Download citation
Download citation
link to html
The crystal structure of the lipoundecapeptide amphisin, presented here as the tetrahydrate, C66H114N12O20·4H2O, originating from non-ribosomal biosynthesis by Pseudomonas sp. strain DSS73, has been solved to a resolution of 0.65 Å. The primary structure of amphisin is β-hydroxy­decanoyl-D-Leu-D-Asp-D-allo-Thr-D-Leu-D-Leu-D-Ser-L-Leu-D-Gln-L-Leu-L-Ile-L-Asp (Leu is leucine, Asp is aspartic acid, Thr is threonine, Ser is serine, Gln is glut­amine and Ile is isoleucine). The peptide is a lactone, linking Thr4 Oγ to the C-terminal. The stereochemistry of the β-hydroxy acid is R. The peptide is a close analogue of the cyclic lipopeptides tensin and pholipeptin produced by Pseudomonas fluorescens. The structure of amphisin is mainly helical (310-helix), with the cyclic peptide wrapping around a hydrogen-bonded water mol­ecule. This lipopeptide is amphiphilic and has biosurfactant and antifungal properties.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101010782/da1195sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010782/da1195Isup2.hkl
Contains datablock I

CCDC reference: 173395

Comment top

A rich variety of of bioactive extracellular low-molecular-weight compounds are produced by bacteria. They may be classified as siderophores, antibiotics or toxins according to their biological activities. From a biosynthetic viewpoint, some of these are peptides produced non-ribosomally by large multifunctional peptide synthethases (Marahiel et al., 1997). The component amino acids and lipids are activated in the form of adenylate, acylphosphorylate or coenzyme A derivatives before enzymatic condensation (Stachelhaus et al., 1998). This non-ribosomal synthetic route utilizing L–, D– and modified amino acids is able to produce a broad diversity of specialized peptides (Konz & Marahiel, 1999). Genetic engineering of the peptide synthethases has been successfully applied to produce modified peptides (Schneider et al., 1998).

Bacillus subtilis has traditionally been a source of bioactive peptides, especially the cyclic lipopeptide surfactin (Arima et al., 1968), with many isoforms, fengycin (Vanittanakom et al., 1986) and the members of the iturin family: iturin, mycosubtilin and bacillomycin (Peypoux et al., 1980). The plipstatins, which are very similar to fengycin, have been isolated from Bacillus cereus and characterized (Umezawa et al., 1986). All of these compounds are amphiphilic membrane-active biosurfactants with specific antimicrobial activities, and fengycin and the plipstatins inhibit phospholipase A2 (Umezawa et al., 1986). Pseudomonas flourescens also produces a number of cyclic lipopeptides with biosurfactant and antifungal properties e.g. viscosinamide (Nielsen et al., 1999) and tensin (Nielsen et al., 2000). Pseudomonas fluorescens was the source of the phospholipase C inhibitor pholipeptin (Ui et al., 1997), and another Pseudomonas sp. yielded the antimycobacterial massetolides (Gerard et al., 1997). The present study is part of our research program to discover and describe novel cyclic lipopeptides from various soil-associated Pseudomonas strains with a particular emphasis on their biosurfactant and antifungal properties.

The few crystal structures of cyclic lipopeptides comprise tensin (Henriksen et al., 2000) and the white-line-inducing principle (WLIP) from Pseudomonas reactans (Han et al., 1992). In this paper, we present the structure of amphisin tetrahydrate, (I), a cyclic lipopeptide with 11 amino acids, a β-hydroxydecanoyl-N-terminal and a lactone formation between the side chain of Thr4 and the C-terminal. Close analogy exists between amphisin and the structurally related tensin, which differs only by incorporating Glu12 in place of Asp12.

The structure of amphisin is shown in Fig. 1. The absolute configuration was substantiated by chiral gas chromatographic analysis of the constituents in the hydrolyzed peptide. Asp3 has a disordered side chain and minor disorder was observed around residues Leu10 and Leu8 (not included in the model), but unlike the structure of tensin, the lipid shows no sign of disorder. The peptide incorporates a helical motif (310-helix from Leu2 to Leu8). The cyclic part of the peptide forms a `cobra-head'-like backbone around a water molecule. The coordination of the water is almost planar, accepting one and donating two peptide hydrogen bonds. Three additional water molecules are found in the crystal structure.

The molecule has both a hydrophobic and a hydrophilic side, in agreement with its function as a biosurfactant. With exception of Leu6, the hydrophobic side chains in the ring are aligned in a parallel formation. The alternating stereo-configurations of the amino acids are required for this organization. The two acidic residues, charged at high pH, are situated on the hydrophilic side of the molecule, quite far apart and facing opposite directions. The peptide backbones of amphisin and tensin are similar and not affected by the amino acid substitution. Interestingly, WLIP shares some of the `cobra-head' features of amphisin and tensin even though WLIP contains two amino acids less than the latter. It is common, however, that these cyclic lipopeptides can adopt a number of distinct and different conformations. The conformation of WLIP in the crystal structure is thus significantly different from the one deduced by NMR in dimethyl sulfoxide solution (Mortishire-Smith et al., 1991). Another example is surfactin, where NMR studies revealed two very different conformations (Bonmatin et al., 1994). The conformation of surfactin has furthermore been shown to be highly dependent on the nature of the solvent (Itokawa et al., 1994). The amphiphilic property combined with conformational flexibility could be of crucial importance in the interaction with biological membranes or receptor sites.

Experimental top

Amphisin (10 mg) was isolated from the EtOAc extract of 50 Petri dishes with potato dextrose agar (PDA) medium incubated with Pseudomonas strain DSS73 at 298 K for 4 d. Various types of Sephadex LH-20, Si-60 and RP-18-based chromatography were used to purify the compound. Final crystallization occurred overnight from a 278 K solution of CH3CN/H2O (70:30) + 0.5% TFA.

Refinement top

All ordered and major conformation (occupancy ~0.7) non-H atoms were refined with anisotropic displacement parameters. All H atoms were located in difference Fourier maps and treated as riding on the appropiate heavy atoms (C—H = 0.00–0.00 Å). The Asp3 residue was found to have more than one conformation.

Computing details top

Data collection: XPRESS (MacScience, 1989); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: VMD (Humphrey et al., 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Stereo-VMD (Humphrey et al., 1996) drawing of amphisin. Only the most occupied sites of Asp3 are drawn. The lipid is attached to the N-terminal, while the C-terminal forms a lactone with the Thr4 side chain. The molecule is viewed from the side, showing the amphiphilic arrangement of side chains and the central hydrogen-bonded water molecule.
R-β-hydroxydecanoyl-D-Leu-D-Asp-D-allo-Thr-D-Leu-D-Leu-D-Ser-L-Leu- D-Gln-L-Leu-L-Ile-L-Asp tetrahydrate top
Crystal data top
C66H114N12O20·4H2OF(000) = 3176
Mr = 1467.76Dx = 1.232 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
a = 12.329 (10) ŵ = 0.09 mm1
b = 20.245 (10) ÅT = 293 K
c = 31.691 (10) ÅPrism, colourless
V = 7910 (8) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8726 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.4°, θmin = 1.2°
ω scansh = 1515
71388 measured reflectionsk = 2626
9869 independent reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.155P)2 + 1.0565P]
where P = (Fo2 + 2Fc2)/3
9869 reflections(Δ/σ)max = 0.053
941 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C66H114N12O20·4H2OV = 7910 (8) Å3
Mr = 1467.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.329 (10) ŵ = 0.09 mm1
b = 20.245 (10) ÅT = 293 K
c = 31.691 (10) Å0.3 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
8726 reflections with I > 2σ(I)
71388 measured reflectionsRint = 0.037
9869 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.86Δρmax = 0.56 e Å3
9869 reflectionsΔρmin = 0.52 e Å3
941 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O_10.32266 (16)1.12882 (10)0.28841 (6)0.0213 (4)
C_10.3035 (2)1.15012 (12)0.32424 (8)0.0164 (5)
C1_10.1941 (2)1.14004 (14)0.34460 (9)0.0203 (5)
H1A_10.19621.15510.37360.024*
H1B_10.13961.16550.32970.024*
C2_10.1650 (2)1.06681 (14)0.34322 (8)0.0193 (5)
H2_10.15721.05410.31350.023*
O2_10.25301 (18)1.02896 (10)0.36085 (7)0.0277 (5)
H2A_10.25181.04720.39230.050*
C3_10.0583 (2)1.05179 (16)0.36540 (9)0.0248 (6)
H3A_10.06651.06010.39540.030*
H3B_10.00271.08140.35480.030*
C4_10.0212 (3)0.98050 (16)0.35900 (9)0.0266 (6)
H4A_10.08370.95160.36100.032*
H4B_10.02850.96870.38150.032*
C5_10.0348 (2)0.96882 (14)0.31649 (9)0.0233 (6)
H5A_10.01410.98180.29400.028*
H5B_10.09850.99680.31480.028*
C6_10.0690 (2)0.89727 (14)0.30956 (9)0.0242 (6)
H6A_10.11840.88440.33190.029*
H6B_10.00540.86920.31150.029*
C7_10.1237 (3)0.88574 (15)0.26724 (9)0.0251 (6)
H7A_10.18740.91370.26540.030*
H7B_10.07440.89890.24490.030*
C8_10.1577 (3)0.81440 (16)0.25998 (11)0.0335 (7)
H8A_10.09330.78710.25810.040*
H8B_10.19950.79940.28400.040*
C9_10.2249 (4)0.8054 (2)0.22010 (12)0.0459 (9)
H9A_10.24540.75990.21740.069*
H9B_10.28890.83230.22180.069*
H9C_10.18280.81840.19600.069*
N_20.38008 (19)1.18151 (11)0.34695 (7)0.0167 (4)
H0_20.36641.19350.37240.020*
CA_20.4868 (2)1.19532 (13)0.32846 (8)0.0165 (5)
HA_20.47791.22880.30640.020*
C_20.5370 (2)1.13419 (12)0.30877 (8)0.0152 (5)
O_20.57539 (16)1.13561 (9)0.27297 (6)0.0194 (4)
CB_20.5644 (2)1.22235 (13)0.36197 (8)0.0188 (5)
HB1_20.53671.26430.37210.023*
HB2_20.56591.19200.38570.023*
CG_20.6808 (3)1.23242 (14)0.34593 (10)0.0254 (6)
HG_20.70501.19070.33340.030*
CD1_20.6854 (3)1.28581 (17)0.31146 (13)0.0430 (9)
HD1A_20.63711.27420.28890.065*
HD1B_20.66391.32750.32320.065*
HD1C_20.75811.28910.30080.065*
CD2_20.7560 (3)1.2484 (2)0.38189 (13)0.0465 (10)
HD2A_20.75151.21430.40280.070*
HD2B_20.82911.25130.37160.070*
HD2C_20.73551.28990.39420.070*
N_30.54510 (18)1.08018 (10)0.33354 (7)0.0157 (4)
H0_30.51231.07770.35740.019*
CA_30.6119 (2)1.02637 (13)0.31793 (8)0.0170 (5)
HA_30.67851.04630.30690.020*
C_30.5582 (2)0.98998 (12)0.28106 (8)0.0161 (5)
O_30.61337 (17)0.96166 (11)0.25439 (7)0.0264 (5)
CB_30.6453 (3)0.98066 (16)0.35300 (10)0.0278 (6)
HB1_30.58310.96960.37030.033*
HB2_30.67500.94010.34140.033*
CG_30.7329 (3)1.0169 (2)0.38004 (12)0.0210 (8)0.797 (7)
OD1_30.7664 (2)0.97852 (17)0.41095 (9)0.0342 (9)0.797 (7)
OD2_30.7662 (3)1.07143 (15)0.37368 (11)0.0355 (9)0.797 (7)
CGA_30.7134 (13)0.9805 (9)0.3879 (5)0.023 (3)*0.203 (7)
OD1A_30.7541 (11)0.9339 (7)0.4060 (4)0.038 (4)*0.203 (7)
OD2A_30.7411 (11)1.0411 (7)0.3946 (5)0.030 (3)*0.203 (7)
N_40.44841 (17)0.99130 (10)0.27976 (6)0.0140 (4)
H0_40.41161.00610.30080.017*
CA_40.3945 (2)0.96718 (12)0.24217 (7)0.0132 (5)
HA_40.42220.92280.23610.016*
C_40.4189 (2)1.01158 (13)0.20367 (8)0.0146 (5)
O_40.44843 (16)0.98742 (9)0.16977 (6)0.0191 (4)
CB_40.2725 (2)0.96176 (13)0.25061 (8)0.0146 (5)
HB_40.24341.00460.25940.018*
OG1_40.22580 (15)0.94216 (9)0.21044 (6)0.0170 (4)
CG2_40.2462 (2)0.90968 (14)0.28315 (9)0.0214 (5)
HG2A_40.16920.90820.28750.032*
HG2B_40.27100.86740.27340.032*
HG2C_40.28160.92030.30920.032*
N_50.40990 (18)1.07649 (11)0.20932 (7)0.0150 (4)
H0_50.38831.09130.23330.018*
CA_50.4359 (2)1.12336 (12)0.17554 (8)0.0150 (5)
HA_50.38261.11850.15280.018*
C_50.5498 (2)1.11129 (12)0.15760 (8)0.0153 (5)
O_50.56694 (16)1.11360 (10)0.11907 (6)0.0200 (4)
CB_50.4259 (2)1.19329 (13)0.19443 (9)0.0196 (5)
HB1_50.47131.19550.21940.023*
HB2_50.35151.19970.20350.023*
CG_50.4567 (3)1.25024 (14)0.16560 (9)0.0230 (6)
HG_50.52851.24110.15360.028*
CD1_50.3763 (3)1.25853 (17)0.12918 (11)0.0374 (8)
HD1A_50.39921.29430.11140.056*
HD1B_50.37361.21850.11300.056*
HD1C_50.30551.26790.14030.056*
CD2_50.4644 (3)1.31336 (15)0.19210 (11)0.0350 (7)
HD2A_50.48501.34970.17430.053*
HD2B_50.39521.32240.20470.053*
HD2C_50.51771.30750.21380.053*
N_60.62942 (18)1.10036 (11)0.18579 (7)0.0159 (4)
H0_60.61361.09830.21220.019*
CA_60.7419 (2)1.09187 (13)0.17267 (8)0.0165 (5)
HA_60.76031.12870.15390.020*
C_60.7609 (2)1.02767 (14)0.14815 (8)0.0182 (5)
O_60.84672 (16)1.01923 (12)0.12897 (7)0.0261 (4)
CB_60.8194 (2)1.09442 (13)0.21043 (8)0.0189 (5)
HB1_60.80011.05910.22970.023*
HB2_60.89221.08560.20040.023*
CG_60.8208 (2)1.15991 (14)0.23525 (9)0.0224 (6)
HG_60.75111.16420.24980.027*
CD1_60.8355 (4)1.22050 (16)0.20723 (12)0.0395 (8)
HD1A_60.77911.22160.18630.059*
HD1B_60.83181.25970.22420.059*
HD1C_60.90481.21840.19350.059*
CD2_60.9098 (4)1.15624 (19)0.26867 (14)0.0480 (10)
HD2A_60.89921.11760.28580.072*
HD2B_60.97931.15380.25510.072*
HD2C_60.90691.19490.28610.072*
N_70.68199 (18)0.98228 (12)0.14790 (7)0.0181 (4)
H0_70.62350.98930.16200.022*
CA_70.6935 (2)0.92116 (14)0.12413 (9)0.0199 (5)
HA_70.76010.89900.13330.024*
C_70.6997 (2)0.93170 (14)0.07652 (8)0.0194 (5)
O_70.73193 (19)0.88621 (11)0.05389 (7)0.0283 (5)
CB_70.5975 (2)0.87501 (14)0.13239 (9)0.0240 (6)
HB1_70.58360.87330.16250.029*
HB2_70.61630.83080.12320.029*
OG_70.50137 (17)0.89569 (11)0.11115 (7)0.0226 (4)
HG_70.474 (4)0.921 (2)0.1255 (14)0.035 (11)*
N_80.66289 (19)0.98932 (12)0.06125 (7)0.0184 (4)
H0_80.63871.01880.07830.022*
CA_80.6634 (2)1.00244 (15)0.01614 (8)0.0205 (5)
HA_80.73360.98810.00490.025*
C_80.5755 (2)0.96517 (16)0.00736 (9)0.0249 (6)
O_80.5775 (2)0.96377 (17)0.04630 (7)0.0485 (8)
CB_80.6523 (2)1.07687 (16)0.00779 (10)0.0267 (6)
HB1_80.58871.09290.02260.032*
HB2_80.63991.08350.02210.032*
CG_80.7501 (3)1.11855 (16)0.02112 (11)0.0353 (7)
HG_80.76551.11010.05100.042*
CD1_80.7220 (6)1.1915 (2)0.0156 (3)0.094 (2)
HD1A_80.65871.20180.03200.142*
HD1B_80.78171.21810.02500.142*
HD1C_80.70791.20040.01360.142*
CD2_80.8490 (3)1.1027 (2)0.00424 (17)0.0532 (11)
HD2A_80.86591.05670.00130.080*
HD2B_80.83571.11270.03340.080*
HD2C_80.90891.12870.00580.080*
N_90.49611 (18)0.93509 (12)0.01434 (7)0.0181 (4)
H0_90.49340.93880.04140.022*
CA_90.4141 (2)0.89590 (13)0.00784 (8)0.0177 (5)
HA_90.45000.87450.03180.021*
C_90.3206 (2)0.93661 (14)0.02532 (8)0.0193 (5)
O_90.25839 (18)0.91046 (11)0.05144 (6)0.0260 (4)
CB_90.3690 (2)0.84127 (14)0.02058 (8)0.0213 (5)
HB1_90.30470.82260.00750.026*
HB2_90.34750.86030.04740.026*
CG_90.4505 (3)0.78645 (15)0.02850 (9)0.0264 (6)
HG1_90.42100.75660.04950.032*
HG2_90.51610.80570.04010.032*
CD_90.4797 (3)0.74710 (16)0.01054 (9)0.0286 (6)
OE1_90.4185 (2)0.74662 (12)0.04215 (7)0.0357 (6)
NE2_90.5712 (3)0.71398 (16)0.00902 (10)0.0434 (8)
HE2A_90.59140.69070.03030.052*
HE2B_90.61090.71560.01330.052*
N_100.3094 (2)0.99837 (13)0.01194 (7)0.0226 (5)
H0_100.35531.01400.00590.027*
CA_100.2207 (3)1.04061 (15)0.02689 (9)0.0247 (6)
HA_100.18281.01570.04890.030*
C_100.1405 (2)1.04858 (14)0.00967 (10)0.0246 (6)
O_100.0684 (2)1.00835 (14)0.01532 (11)0.0483 (7)
CB_100.2665 (3)1.10209 (16)0.04798 (10)0.0292 (6)
HB1_100.30591.12760.02700.035*
HB2_100.31801.08860.06940.035*
CG_100.1809 (3)1.14672 (19)0.06846 (12)0.0406 (8)
HG_100.14631.17330.04640.049*
CD1_100.2369 (5)1.1928 (3)0.09945 (17)0.0647 (14)
HD1A_100.29261.21710.08510.097*
HD1B_100.26871.16730.12180.097*
HD1C_100.18471.22300.11100.097*
CD2_100.0941 (4)1.1082 (2)0.09162 (13)0.0505 (10)
HD2A_100.04281.13840.10380.076*
HD2B_100.12691.08230.11350.076*
HD2C_100.05741.07950.07220.076*
N_110.1564 (2)1.09914 (13)0.03639 (8)0.0255 (5)
H0_110.20021.13040.02960.031*
CA_110.0999 (2)1.10160 (16)0.07685 (9)0.0264 (6)
HA_110.02281.09260.07210.032*
C_110.1465 (2)1.04759 (16)0.10520 (9)0.0261 (6)
O_110.24527 (19)1.04154 (15)0.11018 (9)0.0434 (7)
CB_110.1116 (3)1.17072 (17)0.09670 (10)0.0317 (7)
HB_110.18771.18420.09430.038*
CG1_110.0427 (4)1.21991 (19)0.07181 (15)0.0484 (10)
HG1A_110.06201.21660.04220.058*
HG1B_110.03291.20730.07450.058*
CG2_110.0817 (4)1.1690 (2)0.14340 (13)0.0543 (12)
HG2A_110.09001.21240.15520.081*
HG2B_110.00781.15490.14640.081*
HG2C_110.12861.13880.15790.081*
CD_110.0548 (5)1.2925 (2)0.08573 (19)0.0667 (14)
HD1_110.00881.31990.06870.100*
HD2_110.03431.29660.11480.100*
HD3_110.12891.30610.08230.100*
N_120.07620 (18)1.00752 (12)0.12438 (7)0.0194 (5)
H0_120.00761.01330.12120.023*
CA_120.1166 (2)0.95404 (14)0.15068 (8)0.0189 (5)
HA_120.18220.93610.13750.023*
C_120.1470 (2)0.98029 (15)0.19427 (8)0.0196 (5)
O_120.1069 (2)1.02690 (14)0.21150 (7)0.0422 (7)
CB_120.0326 (2)0.89870 (14)0.15373 (8)0.0204 (5)
HB1_120.03700.91730.16160.024*
HB2_120.05420.86780.17550.024*
CG_120.0216 (2)0.86246 (13)0.11213 (8)0.0197 (5)
OD1_120.05989 (19)0.82073 (12)0.11218 (7)0.0302 (5)
OD2_120.0841 (2)0.87078 (11)0.08297 (6)0.0282 (5)
HD2_120.06590.84740.06300.042*
O_130.40021 (18)1.08405 (14)0.05718 (7)0.0364 (6)
H1_130.45761.09820.07670.050*
H2_130.34781.07720.07570.050*
O_140.2008 (2)0.76344 (19)0.06873 (7)0.0506 (8)
O_150.4851 (3)1.07868 (17)0.42234 (8)0.0582 (9)
H1_150.52921.08110.44980.020*
O_160.9094 (3)0.9157 (2)0.00362 (11)0.0464 (11)0.760 (7)
OA_160.7999 (9)0.8672 (5)0.0373 (3)0.036 (3)*0.240 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O_10.0190 (10)0.0290 (10)0.0159 (9)0.0004 (8)0.0011 (7)0.0037 (8)
C_10.0149 (12)0.0164 (11)0.0178 (11)0.0032 (9)0.0007 (10)0.0005 (9)
C1_10.0169 (12)0.0221 (12)0.0218 (13)0.0030 (10)0.0024 (11)0.0030 (10)
C2_10.0168 (12)0.0233 (12)0.0177 (12)0.0017 (10)0.0008 (10)0.0029 (10)
O2_10.0231 (10)0.0243 (10)0.0358 (12)0.0000 (9)0.0052 (9)0.0015 (9)
C3_10.0206 (13)0.0363 (16)0.0176 (12)0.0084 (12)0.0032 (11)0.0072 (11)
C4_10.0266 (14)0.0349 (15)0.0182 (13)0.0103 (13)0.0007 (11)0.0005 (11)
C5_10.0227 (13)0.0270 (13)0.0203 (13)0.0054 (11)0.0009 (11)0.0003 (11)
C6_10.0218 (13)0.0270 (14)0.0237 (13)0.0047 (11)0.0006 (11)0.0006 (11)
C7_10.0253 (14)0.0264 (14)0.0237 (13)0.0032 (12)0.0002 (12)0.0025 (11)
C8_10.0352 (17)0.0298 (15)0.0355 (17)0.0048 (14)0.0051 (14)0.0039 (13)
C9_10.053 (2)0.046 (2)0.0381 (19)0.0158 (19)0.0074 (18)0.0136 (16)
N_20.0174 (10)0.0176 (10)0.0152 (10)0.0000 (8)0.0037 (9)0.0018 (8)
CA_20.0176 (12)0.0160 (11)0.0159 (11)0.0009 (10)0.0031 (10)0.0001 (9)
C_20.0121 (11)0.0172 (11)0.0163 (11)0.0043 (9)0.0003 (9)0.0037 (9)
O_20.0197 (9)0.0231 (9)0.0154 (8)0.0041 (8)0.0041 (8)0.0044 (7)
CB_20.0198 (13)0.0172 (11)0.0196 (12)0.0051 (10)0.0013 (10)0.0055 (9)
CG_20.0244 (14)0.0215 (13)0.0301 (15)0.0074 (11)0.0077 (12)0.0095 (11)
CD1_20.045 (2)0.0279 (16)0.056 (2)0.0113 (15)0.0239 (18)0.0007 (15)
CD2_20.0258 (17)0.064 (2)0.050 (2)0.0154 (17)0.0054 (16)0.0278 (19)
N_30.0147 (10)0.0153 (9)0.0170 (10)0.0015 (8)0.0034 (8)0.0026 (8)
CA_30.0126 (11)0.0193 (12)0.0192 (12)0.0002 (9)0.0018 (10)0.0056 (10)
C_30.0158 (12)0.0171 (11)0.0153 (11)0.0014 (9)0.0041 (9)0.0012 (9)
O_30.0175 (9)0.0380 (12)0.0236 (10)0.0063 (9)0.0021 (8)0.0136 (9)
CB_30.0303 (15)0.0301 (14)0.0231 (13)0.0125 (13)0.0098 (12)0.0048 (12)
CG_30.0193 (17)0.025 (2)0.0189 (16)0.0022 (15)0.0027 (13)0.0051 (17)
OD1_30.0300 (15)0.050 (2)0.0222 (14)0.0128 (14)0.0109 (12)0.0114 (12)
OD2_30.0325 (16)0.0277 (15)0.0464 (19)0.0051 (13)0.0206 (14)0.0004 (13)
N_40.0144 (10)0.0160 (9)0.0117 (9)0.0018 (8)0.0028 (8)0.0022 (8)
CA_40.0140 (11)0.0133 (10)0.0122 (10)0.0018 (9)0.0009 (9)0.0032 (8)
C_40.0092 (10)0.0201 (12)0.0147 (11)0.0030 (9)0.0000 (9)0.0025 (9)
O_40.0184 (9)0.0238 (9)0.0152 (8)0.0018 (8)0.0024 (7)0.0063 (7)
CB_40.0128 (11)0.0195 (11)0.0115 (10)0.0027 (9)0.0026 (9)0.0028 (9)
OG1_40.0147 (8)0.0208 (9)0.0155 (8)0.0012 (7)0.0043 (7)0.0051 (7)
CG2_40.0197 (13)0.0247 (13)0.0198 (12)0.0070 (11)0.0001 (10)0.0029 (10)
N_50.0139 (10)0.0185 (10)0.0126 (9)0.0010 (8)0.0021 (8)0.0001 (8)
CA_50.0130 (11)0.0187 (11)0.0134 (10)0.0019 (9)0.0010 (9)0.0019 (9)
C_50.0133 (11)0.0172 (11)0.0155 (11)0.0027 (9)0.0002 (9)0.0012 (9)
O_50.0176 (9)0.0302 (10)0.0121 (8)0.0004 (8)0.0001 (7)0.0024 (7)
CB_50.0206 (13)0.0179 (12)0.0202 (12)0.0015 (10)0.0015 (11)0.0010 (10)
CG_50.0236 (14)0.0215 (13)0.0239 (13)0.0041 (11)0.0011 (11)0.0051 (11)
CD1_50.046 (2)0.0318 (16)0.0345 (17)0.0088 (15)0.0150 (16)0.0138 (14)
CD2_50.047 (2)0.0223 (14)0.0354 (17)0.0093 (14)0.0002 (16)0.0034 (12)
N_60.0129 (10)0.0236 (11)0.0114 (9)0.0033 (8)0.0003 (8)0.0006 (8)
CA_60.0104 (11)0.0223 (12)0.0168 (11)0.0007 (9)0.0001 (9)0.0003 (9)
C_60.0137 (11)0.0282 (13)0.0127 (11)0.0001 (10)0.0034 (9)0.0006 (10)
O_60.0119 (9)0.0403 (12)0.0262 (10)0.0016 (9)0.0024 (8)0.0076 (9)
CB_60.0130 (11)0.0244 (13)0.0192 (12)0.0047 (10)0.0035 (10)0.0013 (10)
CG_60.0190 (13)0.0276 (14)0.0207 (13)0.0032 (11)0.0036 (11)0.0049 (11)
CD1_60.054 (2)0.0232 (15)0.0410 (19)0.0055 (15)0.0105 (17)0.0040 (14)
CD2_60.049 (2)0.0407 (19)0.054 (2)0.0003 (18)0.033 (2)0.0162 (17)
N_70.0139 (10)0.0250 (11)0.0154 (10)0.0001 (9)0.0009 (8)0.0025 (9)
CA_70.0177 (12)0.0220 (12)0.0200 (12)0.0038 (10)0.0002 (10)0.0009 (10)
C_70.0129 (11)0.0274 (13)0.0178 (12)0.0002 (10)0.0004 (10)0.0030 (10)
O_70.0295 (11)0.0299 (10)0.0255 (10)0.0058 (9)0.0028 (9)0.0083 (9)
CB_70.0257 (14)0.0199 (13)0.0265 (14)0.0001 (11)0.0009 (12)0.0001 (11)
OG_70.0183 (10)0.0264 (10)0.0231 (10)0.0021 (8)0.0015 (8)0.0074 (8)
N_80.0165 (10)0.0254 (11)0.0135 (10)0.0000 (9)0.0028 (8)0.0014 (9)
CA_80.0120 (11)0.0338 (14)0.0156 (12)0.0033 (11)0.0006 (9)0.0015 (10)
C_80.0197 (13)0.0413 (16)0.0136 (11)0.0084 (12)0.0011 (11)0.0037 (11)
O_80.0401 (14)0.092 (2)0.0134 (9)0.0378 (15)0.0006 (10)0.0046 (12)
CB_80.0228 (14)0.0343 (15)0.0230 (13)0.0022 (12)0.0030 (11)0.0078 (12)
CG_80.047 (2)0.0305 (16)0.0287 (16)0.0047 (15)0.0043 (15)0.0043 (13)
CD1_80.071 (4)0.031 (2)0.182 (8)0.001 (2)0.007 (5)0.018 (3)
CD2_80.0319 (19)0.046 (2)0.081 (3)0.0172 (17)0.002 (2)0.013 (2)
N_90.0145 (10)0.0273 (11)0.0125 (9)0.0044 (9)0.0015 (8)0.0026 (8)
CA_90.0158 (12)0.0243 (12)0.0131 (10)0.0032 (10)0.0004 (9)0.0027 (10)
C_90.0177 (12)0.0285 (13)0.0116 (11)0.0039 (11)0.0002 (9)0.0012 (10)
O_90.0258 (11)0.0319 (11)0.0202 (9)0.0039 (9)0.0085 (8)0.0038 (8)
CB_90.0225 (14)0.0253 (13)0.0161 (12)0.0029 (11)0.0009 (10)0.0021 (10)
CG_90.0335 (16)0.0281 (14)0.0176 (12)0.0035 (13)0.0051 (12)0.0060 (11)
CD_90.0316 (16)0.0313 (14)0.0228 (14)0.0037 (13)0.0070 (12)0.0100 (12)
OE1_90.0348 (12)0.0437 (13)0.0287 (11)0.0124 (11)0.0124 (10)0.0171 (10)
NE2_90.0425 (17)0.0544 (19)0.0332 (15)0.0207 (16)0.0167 (14)0.0248 (14)
N_100.0196 (11)0.0298 (12)0.0184 (10)0.0023 (10)0.0071 (9)0.0045 (9)
CA_100.0244 (14)0.0291 (14)0.0205 (13)0.0028 (12)0.0093 (11)0.0008 (11)
C_100.0190 (13)0.0249 (13)0.0300 (14)0.0004 (11)0.0078 (12)0.0027 (11)
O_100.0317 (13)0.0407 (14)0.0723 (19)0.0148 (12)0.0094 (13)0.0129 (14)
CB_100.0280 (15)0.0353 (16)0.0242 (14)0.0015 (13)0.0007 (12)0.0040 (12)
CG_100.043 (2)0.0404 (18)0.0384 (18)0.0057 (16)0.0016 (16)0.0117 (15)
CD1_100.064 (3)0.063 (3)0.067 (3)0.004 (3)0.013 (3)0.037 (2)
CD2_100.053 (2)0.058 (2)0.0404 (19)0.017 (2)0.0142 (19)0.0049 (18)
N_110.0260 (12)0.0290 (12)0.0216 (11)0.0090 (10)0.0003 (10)0.0018 (10)
CA_110.0182 (13)0.0353 (16)0.0256 (14)0.0066 (12)0.0001 (11)0.0050 (12)
C_110.0163 (13)0.0410 (17)0.0210 (13)0.0042 (12)0.0039 (11)0.0034 (12)
O_110.0138 (10)0.0700 (18)0.0464 (15)0.0096 (11)0.0025 (10)0.0236 (13)
CB_110.0289 (16)0.0377 (17)0.0286 (15)0.0091 (14)0.0048 (13)0.0052 (13)
CG1_110.042 (2)0.0323 (17)0.071 (3)0.0019 (17)0.003 (2)0.0078 (18)
CG2_110.071 (3)0.051 (2)0.041 (2)0.021 (2)0.023 (2)0.0145 (18)
CD_110.073 (3)0.039 (2)0.088 (4)0.005 (2)0.006 (3)0.011 (2)
N_120.0099 (9)0.0313 (12)0.0170 (10)0.0010 (9)0.0009 (8)0.0006 (9)
CA_120.0141 (11)0.0296 (13)0.0129 (11)0.0004 (10)0.0019 (9)0.0032 (10)
C_120.0127 (11)0.0311 (14)0.0150 (11)0.0026 (11)0.0004 (9)0.0020 (10)
O_120.0433 (14)0.0579 (16)0.0254 (11)0.0330 (13)0.0133 (10)0.0182 (11)
CB_120.0176 (12)0.0265 (13)0.0170 (12)0.0020 (11)0.0016 (10)0.0020 (10)
CG_120.0206 (13)0.0212 (12)0.0172 (12)0.0056 (10)0.0015 (10)0.0010 (10)
OD1_120.0273 (11)0.0375 (12)0.0260 (10)0.0059 (10)0.0020 (9)0.0119 (9)
OD2_120.0330 (12)0.0321 (11)0.0194 (9)0.0030 (9)0.0025 (9)0.0081 (8)
O_130.0211 (11)0.0638 (16)0.0243 (10)0.0131 (11)0.0037 (9)0.0124 (11)
O_140.0219 (12)0.110 (3)0.0203 (11)0.0196 (14)0.0024 (9)0.0068 (13)
O_150.077 (2)0.0705 (19)0.0267 (12)0.0274 (19)0.0162 (14)0.0075 (13)
O_160.040 (2)0.059 (2)0.0401 (19)0.0121 (18)0.0126 (16)0.0064 (17)
Geometric parameters (Å, º) top
O_1—C_11.237 (3)C_6—N_71.338 (4)
C_1—N_21.346 (4)CB_6—CG_61.542 (4)
C_1—C1_11.509 (4)CG_6—CD1_61.525 (4)
C1_1—C2_11.526 (4)CG_6—CD2_61.527 (4)
C2_1—O2_11.441 (4)N_7—CA_71.455 (4)
C2_1—C3_11.522 (4)CA_7—C_71.526 (4)
C3_1—C4_11.527 (4)CA_7—CB_71.530 (4)
C4_1—C5_11.532 (4)C_7—O_71.233 (3)
C5_1—C6_11.524 (4)C_7—N_81.342 (4)
C6_1—C7_11.519 (4)CB_7—OG_71.426 (4)
C7_1—C8_11.521 (4)N_8—CA_81.454 (3)
C8_1—C9_11.522 (5)CA_8—C_81.516 (4)
N_2—CA_21.467 (3)CA_8—CB_81.536 (4)
CA_2—C_21.518 (4)C_8—O_81.235 (4)
CA_2—CB_21.531 (4)C_8—N_91.343 (4)
C_2—O_21.230 (3)CB_8—CG_81.531 (5)
C_2—N_31.350 (3)CG_8—CD2_81.495 (6)
CB_2—CG_21.536 (4)CG_8—CD1_81.526 (6)
CG_2—CD2_21.505 (5)N_9—CA_91.465 (3)
CG_2—CD1_21.538 (5)CA_9—C_91.522 (4)
N_3—CA_31.452 (3)CA_9—CB_91.531 (4)
CA_3—CB_31.504 (4)C_9—O_91.246 (3)
CA_3—C_31.532 (3)C_9—N_101.327 (4)
C_3—O_31.227 (3)CB_9—CG_91.518 (4)
C_3—N_41.354 (3)CG_9—CD_91.515 (4)
CB_3—CGA_31.387 (15)CD_9—OE1_91.254 (4)
CB_3—CG_31.561 (5)CD_9—NE2_91.314 (5)
CG_3—OD2_31.195 (5)N_10—CA_101.467 (4)
CG_3—OD1_31.317 (5)CA_10—CB_101.522 (4)
CGA_3—OD1A_31.21 (2)CA_10—C_101.532 (4)
CGA_3—OD2A_31.29 (2)C_10—O_101.219 (4)
N_4—CA_41.449 (3)C_10—N_111.343 (4)
CA_4—CB_41.532 (4)CB_10—CG_101.534 (5)
CA_4—C_41.545 (3)CG_10—CD2_101.514 (6)
C_4—O_41.235 (3)CG_10—CD1_101.520 (6)
C_4—N_51.331 (3)N_11—CA_111.460 (4)
CB_4—OG1_41.452 (3)CA_11—C_111.527 (4)
CB_4—CG2_41.510 (4)CA_11—CB_111.541 (5)
OG1_4—C_121.343 (3)C_11—O_111.234 (4)
N_5—CA_51.466 (3)C_11—N_121.334 (4)
CA_5—C_51.535 (4)CB_11—CG2_111.525 (5)
CA_5—CB_51.542 (4)CB_11—CG1_111.529 (6)
C_5—O_51.240 (3)CG1_11—CD_111.541 (6)
C_5—N_61.346 (3)N_12—CA_121.455 (4)
CB_5—CG_51.519 (4)CA_12—C_121.526 (3)
CG_5—CD1_51.531 (4)CA_12—CB_121.529 (4)
CG_5—CD2_51.532 (4)C_12—O_121.197 (4)
N_6—CA_61.458 (3)CB_12—CG_121.515 (4)
CA_6—CB_61.532 (4)CG_12—OD2_121.214 (4)
CA_6—C_61.532 (4)CG_12—OD1_121.313 (4)
C_6—O_61.233 (3)
O_1—C_1—N_2121.4 (2)CA_6—CB_6—CG_6115.8 (2)
O_1—C_1—C1_1121.0 (2)CD1_6—CG_6—CD2_6111.0 (3)
N_2—C_1—C1_1117.5 (2)CD1_6—CG_6—CB_6113.3 (2)
C_1—C1_1—C2_1109.2 (2)CD2_6—CG_6—CB_6108.7 (3)
O2_1—C2_1—C3_1111.4 (2)C_6—N_7—CA_7121.1 (2)
O2_1—C2_1—C1_1109.2 (2)N_7—CA_7—C_7113.4 (2)
C3_1—C2_1—C1_1112.6 (2)N_7—CA_7—CB_7110.8 (2)
C2_1—C3_1—C4_1112.7 (2)C_7—CA_7—CB_7107.0 (2)
C3_1—C4_1—C5_1113.4 (3)O_7—C_7—N_8123.3 (3)
C6_1—C5_1—C4_1113.5 (2)O_7—C_7—CA_7119.1 (3)
C7_1—C6_1—C5_1113.3 (2)N_8—C_7—CA_7117.5 (2)
C6_1—C7_1—C8_1113.7 (3)OG_7—CB_7—CA_7112.5 (2)
C7_1—C8_1—C9_1112.9 (3)C_7—N_8—CA_8120.8 (2)
C_1—N_2—CA_2120.3 (2)N_8—CA_8—C_8112.9 (2)
N_2—CA_2—C_2112.0 (2)N_8—CA_8—CB_8110.4 (2)
N_2—CA_2—CB_2110.6 (2)C_8—CA_8—CB_8109.9 (2)
C_2—CA_2—CB_2108.8 (2)O_8—C_8—N_9121.1 (3)
O_2—C_2—N_3121.8 (2)O_8—C_8—CA_8119.2 (3)
O_2—C_2—CA_2121.1 (2)N_9—C_8—CA_8119.7 (2)
N_3—C_2—CA_2116.9 (2)CG_8—CB_8—CA_8115.0 (3)
CA_2—CB_2—CG_2113.7 (2)CD2_8—CG_8—CD1_8109.3 (4)
CD2_2—CG_2—CB_2110.7 (3)CD2_8—CG_8—CB_8112.1 (3)
CD2_2—CG_2—CD1_2111.3 (3)CD1_8—CG_8—CB_8108.8 (4)
CB_2—CG_2—CD1_2111.3 (3)C_8—N_9—CA_9120.2 (2)
C_2—N_3—CA_3116.8 (2)N_9—CA_9—C_9113.9 (2)
N_3—CA_3—CB_3111.4 (2)N_9—CA_9—CB_9111.1 (2)
N_3—CA_3—C_3112.1 (2)C_9—CA_9—CB_9109.3 (2)
CB_3—CA_3—C_3112.7 (2)O_9—C_9—N_10123.3 (3)
O_3—C_3—N_4122.9 (2)O_9—C_9—CA_9118.5 (3)
O_3—C_3—CA_3120.7 (2)N_10—C_9—CA_9118.2 (2)
N_4—C_3—CA_3116.5 (2)CG_9—CB_9—CA_9112.6 (2)
CGA_3—CB_3—CA_3139.1 (8)CD_9—CG_9—CB_9114.0 (2)
CGA_3—CB_3—CG_331.4 (7)OE1_9—CD_9—NE2_9122.8 (3)
CA_3—CB_3—CG_3107.8 (3)OE1_9—CD_9—CG_9120.9 (3)
OD2_3—CG_3—OD1_3124.2 (4)NE2_9—CD_9—CG_9116.3 (3)
OD2_3—CG_3—CB_3125.4 (3)C_9—N_10—CA_10121.5 (2)
OD1_3—CG_3—CB_3110.4 (3)N_10—CA_10—CB_10110.0 (3)
OD1A_3—CGA_3—OD2A_3123.4 (15)N_10—CA_10—C_10107.4 (2)
OD1A_3—CGA_3—CB_3129.1 (15)CB_10—CA_10—C_10119.1 (3)
OD2A_3—CGA_3—CB_3106.8 (13)O_10—C_10—N_11121.5 (3)
C_3—N_4—CA_4118.5 (2)O_10—C_10—CA_10120.8 (3)
N_4—CA_4—CB_4109.3 (2)N_11—C_10—CA_10117.6 (3)
N_4—CA_4—C_4111.3 (2)CA_10—CB_10—CG_10114.3 (3)
CB_4—CA_4—C_4111.8 (2)CD2_10—CG_10—CD1_10108.9 (4)
O_4—C_4—N_5122.2 (2)CD2_10—CG_10—CB_10112.9 (3)
O_4—C_4—CA_4120.9 (2)CD1_10—CG_10—CB_10108.8 (3)
N_5—C_4—CA_4116.9 (2)C_10—N_11—CA_11120.7 (3)
OG1_4—CB_4—CG2_4108.8 (2)N_11—CA_11—C_11108.2 (3)
OG1_4—CB_4—CA_4104.83 (19)N_11—CA_11—CB_11110.2 (2)
CG2_4—CB_4—CA_4112.4 (2)C_11—CA_11—CB_11112.0 (3)
C_12—OG1_4—CB_4117.7 (2)O_11—C_11—N_12121.5 (3)
C_4—N_5—CA_5121.5 (2)O_11—C_11—CA_11121.1 (3)
N_5—CA_5—C_5111.6 (2)N_12—C_11—CA_11117.3 (3)
N_5—CA_5—CB_5107.1 (2)CG2_11—CB_11—CG1_11112.4 (4)
C_5—CA_5—CB_5111.3 (2)CG2_11—CB_11—CA_11110.7 (3)
O_5—C_5—N_6122.4 (2)CG1_11—CB_11—CA_11109.2 (3)
O_5—C_5—CA_5121.0 (2)CB_11—CG1_11—CD_11114.8 (4)
N_6—C_5—CA_5116.6 (2)C_11—N_12—CA_12119.4 (2)
CG_5—CB_5—CA_5116.3 (2)N_12—CA_12—C_12110.1 (2)
CB_5—CG_5—CD1_5112.0 (2)N_12—CA_12—CB_12110.5 (2)
CB_5—CG_5—CD2_5108.6 (2)C_12—CA_12—CB_12111.3 (2)
CD1_5—CG_5—CD2_5111.2 (3)O_12—C_12—OG1_4125.3 (3)
C_5—N_6—CA_6121.6 (2)O_12—C_12—CA_12125.9 (3)
N_6—CA_6—CB_6111.5 (2)OG1_4—C_12—CA_12108.8 (2)
N_6—CA_6—C_6113.0 (2)CG_12—CB_12—CA_12111.1 (2)
CB_6—CA_6—C_6109.2 (2)OD2_12—CG_12—OD1_12125.1 (3)
O_6—C_6—N_7121.7 (3)OD2_12—CG_12—CB_12122.6 (3)
O_6—C_6—CA_6119.9 (2)OD1_12—CG_12—CB_12112.3 (2)
N_7—C_6—CA_6118.3 (2)

Experimental details

Crystal data
Chemical formulaC66H114N12O20·4H2O
Mr1467.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.329 (10), 20.245 (10), 31.691 (10)
V3)7910 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
71388, 9869, 8726
Rint0.037
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.157, 0.86
No. of reflections9869
No. of parameters941
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.52

Computer programs: XPRESS (MacScience, 1989), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), VMD (Humphrey et al., 1996), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds