 (9)0.0004 (8)
C20.0276 (11)0.0455 (13)0.0378 (12)0.0007 (9)0.0090 (9)0.0024 (9)
C30.0573 (17)0.0512 (16)0.0495 (15)0.0094 (12)0.0226 (12)0.0041 (11)
C40.076 (2)0.0408 (15)0.0600 (17)0.0035 (13)0.0298 (15)0.0074 (11)
C50.0415 (12)0.0328 (11)0.0336 (11)0.0030 (9)0.0078 (9)0.0006 (8)
C60.0368 (12)0.0436 (12)0.0281 (10)0.0010 (9)0.0077 (8)0.0002 (8)
C70.0508 (15)0.0408 (13)0.0436 (13)0.0076 (10)0.0095 (11)0.0062 (10)
C80.076 (2)0.0426 (15)0.0603 (18)0.0153 (14)0.0171 (15)0.0003 (12)
C90.087 (2)0.0584 (18)0.0470 (15)0.0144 (15)0.0274 (15)0.0052 (12)
C100.066 (2)0.066 (2)0.080 (2)0.0074 (16)0.0097 (17)0.0313 (17)
O10.0378 (9)0.0644 (12)0.0356 (9)0.0034 (8)0.0111 (7)0.0089 (8)
O20.0333 (9)0.0557 (11)0.0513 (10)0.0050 (8)0.0078 (7)0.0059 (8)
O30.0446 (10)0.0381 (10)0.0553 (11)0.0013 (7)0.0077 (9)0.0055 (7)
Geometric parameters (Å, º) top
C1—C61.496 (3)C5—C71.544 (3)
C1—C51.536 (3)C6—O21.207 (3)
C1—C21.540 (3)C6—O31.327 (3)
C2—O11.432 (3)C7—C81.523 (4)
C2—C31.512 (3)C7—C101.524 (4)
C3—C41.514 (4)C7—C91.542 (4)
C4—C51.549 (4)
C6—C1—C5116.21 (19)C7—C5—C4114.9 (2)
C6—C1—C2110.01 (18)O2—C6—O3118.6 (2)
C5—C1—C2105.55 (18)O2—C6—C1123.4 (2)
O1—C2—C3111.4 (2)O3—C6—C1118.0 (2)
O1—C2—C1108.73 (17)C8—C7—C10109.3 (2)
C3—C2—C1102.64 (19)C8—C7—C5109.7 (2)
C4—C3—C2104.4 (2)C10—C7—C5112.3 (2)
C3—C4—C5106.4 (2)C8—C7—C9108.1 (2)
C1—C5—C7114.67 (19)C10—C7—C9108.6 (3)
C1—C5—C4105.02 (19)C5—C7—C9108.7 (2)
C6—C1—C2—O143.4 (2)C3—C4—C5—C7119.3 (3)
C5—C1—C2—O182.7 (2)C5—C1—C6—O217.2 (3)
C6—C1—C2—C3161.5 (2)C2—C1—C6—O2102.7 (3)
C5—C1—C2—C335.4 (2)C5—C1—C6—O3163.8 (2)
O1—C2—C3—C476.1 (3)C2—C1—C6—O376.3 (2)
C1—C2—C3—C440.0 (3)C1—C5—C7—C8177.3 (2)
C2—C3—C4—C529.9 (3)C4—C5—C7—C860.9 (3)
C6—C1—C5—C793.7 (3)C1—C5—C7—C1060.9 (3)
C2—C1—C5—C7144.1 (2)C4—C5—C7—C1060.9 (3)
C6—C1—C5—C4139.3 (2)C1—C5—C7—C959.2 (3)
C2—C1—C5—C417.1 (2)C4—C5—C7—C9178.9 (2)
C3—C4—C5—C17.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.942.738 (2)164
O3—H3C···O1ii0.821.892.702 (3)171
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC6H11NO2C6H11NO2C10H19NO2C10H18O3
Mr129.16129.16185.26186.24
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pca21Monoclinic, P21/cTriclinic, P1
Temperature (K)293293293293
a, b, c (Å)11.693 (2), 7.225 (1), 7.902 (2)9.879 (2), 8.410 (2), 8.250 (2)13.246 (5), 6.988 (2), 13.299 (6)5.931 (1), 6.200 (1), 15.951 (3)
α, β, γ (°)90, 103.70 (3), 9090, 90, 9090, 113.78 (8), 9084.30 (4), 89.97 (4), 62.28 (4)
V3)648.6 (2)685.4 (3)1126.5 (7)515.97 (15)
Z4442
Radiation typeCu KαCu KαMo KαMo Kα
µ (mm1)0.820.780.080.09
Crystal size (mm)0.30 × 0.15 × 0.080.15 × 0.12 × 0.050.55 × 0.30 × 0.150.40 × 0.20 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
Tmin, Tmax0.791, 0.9370.944, 1.0000.960, 0.9890.966, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
1431, 1274, 1149 1569, 1375, 1145 2449, 2350, 844 3107, 2998, 1971
Rint0.0170.0090.0180.019
(sin θ/λ)max1)0.6260.6260.6380.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.14 0.034, 0.113, 0.86 0.050, 0.166, 0.95 0.048, 0.178, 1.15
No. of reflections1274137523502998
No. of parameters8483123124
No. of restraints01180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.170.13, 0.130.27, 0.250.30, 0.27
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881??
Absolute structure parameter?0.1 (3)??


(5)(6)
Crystal data
Chemical formulaC10H18O3C10H18O3
Mr186.24186.24
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)16.862 (2), 6.104 (1), 10.519 (3)6.170 (2), 21.749 (2), 7.892 (1)
α, β, γ (°)90, 107.03 (4), 9090, 105.57 (4), 90
V3)1035.2 (4)1020.2 (4)
Z44
Radiation typeCu KαMo Kα
µ (mm1)0.700.09
Crystal size (mm)0.35 × 0.20 × 0.120.40 × 0.25 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
ψ scan
North A.C., Philips, D.C. & Mathews, F.(1968) Acta Cryst. A24, 350-359.
Tmin, Tmax0.791, 0.9370.966, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2137, 2084, 1598 2276, 2204, 1239
Rint0.0220.016
(sin θ/λ)max1)0.6260.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.169, 0.95 0.047, 0.188, 0.93
No. of reflections20842204
No. of parameters125124
No. of restraints00
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.240.26, 0.24
Absolute structure??
Absolute structure parameter??

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1992), XCAD4 (Harms 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997), PLUTO in CSD(Allen F.H & Kennard O.(1993)) and PLATON(Spek A.L(1998)).

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.822.072.8586 (11)162.2
N3—H3C···O1ii0.862.173.0299 (14)172.7
N3—H3D···O2iii0.862.283.1023 (13)160.3
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.932.751 (2)173.2
N3—H3C···O1ii0.862.112.964 (2)169.7
N3—H3D···O2iii0.862.102.951 (2)169.3
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.902.719 (3)176.4
N3—H3D···O2ii0.862.142.964 (3)160.5
N3—H3C···O1iii0.862.082.913 (3)162.1
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O1i0.821.852.664 (2)169.5
O1—H1A···O2ii0.821.972.786 (2)170.2
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) for (5) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O1i0.821.882.686 (2)166.3
O1—H1A···O2ii0.822.042.8550 (19)170.8
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (6) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.942.738 (2)163.7
O3—H3C···O1ii0.821.892.702 (3)171.2
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds