Download citation
Download citation
link to html
The title complex, {[CdHg(SCN)4(C4H9NO)2]2}n, contains two crystallographically independent CdII centres and two HgII centres. Each CdII atom is bound to four N atoms belonging to SCN groups and to two O atoms from N,N-di­methyl­acet­amide (DMA) ligands in an octahedral geometry. Each HgII centre is tetrahedrally coordinated by four SCN S atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005942/da1215sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005942/da1215Isup2.hkl
Contains datablock I

CCDC reference: 188599

Comment top

In recent years, the preparation and characterization of infinite two- and three-dimensional networks has spawned much interest, since these networks may have electronic, magnetic, optical or catalytic applications (Batten & Robson, 1998). Various pseudohalide and pseudochalcogenide ions, such as CN-, OCN-, SCN-, SeCN-, TeCN-, CNO-, N3-, CN22- and SN22-, have been used for designing infinite networks (Cortes et al., 1997; Kitazawa et al., 1994; Yuan et al., 1997; Zhang et al., 2000; Becker & Jansen, 2001). Because of their versatility as monodentate, bidentate or bridging ligands, pseudohalide or pseudochalcogenide ions can be used to build multi-dimensional framework structures connecting one metal atom to another.

Group IIB metal complexes have been extensively studied, mainly due to the capability of these d10 metal ions to adopt different modes of coordination determined by considerations of size, as well as by electrostatic and covalent bonding forces. The presence of pseudohalide and pseudochalcogenide ions introduces some additional degrees of freedom, as seen in the title complex, (I), a novel Lewis base adduct of cadmium mercury thiocyanate (CMTC). \sch

According to the hard and soft acid and bases (HSAB) concept (Pearson, 1966; Balarew & Duhlew, 1984), the harder metals show a pronounced affinity for coordination with harder ligands, while softer metals prefer coordination with softer ligands. In the structure of (I), each hard CdII is coordinated by four hard SCN N atoms and two DMA O atoms. Each soft HgII is coordinated by four of the softer S ligands (SCN). Each CdII is octahedrally coordinated and each HgII is tetrahedrally coordinated.

Both CdII centres exhibit slight distortions from ideal geometry. The Cd1—N bond lengths [range 2.288 (12)–2.347 (11) Å] are longer than the Cd2—N distances [range 2.297 (13)–2.339 (10) Å], but all are shorter than the sum of ionic radii (2.41 Å; Shannon, 1976). This is partly because the assumed valence of the N atom is not appropriate, since the charge on the SCN- ion is highly delocalized. The Cd1—O and Cd2—O bond lengths [2.258 (8) and 2.269 (9), and 2.259 (9) and 2.273 (9) Å, respectively] are somewhat smaller than the Cd—N distances. The bond angles N—Cd1—N, N—Cd2—N, O—Cd1—N and O—Cd2—N (between adjacent atoms) are 84.9 (5)–96.2 (4)°, 82.8 (4)–97.6 (4)°, 87.4 (4)–100.1 (4)° and 85.7 (4)–99.4 (3)°, respectively, with average values of 90.0, 90.2, 90.6 and 90.5°, respectively. The O1—Cd1—O2 and O3—Cd2—O4 angles are 86.7 (3) and 86.5 (3)°, respectively, slightly smaller than the ideal octahedral angle.

Each of the two crystallographically independent HgII centres is tetrahedrally coordinated by four SCN S atoms. The tetrahedra are slightly deformed, with Hg1—S and Hg2—S bond lengths in the range 2.486 (3)–2.558 (4) Å and 2.502 (3)–2.562 (4) Å, respectively, averaging 2.526 and 2.534 Å, respectively. The former is slightly shorter than the latter, and both are much shorter than the sum of the ionic radii (2.80 Å; Shannon, 1976), also likely due to considerable delocalization of the charge on the SCN- ion. The S—Hg1—S and S—Hg2—S bond angles [104.18 (14)–118.02 (13)° and 107.09 (14)–116.80 (13)°, respectively] deviate somewhat from the typical tetrahedral angle.

The average C—S—Hg angle is 97.4°, which is normal compared with CMTC [97.6 (3)°]. Although the C2—N2—Cd1 [172.5 (12)°] and C7—N7—Cd2 [172.1 (10)°] bond angles are similar to those in CMTC [171.3 (8)°], the remaining C—N—Cd bond angles are significantly smaller and exhibit a significant bending. The SCN groups are quasi-linear [N—C—S angles 175.0 (10)–178.8 (15)°], which is the striking feature of these kinds of complexes: the –SCN– bridges connect bimetals, forming infinite two- or three-dimensional networks; a three-dimensional network is formed in (I). This feature is most important, as it confers high physicochemical stability and other desirable properties on these complexes.

Experimental top

NH4SCN (3.045 g, 40 mmol) and Hg(NO3)2·H2O (3.426 g, 10 mmol) were dissolved in water (20 ml) with stirring. To the colourless solution, an aqueous solution (10 ml) containing CdCl2·2.5H2O (2.284 g, 10 mmol) and N,N-dimethylacetamide (10 ml) were added simultaneously. After the colourless solution had been left standing at room temperature for a while, white precipitated (I) was separated. NB Light pink given below. The crystals used for the present X-ray structure analysis were obtained by slow cooling of a more dilute aqueous solution.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with 30% probability displacement ellipsoids. H atoms have been omitted for clarity [symmetry codes: (i) x, 1 - y, z - 1/2; (ii) 3 - x, 3/2 + y, 3/2 - z; (iii) 2 - x, 3/2 + y, 1/2 - z; (iv) x + 1, y, z; (v) x + 1, 1/2 - y, z + 1/2].
Polymeric bis(N,N-dimethylacetamide)tetrakis(thiocyanato)cadmium(II)mercury(II) top
Crystal data top
[CdHg(CNS)4(C4H9NO)2]2F(000) = 2720
Mr = 1439.11Dx = 2.071 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.829 (3) ÅCell parameters from 39 reflections
b = 16.1465 (19) Åθ = 5.1–12.3°
c = 19.282 (3) ŵ = 7.95 mm1
β = 91.27 (2)°T = 293 K
V = 4615.7 (12) Å3Prism, light pink
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker P4
diffractometer
4454 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scansh = 171
Absorption correction: ψ-scan
(XSCANS; Siemens, 1996)
k = 119
Tmin = 0.094, Tmax = 0.204l = 2222
9846 measured reflections3 standard reflections every 97 reflections
8130 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
8127 reflections(Δ/σ)max = 0.001
474 parametersΔρmax = 1.37 e Å3
453 restraintsΔρmin = 0.67 e Å3
Crystal data top
[CdHg(CNS)4(C4H9NO)2]2V = 4615.7 (12) Å3
Mr = 1439.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.829 (3) ŵ = 7.95 mm1
b = 16.1465 (19) ÅT = 293 K
c = 19.282 (3) Å0.30 × 0.25 × 0.20 mm
β = 91.27 (2)°
Data collection top
Bruker P4
diffractometer
4454 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(XSCANS; Siemens, 1996)
Rint = 0.032
Tmin = 0.094, Tmax = 0.2043 standard reflections every 97 reflections
9846 measured reflections intensity decay: none
8130 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054453 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 1.37 e Å3
8127 reflectionsΔρmin = 0.67 e Å3
474 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg11.36927 (3)0.37772 (3)0.34635 (2)0.05643 (16)
Hg20.87973 (3)0.37879 (3)0.15394 (2)0.05513 (16)
Cd11.77057 (6)0.37456 (6)0.43507 (5)0.0612 (3)
Cd21.27093 (6)0.36851 (6)0.06063 (4)0.0578 (3)
S11.2355 (3)0.2825 (3)0.3362 (2)0.0947 (14)
S21.3149 (3)0.5123 (2)0.28955 (19)0.0783 (11)
S31.4994 (3)0.3144 (3)0.28013 (18)0.0803 (12)
S41.4337 (3)0.4065 (2)0.46408 (17)0.0755 (12)
S50.9327 (3)0.4031 (2)0.03357 (17)0.0736 (11)
S61.0173 (2)0.3503 (3)0.23095 (18)0.0880 (14)
S70.8043 (3)0.5099 (2)0.20020 (18)0.0731 (11)
S80.7707 (3)0.2606 (3)0.1705 (2)0.1046 (16)
N11.7542 (8)0.2950 (8)0.5347 (6)0.087 (3)
N21.6883 (8)0.4803 (8)0.4873 (6)0.080 (3)
N31.6325 (8)0.3351 (8)0.3814 (6)0.083 (3)
N41.7934 (9)0.4481 (8)0.3344 (6)0.082 (3)
N51.3098 (8)0.4504 (7)0.1547 (6)0.080 (3)
N61.1461 (7)0.3381 (7)0.1274 (6)0.078 (3)
N71.1817 (8)0.4673 (8)0.0071 (5)0.078 (3)
N81.2387 (8)0.2801 (8)0.0307 (6)0.091 (4)
C11.7627 (10)0.2737 (10)0.5907 (8)0.079 (4)
C21.6403 (9)0.5282 (9)0.5090 (6)0.062 (3)
C31.5773 (9)0.3250 (9)0.3405 (7)0.066 (3)
C41.7989 (9)0.4721 (8)0.2789 (7)0.065 (4)
C51.3104 (8)0.4761 (8)0.2100 (7)0.059 (3)
C61.0906 (8)0.3430 (9)0.1683 (7)0.066 (4)
C71.1365 (8)0.5209 (8)0.0116 (6)0.054 (3)
C81.2375 (9)0.2547 (9)0.0850 (8)0.072 (4)
O11.8627 (5)0.2752 (4)0.3921 (4)0.071 (2)
C91.8547 (5)0.2016 (5)0.3709 (6)0.060 (3)
C101.7629 (6)0.1607 (7)0.3651 (8)0.088 (5)
H10A1.71710.19980.37740.132*
H10B1.76110.11410.39590.132*
H10C1.75220.14230.31830.132*
N91.9254 (5)0.1582 (5)0.3566 (4)0.052 (2)
C111.9168 (8)0.0703 (6)0.3338 (7)0.086 (4)
H11A1.85410.05610.32890.129*
H11B1.94520.03490.36770.129*
H11C1.94550.06340.29000.129*
C122.0147 (6)0.1955 (7)0.3698 (7)0.091 (5)
H12A2.00750.25170.38490.137*
H12B2.04850.19470.32790.137*
H12C2.04640.16450.40510.137*
O21.8957 (5)0.4326 (5)0.4840 (4)0.080 (3)
C131.9203 (8)0.4460 (7)0.5460 (6)0.111 (4)
C14A1.8949 (19)0.5258 (13)0.5822 (11)0.129 (12)0.67 (6)
H14A1.91840.52510.62900.194*
H14B1.83040.53080.58270.194*
H14C1.91970.57200.55780.194*
N101.9750 (8)0.3955 (6)0.5779 (5)0.126 (4)
C152.0103 (12)0.4140 (10)0.6491 (7)0.152 (6)
H15A2.04970.37020.66440.229*
H15B1.96080.41850.68020.229*
H15C2.04300.46530.64870.229*
C162.0074 (12)0.3231 (9)0.5393 (8)0.161 (7)
H16A1.97720.32060.49480.241*
H16B1.99500.27360.56490.241*
H16C2.07130.32790.53310.241*
O31.3701 (5)0.2762 (4)0.1064 (5)0.079 (3)
C171.3658 (5)0.2024 (5)0.1274 (6)0.059 (3)
C181.2762 (6)0.1639 (7)0.1456 (8)0.093 (5)
H18A1.22840.20230.13520.140*
H18B1.27630.15080.19420.140*
H18C1.26710.11420.11910.140*
N111.4388 (5)0.1598 (5)0.1384 (5)0.071 (3)
C191.4347 (8)0.0738 (6)0.1662 (7)0.095 (5)
H19A1.37340.06020.17660.142*
H19B1.47140.07000.20780.142*
H19C1.45670.03570.13230.142*
C201.5251 (6)0.1965 (7)0.1183 (7)0.091 (5)
H20A1.51500.25180.10140.137*
H20B1.55130.16360.08250.137*
H20C1.56550.19830.15790.137*
O41.3884 (6)0.4234 (6)0.0020 (5)0.096 (3)
C211.3953 (8)0.4817 (7)0.0411 (5)0.118 (4)
C221.3765 (12)0.5704 (7)0.0202 (7)0.136 (5)
H22A1.35010.57120.02480.204*
H22B1.33550.59520.05340.204*
H22C1.43190.60120.01870.204*
N121.4303 (10)0.4684 (7)0.1011 (5)0.138 (5)
C231.4509 (13)0.5384 (9)0.1485 (7)0.148 (6)
H23A1.43510.58980.12680.221*
H23B1.41670.53220.19100.221*
H23C1.51410.53840.15820.221*
C241.4483 (15)0.3822 (8)0.1212 (8)0.187 (9)
H24A1.43150.34570.08440.281*
H24B1.51140.37570.13000.281*
H24C1.41390.36890.16250.281*
C14B1.894 (6)0.490 (6)0.612 (5)0.16 (3)*0.33 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0552 (3)0.0658 (4)0.0481 (3)0.0001 (3)0.0028 (2)0.0014 (3)
Hg20.0547 (3)0.0634 (3)0.0474 (3)0.0042 (3)0.0044 (2)0.0002 (3)
Cd10.0612 (6)0.0636 (6)0.0588 (5)0.0152 (6)0.0003 (4)0.0044 (5)
Cd20.0562 (5)0.0601 (6)0.0573 (5)0.0120 (5)0.0034 (4)0.0054 (5)
S10.084 (3)0.117 (4)0.082 (3)0.034 (3)0.027 (2)0.023 (3)
S20.102 (3)0.062 (2)0.070 (2)0.016 (2)0.020 (2)0.0057 (19)
S30.070 (2)0.114 (3)0.057 (2)0.017 (2)0.0013 (17)0.017 (2)
S40.078 (2)0.095 (3)0.0530 (19)0.037 (2)0.0159 (17)0.0202 (19)
S50.088 (3)0.081 (3)0.0523 (18)0.036 (2)0.0233 (18)0.0152 (18)
S60.062 (2)0.147 (4)0.055 (2)0.024 (3)0.0001 (16)0.017 (2)
S70.083 (3)0.072 (3)0.065 (2)0.021 (2)0.012 (2)0.0090 (19)
S80.133 (4)0.109 (4)0.073 (3)0.060 (3)0.025 (3)0.009 (3)
N10.080 (8)0.094 (8)0.087 (7)0.017 (6)0.015 (6)0.023 (7)
N20.077 (7)0.098 (8)0.065 (7)0.029 (6)0.002 (6)0.024 (6)
N30.061 (6)0.087 (8)0.100 (8)0.016 (6)0.011 (5)0.023 (7)
N40.105 (9)0.075 (8)0.067 (6)0.024 (6)0.017 (6)0.003 (5)
N50.095 (8)0.070 (7)0.073 (6)0.012 (6)0.012 (6)0.002 (5)
N60.054 (6)0.077 (8)0.103 (8)0.025 (5)0.015 (5)0.015 (6)
N70.077 (7)0.089 (8)0.068 (7)0.033 (6)0.005 (5)0.013 (6)
N80.091 (8)0.091 (8)0.092 (7)0.022 (6)0.002 (6)0.026 (7)
C10.078 (10)0.084 (11)0.076 (8)0.022 (9)0.026 (8)0.015 (8)
C20.057 (8)0.079 (10)0.051 (7)0.014 (7)0.001 (6)0.006 (7)
C30.062 (6)0.066 (9)0.068 (8)0.005 (7)0.007 (5)0.012 (7)
C40.077 (9)0.045 (8)0.072 (7)0.016 (7)0.004 (8)0.005 (6)
C50.053 (7)0.063 (9)0.061 (6)0.016 (7)0.012 (6)0.012 (5)
C60.044 (6)0.081 (9)0.073 (8)0.012 (7)0.001 (5)0.010 (8)
C70.055 (5)0.059 (5)0.050 (5)0.002 (4)0.006 (4)0.002 (4)
C80.058 (8)0.061 (9)0.098 (9)0.003 (7)0.010 (8)0.027 (8)
O10.071 (5)0.058 (5)0.085 (6)0.013 (4)0.008 (5)0.018 (5)
C90.056 (6)0.063 (7)0.061 (7)0.010 (6)0.005 (6)0.009 (6)
C100.055 (6)0.072 (10)0.137 (13)0.010 (7)0.002 (9)0.024 (10)
N90.054 (5)0.048 (5)0.056 (6)0.004 (5)0.008 (5)0.006 (5)
C110.113 (12)0.065 (8)0.080 (10)0.009 (8)0.024 (9)0.027 (8)
C120.050 (7)0.078 (10)0.144 (14)0.005 (7)0.007 (9)0.023 (10)
O20.066 (5)0.086 (7)0.090 (6)0.007 (5)0.006 (4)0.019 (5)
C130.109 (6)0.113 (6)0.111 (6)0.015 (4)0.000 (4)0.006 (4)
C14A0.13 (2)0.14 (2)0.11 (2)0.024 (18)0.029 (19)0.047 (17)
N100.093 (10)0.149 (12)0.136 (9)0.023 (8)0.007 (8)0.015 (8)
C150.151 (8)0.160 (8)0.146 (7)0.004 (5)0.010 (5)0.002 (5)
C160.161 (8)0.158 (7)0.164 (8)0.007 (5)0.000 (5)0.004 (5)
O30.062 (5)0.061 (5)0.115 (7)0.018 (4)0.000 (5)0.017 (5)
C170.064 (6)0.054 (7)0.058 (7)0.009 (6)0.006 (6)0.004 (6)
C180.091 (8)0.058 (9)0.132 (13)0.010 (8)0.019 (10)0.026 (9)
N110.082 (6)0.052 (6)0.079 (7)0.018 (5)0.007 (6)0.005 (6)
C190.098 (12)0.062 (8)0.122 (13)0.023 (8)0.024 (10)0.012 (9)
C200.060 (7)0.107 (12)0.106 (12)0.005 (8)0.014 (8)0.018 (10)
O40.073 (6)0.098 (7)0.119 (7)0.003 (5)0.014 (5)0.019 (6)
C210.109 (6)0.126 (6)0.119 (6)0.009 (5)0.002 (4)0.005 (4)
C220.136 (7)0.126 (6)0.146 (7)0.003 (5)0.004 (5)0.005 (5)
N120.135 (6)0.145 (6)0.134 (5)0.003 (5)0.002 (4)0.007 (4)
C230.145 (8)0.151 (7)0.146 (7)0.009 (5)0.003 (5)0.013 (5)
C240.18 (2)0.134 (9)0.25 (2)0.008 (17)0.007 (19)0.050 (13)
Geometric parameters (Å, º) top
Hg1—S42.487 (3)C11—H11A0.9600
Hg1—S12.514 (4)C11—H11B0.9600
Hg1—S32.551 (4)C11—H11C0.9600
Hg1—S22.557 (4)C12—H12A0.9600
Hg2—S52.498 (3)C12—H12B0.9600
Hg2—S82.527 (4)C12—H12C0.9600
Hg2—S62.538 (4)O2—C131.260 (8)
Hg2—S72.564 (4)C13—N101.296 (6)
Cd1—O22.266 (9)C13—C14B1.51 (8)
Cd1—O12.276 (6)C13—C14A1.516 (9)
Cd1—N42.307 (12)C14A—H14A0.9600
Cd1—N12.329 (12)C14A—H14B0.9600
Cd1—N22.339 (11)C14A—H14C0.9600
Cd1—N32.360 (12)N10—C161.471 (9)
Cd2—O32.259 (7)N10—C151.490 (9)
Cd2—O42.277 (8)C15—H15A0.9600
Cd2—N72.302 (11)C15—H15B0.9600
Cd2—N52.308 (12)C15—H15C0.9600
Cd2—N82.308 (12)C16—H16A0.9600
Cd2—N62.330 (11)C16—H16B0.9600
S1—C8i1.632 (15)C16—H16C0.9600
S2—C51.642 (14)O3—C171.260 (8)
S3—C31.631 (14)C17—N111.296 (6)
S4—C2ii1.616 (13)C17—C181.516 (9)
S5—C7iii1.649 (13)C18—H18A0.9600
S6—C61.647 (13)C18—H18B0.9600
S7—C4iv1.640 (14)C18—H18C0.9600
S8—C1v1.637 (15)N11—C201.471 (9)
N1—C11.137 (15)N11—C191.490 (9)
N2—C21.136 (14)C19—H19A0.9600
N3—C31.136 (15)C19—H19B0.9600
N4—C41.142 (14)C19—H19C0.9600
N5—C51.144 (14)C20—H20A0.9600
N6—C61.156 (14)C20—H20B0.9600
N7—C71.148 (14)C20—H20C0.9600
N8—C81.125 (15)O4—C211.261 (8)
C1—S8vi1.637 (15)C21—N121.296 (6)
C2—S4ii1.616 (13)C21—C221.516 (9)
C4—S7vii1.640 (14)C22—H22A0.9600
C7—S5iii1.649 (13)C22—H22B0.9600
C8—S1viii1.632 (15)C22—H22C0.9600
O1—C91.260 (8)N12—C241.471 (9)
C9—N91.296 (6)N12—C231.490 (9)
C9—C101.516 (9)C23—H23A0.9600
C10—H10A0.9600C23—H23B0.9600
C10—H10B0.9600C23—H23C0.9600
C10—H10C0.9600C24—H24A0.9600
N9—C121.471 (9)C24—H24B0.9600
N9—C111.490 (9)C24—H24C0.9600
S4—Hg1—S1118.14 (14)N9—C12—H12A109.5
S4—Hg1—S3104.62 (12)N9—C12—H12B109.5
S1—Hg1—S3108.69 (15)H12A—C12—H12B109.5
S4—Hg1—S2110.07 (12)N9—C12—H12C109.5
S1—Hg1—S2104.23 (14)H12A—C12—H12C109.5
S3—Hg1—S2111.17 (13)H12B—C12—H12C109.5
S5—Hg2—S8116.84 (14)C13—O2—Cd1133.0 (9)
S5—Hg2—S6107.87 (12)O2—C13—N10120.4 (7)
S8—Hg2—S6107.28 (16)O2—C13—C14B143 (4)
S5—Hg2—S7110.02 (11)N10—C13—C14B94 (4)
S8—Hg2—S7107.14 (15)O2—C13—C14A120.9 (7)
S6—Hg2—S7107.28 (14)N10—C13—C14A118.5 (7)
O2—Cd1—O187.2 (3)C14B—C13—C14A31 (4)
O2—Cd1—N490.2 (4)C13—C14A—H14A109.5
O1—Cd1—N487.5 (4)C13—C14A—H14B109.5
O2—Cd1—N189.1 (4)H14A—C14A—H14B109.5
O1—Cd1—N189.2 (4)C13—C14A—H14C109.5
N4—Cd1—N1176.6 (4)H14A—C14A—H14C109.5
O2—Cd1—N287.1 (4)H14B—C14A—H14C109.5
O1—Cd1—N2174.0 (4)C13—N10—C16118.0 (7)
N4—Cd1—N294.3 (4)C13—N10—C15120.9 (7)
N1—Cd1—N289.0 (4)C16—N10—C15120.9 (6)
O2—Cd1—N3171.2 (4)N10—C15—H15A109.5
O1—Cd1—N399.9 (3)N10—C15—H15B109.5
N4—Cd1—N385.0 (5)H15A—C15—H15B109.5
N1—Cd1—N396.2 (5)N10—C15—H15C109.5
N2—Cd1—N386.0 (4)H15A—C15—H15C109.5
O3—Cd2—O487.3 (3)H15B—C15—H15C109.5
O3—Cd2—N7174.1 (4)N10—C16—H16A109.5
O4—Cd2—N786.9 (4)N10—C16—H16B109.5
O3—Cd2—N585.5 (4)H16A—C16—H16B109.5
O4—Cd2—N589.3 (4)N10—C16—H16C109.5
N7—Cd2—N594.9 (4)H16A—C16—H16C109.5
O3—Cd2—N890.7 (4)H16B—C16—H16C109.5
O4—Cd2—N890.5 (4)C17—O3—Cd2135.4 (6)
N7—Cd2—N888.8 (4)O3—C17—N11120.5 (7)
N5—Cd2—N8176.2 (4)O3—C17—C18120.9 (7)
O3—Cd2—N699.4 (3)N11—C17—C18118.5 (7)
O4—Cd2—N6169.1 (4)C17—C18—H18A109.5
N7—Cd2—N686.5 (4)C17—C18—H18B109.5
N5—Cd2—N682.8 (4)H18A—C18—H18B109.5
N8—Cd2—N697.9 (4)C17—C18—H18C109.5
C8i—S1—Hg198.9 (5)H18A—C18—H18C109.5
C5—S2—Hg195.9 (5)H18B—C18—H18C109.5
C3—S3—Hg197.6 (5)C17—N11—C20118.1 (7)
C2ii—S4—Hg199.5 (5)C17—N11—C19120.9 (7)
C7iii—S5—Hg298.5 (4)C20—N11—C19120.9 (6)
C6—S6—Hg296.9 (4)N11—C19—H19A109.5
C4iv—S7—Hg292.6 (5)N11—C19—H19B109.5
C1v—S8—Hg299.7 (5)H19A—C19—H19B109.5
C1—N1—Cd1159.8 (14)N11—C19—H19C109.5
C2—N2—Cd1172.5 (12)H19A—C19—H19C109.5
C3—N3—Cd1161.4 (12)H19B—C19—H19C109.5
C4—N4—Cd1167.8 (12)N11—C20—H20A109.5
C5—N5—Cd2159.6 (12)N11—C20—H20B109.5
C6—N6—Cd2161.7 (12)H20A—C20—H20B109.5
C7—N7—Cd2171.5 (11)N11—C20—H20C109.5
C8—N8—Cd2159.3 (14)H20A—C20—H20C109.5
N1—C1—S8vi177.0 (17)H20B—C20—H20C109.5
N2—C2—S4ii175.6 (13)C21—O4—Cd2133.8 (8)
N3—C3—S3177.4 (15)O4—C21—N12120.3 (7)
N4—C4—S7vii177.6 (13)O4—C21—C22120.8 (7)
N5—C5—S2178.1 (13)N12—C21—C22118.3 (7)
N6—C6—S6175.9 (13)C21—C22—H22A109.5
N7—C7—S5iii175.9 (12)C21—C22—H22B109.5
N8—C8—S1viii179.9 (19)H22A—C22—H22B109.5
C9—O1—Cd1136.8 (5)C21—C22—H22C109.5
O1—C9—N9120.5 (7)H22A—C22—H22C109.5
O1—C9—C10120.8 (6)H22B—C22—H22C109.5
N9—C9—C10118.6 (7)C21—N12—C24118.1 (7)
C9—C10—H10A109.5C21—N12—C23120.9 (7)
C9—C10—H10B109.5C24—N12—C23121.0 (6)
H10A—C10—H10B109.5N12—C23—H23A109.5
C9—C10—H10C109.5N12—C23—H23B109.5
H10A—C10—H10C109.5H23A—C23—H23B109.5
H10B—C10—H10C109.5N12—C23—H23C109.5
C9—N9—C12118.1 (7)H23A—C23—H23C109.5
C9—N9—C11120.9 (7)H23B—C23—H23C109.5
C12—N9—C11120.8 (6)N12—C24—H24A109.5
N9—C11—H11A109.5N12—C24—H24B109.5
N9—C11—H11B109.5H24A—C24—H24B109.5
H11A—C11—H11B109.5N12—C24—H24C109.5
N9—C11—H11C109.5H24A—C24—H24C109.5
H11A—C11—H11C109.5H24B—C24—H24C109.5
H11B—C11—H11C109.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+3, y+1, z+1; (iii) x+2, y+1, z; (iv) x1, y, z; (v) x1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CdHg(CNS)4(C4H9NO)2]2
Mr1439.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.829 (3), 16.1465 (19), 19.282 (3)
β (°) 91.27 (2)
V3)4615.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)7.95
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ-scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.094, 0.204
No. of measured, independent and
observed [I > 2σ(I)] reflections
9846, 8130, 4454
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.00
No. of reflections8127
No. of parameters474
No. of restraints453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 0.67

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Hg1—S42.487 (3)S2—C51.642 (14)
Hg1—S12.514 (4)S3—C31.631 (14)
Hg1—S32.551 (4)S4—C2ii1.616 (13)
Hg1—S22.557 (4)S5—C7iii1.649 (13)
Hg2—S52.498 (3)S6—C61.647 (13)
Hg2—S82.527 (4)S7—C4iv1.640 (14)
Hg2—S62.538 (4)S8—C1v1.637 (15)
Hg2—S72.564 (4)N1—C11.137 (15)
Cd1—O22.266 (9)N2—C21.136 (14)
Cd1—O12.276 (6)N3—C31.136 (15)
Cd1—N42.307 (12)N4—C41.142 (14)
Cd1—N12.329 (12)N5—C51.144 (14)
Cd1—N22.339 (11)N6—C61.156 (14)
Cd1—N32.360 (12)N7—C71.148 (14)
Cd2—O32.259 (7)N8—C81.125 (15)
Cd2—O42.277 (8)C1—S8vi1.637 (15)
Cd2—N72.302 (11)C2—S4ii1.616 (13)
Cd2—N52.308 (12)C4—S7vii1.640 (14)
Cd2—N82.308 (12)C7—S5iii1.649 (13)
Cd2—N62.330 (11)C8—S1viii1.632 (15)
S1—C8i1.632 (15)
S4—Hg1—S1118.14 (14)N1—Cd1—N396.2 (5)
S4—Hg1—S3104.62 (12)N2—Cd1—N386.0 (4)
S1—Hg1—S3108.69 (15)O3—Cd2—O487.3 (3)
S4—Hg1—S2110.07 (12)O3—Cd2—N7174.1 (4)
S1—Hg1—S2104.23 (14)O4—Cd2—N786.9 (4)
S3—Hg1—S2111.17 (13)O3—Cd2—N585.5 (4)
S5—Hg2—S8116.84 (14)O4—Cd2—N589.3 (4)
S5—Hg2—S6107.87 (12)N7—Cd2—N594.9 (4)
S8—Hg2—S6107.28 (16)O3—Cd2—N890.7 (4)
S5—Hg2—S7110.02 (11)O4—Cd2—N890.5 (4)
S8—Hg2—S7107.14 (15)N7—Cd2—N888.8 (4)
S6—Hg2—S7107.28 (14)N5—Cd2—N8176.2 (4)
O2—Cd1—O187.2 (3)O3—Cd2—N699.4 (3)
O2—Cd1—N490.2 (4)O4—Cd2—N6169.1 (4)
O1—Cd1—N487.5 (4)N7—Cd2—N686.5 (4)
O2—Cd1—N189.1 (4)N5—Cd2—N682.8 (4)
O1—Cd1—N189.2 (4)N8—Cd2—N697.9 (4)
N4—Cd1—N1176.6 (4)N1—C1—S8vi177.0 (17)
O2—Cd1—N287.1 (4)N2—C2—S4ii175.6 (13)
O1—Cd1—N2174.0 (4)N3—C3—S3177.4 (15)
N4—Cd1—N294.3 (4)N4—C4—S7vii177.6 (13)
N1—Cd1—N289.0 (4)N5—C5—S2178.1 (13)
O2—Cd1—N3171.2 (4)N6—C6—S6175.9 (13)
O1—Cd1—N399.9 (3)N7—C7—S5iii175.9 (12)
N4—Cd1—N385.0 (5)N8—C8—S1viii179.9 (19)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+3, y+1, z+1; (iii) x+2, y+1, z; (iv) x1, y, z; (v) x1, y+1/2, z1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds