Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, 2,9-bis(3-nitro­phenyl)-1-aza­tri­cyclo[3.3.1.13,7]­decan-4-one, C21H19N3O5, has a tricyclic structure. The torsion angles may be used to describe the relationship of the carbonyl group to the adjacent faces, whereby it is seen that the angles on the face of the aryl­piperidinone side [122.0 (3) and -122.0 (3)°] are greater than those on the cyclo­hexanone side [-119.8 (4) and 119.9 (4)°]. Although these differences may explain a facial selectivity during nucleophilic addition to the carbonyl group, the presence of the aryl rings is probably also important.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101007612/da1181sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101007612/da1181Isup2.hkl
Contains datablock I

CCDC reference: 169959

Comment top

Numerous investigations have shown that substitution in adamantanones and azaadamantanones may affect facial selectivity during nucleophilic addition to the carbonyl group (Kaselj et al., 1999). Structural studies of azaadamantanone have been used to explain its facial selectivity; the distortion in the calculated geometry (HF/6–31G*) of azaadamantanone has been discussed by Gung & Wolf (1996). We recently designed the 2-eq-9-ax-diarylazaadamantan-4-ones analogues to the title compound, (I), as probes for facial selectivity in the nucleophilic addition of sodium borohydride in methanol. The highly preferential anti attack in the reduction of these ketones has been described; both steric and electronic effects were involved (Jiménez-Cruz et al., 2000). \sch

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The molecule consists of a tricyclic azaadamantanone cage with aryl rings (3-nitrophenyl) substituted at the 3 and 9 positions. Rings A (C11 to C16) and B (C17 to C22) are attached to atoms C2 and C9 in equatorial and axial positions, respectively, relative to the piperidinone ring. The rotation between each aryl ring and the tricyclic framework may be described by the torsion angles C3—C2—C11—C12 [-28.4 (4)°, ring A] and C5—C9—C17—C18 [-37.2 (4)°, ring B]. The aromatic rings are themselves planar [mean deviations 0.006 (2) Å for ring A and 0.008 (3) Å for ring B], and although the ring and the nitro group in pure m-nitroacetophenone are almost planar, with an angle between the groups of 1.8 (2)° (Feeder et al., 1996), in (I) the planes of the 3-nitrophenyl groups are rotated significantly away from the planes of the rings [11.2 (6)° for ring A and 10.7 (2)° for B].

The average C—C bond length within the adamantane cage in (I) is 1.53 (4) Å. The bonds N1—C2, N1—C9 and N1—C8 are 1.479 (4), 1.484 (4) and 1.472 (4) Å, respectively. These values are greater than those reported for 2-phenyl-3,5,7-trimethylazaadamantan-4,10-dione, (II) (Risch et al., 1991), in which the N—C distances are 1.462 (3), 1.458 (3) and 1.452 (3) Å, and are less than those described in chlorophenyloxyazaadamantane hydrochloride, (III) (Fernández et al., 1989), in which the N—C distances are 1.514 (7), 1.49 (3) and 1.50 (3) Å. The CO distance (C4—O1) is 1.214 (4) Å in (I), which is similar to the values described in (II) (1.211 and 1.214 Å). The C3—C4—C5 bond angle is 112.7 (3)° in (I), which is less than the values reported in (II) (114.25 and 114.95°; Risch et al., 1991).

The torsion angles used to describe the two faces of the other side of the cage (see Scheme) show that the angles on the arylpiperidinone side [C9—C5—C4—O1 122.0 (3)° and C2—C3—C4—O1 - 122.0 (3)°] are greater than on the cyclohexanone side [C6—C5—C4—O1 - 119.8 (4)° and C10—C3—C4—O1 119.9 (4)°]. These geometrical parameters may provide some understanding of the nucleophilic addition reactions on these substrates. Although these differences imply a facial asymmetry that may explain a preferential selectivity, the presence of the aryl rings is also important in preferential attack on the cyclohexanone face.

The molecules in the crystal of (I) are linked by several weak C—H···O bonds involving the O atoms in the carbonyl ketone and the nitro groups (Table 2).

Experimental top

The title compound was prepared by the procedure described by Jiménez-Cruz et al. (2000). After purification via a chromatographic column, crystals of (I) were grown by slow evaporation of a chloroform-hexane solution at room temperature (m.p. 498–500 K).

Refinement top

The positional parameters of the H atoms were calculated geometrically and fixed, with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
2,9-Bis(3-nitrophenyl)-1-azatricyclo[3.3.1.13,7]decan-4-one top
Crystal data top
C21H19N3O5F(000) = 1648
Mr = 393.39Dx = 1.435 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 40 reflections
a = 13.318 (1) Åθ = 3.0–12.5°
b = 15.217 (2) ŵ = 0.10 mm1
c = 17.965 (1) ÅT = 293 K
V = 3640.8 (6) Å3Block, yellow
Z = 80.6 × 0.3 × 0.3 mm
Data collection top
Siemens P4/PC
diffractometer
Rint = 0.049
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 115
θ/2θ scansk = 118
3999 measured reflectionsl = 121
3185 independent reflections3 standard reflections every 97 reflections
1685 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
3185 reflectionsΔρmax = 0.35 e Å3
263 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (4)
Crystal data top
C21H19N3O5V = 3640.8 (6) Å3
Mr = 393.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.318 (1) ŵ = 0.10 mm1
b = 15.217 (2) ÅT = 293 K
c = 17.965 (1) Å0.6 × 0.3 × 0.3 mm
Data collection top
Siemens P4/PC
diffractometer
Rint = 0.049
3999 measured reflections3 standard reflections every 97 reflections
3185 independent reflections intensity decay: <2%
1685 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
3185 reflectionsΔρmin = 0.26 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06435 (16)0.01712 (16)0.29009 (15)0.0573 (7)
N10.26213 (17)0.18754 (15)0.37493 (15)0.0369 (6)
C20.2796 (2)0.0916 (2)0.37123 (17)0.0360 (7)
H20.24060.06570.41040.043*
C30.2401 (2)0.0531 (2)0.29678 (18)0.0394 (7)
H30.25120.00920.29460.047*
C40.1286 (2)0.0734 (2)0.29550 (18)0.0402 (7)
C50.1069 (2)0.1705 (2)0.29975 (18)0.0441 (8)
H50.03580.18050.29900.053*
C60.1575 (3)0.2161 (2)0.2342 (2)0.0537 (9)
H6A0.14490.27820.23650.064*
H6B0.13050.19430.18820.064*
C70.2714 (3)0.1985 (2)0.2370 (2)0.0486 (8)
H70.30450.22870.19700.058*
C80.3107 (2)0.2319 (2)0.31167 (19)0.0484 (8)
H8A0.38160.22100.31440.058*
H8B0.30030.29420.31550.058*
C90.1527 (2)0.2056 (2)0.37316 (19)0.0417 (8)
H90.14560.26840.37230.050*
C100.2904 (2)0.0993 (2)0.23125 (18)0.0460 (8)
H10A0.26390.07700.18530.055*
H10B0.36130.08820.23220.055*
C110.3900 (2)0.0710 (2)0.38790 (17)0.0363 (7)
C120.4348 (2)0.0043 (2)0.36070 (18)0.0393 (7)
H120.39860.04430.32930.047*
C130.5348 (2)0.0209 (2)0.38024 (19)0.0405 (7)
C140.5897 (2)0.0326 (2)0.4250 (2)0.0465 (8)
H140.65840.01880.43630.056*
C150.5444 (2)0.1065 (2)0.4531 (2)0.0500 (9)
H150.58140.14500.48540.060*
C160.4449 (2)0.1258 (2)0.43474 (19)0.0450 (8)
H160.41430.17830.45380.054*
N20.5801 (2)0.1012 (2)0.3506 (2)0.0593 (9)
O20.52849 (19)0.15533 (17)0.3193 (2)0.0818 (10)
O30.6713 (2)0.1085 (2)0.3576 (3)0.1181 (16)
C170.1001 (2)0.1736 (2)0.44326 (18)0.0399 (7)
C180.0040 (2)0.1635 (2)0.4443 (2)0.0443 (8)
H180.04260.17500.40020.053*
C190.0497 (2)0.1349 (2)0.50858 (19)0.0446 (8)
C200.0004 (3)0.1170 (2)0.5736 (2)0.0542 (9)
H200.03530.09670.61710.065*
C210.1035 (3)0.1288 (3)0.5729 (2)0.0610 (10)
H210.14200.11720.61700.073*
C220.1515 (2)0.1574 (3)0.50934 (19)0.0504 (9)
H220.22280.16670.51070.060*
N30.1605 (2)0.1260 (2)0.50771 (19)0.0571 (8)
O40.2022 (2)0.0940 (2)0.56047 (18)0.0765 (9)
O50.2055 (2)0.1558 (3)0.45438 (19)0.0989 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (11)0.0630 (16)0.0728 (16)0.0124 (12)0.0094 (12)0.0030 (14)
N10.0280 (12)0.0325 (13)0.0502 (15)0.0016 (10)0.0003 (12)0.0017 (12)
C20.0261 (13)0.0361 (15)0.0456 (17)0.0005 (12)0.0006 (13)0.0005 (14)
C30.0264 (13)0.0362 (15)0.0555 (18)0.0002 (12)0.0015 (14)0.0030 (16)
C40.0301 (14)0.0494 (18)0.0410 (16)0.0029 (14)0.0027 (14)0.0003 (16)
C50.0311 (15)0.0485 (18)0.0526 (19)0.0068 (14)0.0036 (15)0.0052 (17)
C60.0508 (19)0.054 (2)0.057 (2)0.0056 (18)0.0054 (17)0.0140 (19)
C70.0462 (18)0.0497 (19)0.0499 (19)0.0032 (16)0.0078 (16)0.0094 (17)
C80.0426 (17)0.0400 (17)0.063 (2)0.0027 (15)0.0051 (17)0.0036 (17)
C90.0294 (14)0.0379 (15)0.058 (2)0.0055 (13)0.0013 (15)0.0011 (16)
C100.0360 (16)0.0560 (19)0.0459 (18)0.0001 (15)0.0043 (15)0.0038 (16)
C110.0264 (13)0.0406 (16)0.0419 (15)0.0007 (13)0.0009 (13)0.0020 (14)
C120.0275 (13)0.0416 (16)0.0489 (18)0.0003 (13)0.0036 (13)0.0036 (15)
C130.0287 (13)0.0394 (16)0.0533 (18)0.0028 (13)0.0011 (14)0.0029 (16)
C140.0268 (14)0.0530 (19)0.060 (2)0.0022 (15)0.0037 (15)0.0052 (18)
C150.0348 (16)0.057 (2)0.058 (2)0.0121 (16)0.0111 (16)0.0050 (18)
C160.0354 (15)0.0442 (18)0.0553 (19)0.0021 (14)0.0034 (16)0.0089 (16)
N20.0356 (15)0.0510 (17)0.091 (2)0.0116 (14)0.0063 (16)0.0017 (18)
O20.0456 (13)0.0467 (14)0.153 (3)0.0021 (13)0.0056 (18)0.0261 (19)
O30.0469 (16)0.105 (3)0.202 (4)0.0392 (17)0.041 (2)0.065 (3)
C170.0329 (14)0.0359 (16)0.0509 (19)0.0039 (13)0.0001 (15)0.0059 (15)
C180.0359 (16)0.0460 (19)0.051 (2)0.0023 (15)0.0021 (15)0.0003 (17)
C190.0352 (15)0.0462 (18)0.0524 (19)0.0056 (15)0.0037 (15)0.0050 (17)
C200.0469 (19)0.060 (2)0.056 (2)0.0072 (18)0.0142 (18)0.005 (2)
C210.0468 (19)0.084 (3)0.052 (2)0.014 (2)0.0054 (18)0.005 (2)
C220.0337 (15)0.065 (2)0.052 (2)0.0043 (17)0.0031 (16)0.0065 (19)
N30.0373 (15)0.074 (2)0.0596 (19)0.0146 (16)0.0029 (15)0.0004 (18)
O40.0557 (15)0.084 (2)0.090 (2)0.0156 (15)0.0189 (16)0.0163 (18)
O50.0419 (15)0.172 (4)0.083 (2)0.021 (2)0.0015 (15)0.016 (2)
Geometric parameters (Å, º) top
O1—C41.214 (4)C12—C131.401 (4)
N1—C81.472 (4)C13—C141.359 (5)
N1—C21.479 (4)C13—N21.462 (4)
N1—C91.484 (4)C14—C151.372 (5)
C2—C111.533 (4)C15—C161.397 (5)
C2—C31.553 (4)N2—O21.212 (4)
C3—C41.517 (4)N2—O31.226 (4)
C3—C101.526 (4)C17—C221.392 (5)
C4—C51.507 (5)C17—C181.396 (4)
C5—C61.524 (5)C18—C191.376 (5)
C5—C91.548 (4)C19—C201.367 (5)
C6—C71.542 (5)C19—N31.482 (4)
C7—C81.528 (5)C20—C211.395 (5)
C7—C101.533 (5)C21—C221.379 (5)
C9—C171.521 (4)N3—O41.202 (4)
C11—C121.382 (4)N3—O51.218 (4)
C11—C161.392 (4)
C8—N1—C2110.4 (2)C12—C11—C2121.0 (3)
C8—N1—C9109.3 (3)C16—C11—C2119.9 (3)
C2—N1—C9109.7 (2)C11—C12—C13118.1 (3)
N1—C2—C11110.1 (2)C14—C13—C12123.5 (3)
N1—C2—C3111.0 (3)C14—C13—N2119.6 (3)
C11—C2—C3114.6 (2)C12—C13—N2116.9 (3)
C4—C3—C10108.9 (3)C13—C14—C15118.2 (3)
C4—C3—C2105.5 (3)C14—C15—C16120.1 (3)
C10—C3—C2110.0 (2)C11—C16—C15121.0 (3)
O1—C4—C5124.1 (3)O2—N2—O3123.2 (3)
O1—C4—C3123.1 (3)O2—N2—C13120.1 (3)
C5—C4—C3112.7 (3)O3—N2—C13116.6 (3)
C4—C5—C6108.8 (3)C22—C17—C18117.2 (3)
C4—C5—C9107.8 (3)C22—C17—C9122.5 (3)
C6—C5—C9109.1 (3)C18—C17—C9120.3 (3)
C5—C6—C7109.3 (3)C19—C18—C17119.1 (3)
C8—C7—C10109.3 (3)C20—C19—C18124.6 (3)
C8—C7—C6107.9 (3)C20—C19—N3118.0 (3)
C10—C7—C6109.3 (3)C18—C19—N3117.4 (3)
N1—C8—C7112.0 (3)C19—C20—C21116.3 (4)
N1—C9—C17112.0 (3)C22—C21—C20120.5 (4)
N1—C9—C5109.9 (3)C21—C22—C17122.3 (3)
C17—C9—C5114.5 (2)O4—N3—O5122.9 (3)
C3—C10—C7109.3 (3)O4—N3—C19119.3 (3)
C12—C11—C16119.0 (3)O5—N3—C19117.7 (3)
C8—N1—C2—C1170.3 (3)C3—C2—C11—C1228.4 (4)
C9—N1—C2—C11169.2 (2)N1—C2—C11—C1629.6 (4)
C8—N1—C2—C357.7 (3)C3—C2—C11—C16155.6 (3)
C9—N1—C2—C362.8 (3)C16—C11—C12—C131.6 (5)
N1—C2—C3—C459.9 (3)C2—C11—C12—C13177.7 (3)
C11—C2—C3—C4174.5 (3)C11—C12—C13—C140.7 (5)
N1—C2—C3—C1057.4 (3)C11—C12—C13—N2180.0 (3)
C11—C2—C3—C1068.2 (3)C12—C13—C14—C150.6 (5)
C10—C3—C4—O1119.9 (4)N2—C13—C14—C15178.7 (3)
C2—C3—C4—O1122.0 (3)C13—C14—C15—C160.9 (5)
C10—C3—C4—C558.6 (4)C12—C11—C16—C151.3 (5)
C2—C3—C4—C559.4 (3)C2—C11—C16—C15177.4 (3)
O1—C4—C5—C6119.8 (4)C14—C15—C16—C110.0 (5)
C3—C4—C5—C658.8 (4)C14—C13—N2—O2169.8 (4)
O1—C4—C5—C9122.0 (3)C12—C13—N2—O29.5 (5)
C3—C4—C5—C959.5 (4)C14—C13—N2—O312.0 (6)
C4—C5—C6—C758.7 (4)C12—C13—N2—O3168.6 (4)
C9—C5—C6—C758.7 (4)N1—C9—C17—C2219.9 (4)
C5—C6—C7—C857.9 (4)C5—C9—C17—C22145.9 (3)
C5—C6—C7—C1060.9 (4)N1—C9—C17—C18163.3 (3)
C2—N1—C8—C759.2 (3)C5—C9—C17—C1837.2 (4)
C9—N1—C8—C761.5 (3)C22—C17—C18—C192.7 (5)
C10—C7—C8—N158.9 (3)C9—C17—C18—C19179.7 (3)
C6—C7—C8—N159.9 (4)C17—C18—C19—C201.6 (6)
C8—N1—C9—C17171.2 (2)C17—C18—C19—N3179.3 (3)
C2—N1—C9—C1767.6 (3)C18—C19—C20—C210.3 (6)
C8—N1—C9—C560.4 (3)N3—C19—C20—C21178.0 (4)
C2—N1—C9—C560.8 (3)C19—C20—C21—C220.3 (6)
C4—C5—C9—N158.1 (3)C20—C21—C22—C171.5 (6)
C6—C5—C9—N160.0 (3)C18—C17—C22—C212.7 (5)
C4—C5—C9—C1769.0 (3)C9—C17—C22—C21179.7 (3)
C6—C5—C9—C17172.9 (3)C20—C19—N3—O48.5 (6)
C4—C3—C10—C758.4 (3)C18—C19—N3—O4173.6 (3)
C2—C3—C10—C756.8 (3)C20—C19—N3—O5168.0 (4)
C8—C7—C10—C357.2 (3)C18—C19—N3—O59.9 (6)
C6—C7—C10—C360.7 (4)C3—C2—C11—C1228.4 (4)
N1—C2—C11—C12154.3 (3)C5—C9—C17—C1837.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.962.543.249 (4)131
C20—H20···O1i0.962.443.300 (5)150
C21—H21···O3ii0.962.533.263 (6)133
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H19N3O5
Mr393.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)13.318 (1), 15.217 (2), 17.965 (1)
V3)3640.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.3 × 0.3
Data collection
DiffractometerSiemens P4/PC
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3999, 3185, 1685
Rint0.049
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.133, 1.00
No. of reflections3185
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick 1990), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C41.214 (4)C3—C41.517 (4)
N1—C81.472 (4)C4—C51.507 (5)
N1—C21.479 (4)C5—C91.548 (4)
N1—C91.484 (4)C7—C81.528 (5)
C2—C31.553 (4)
C8—N1—C2110.4 (2)O1—C4—C3123.1 (3)
C8—N1—C9109.3 (3)C5—C4—C3112.7 (3)
C2—N1—C9109.7 (2)N1—C8—C7112.0 (3)
N1—C2—C3111.0 (3)N1—C9—C5109.9 (3)
O1—C4—C5124.1 (3)
C10—C3—C4—O1119.9 (4)O1—C4—C5—C9122.0 (3)
C2—C3—C4—O1122.0 (3)C3—C2—C11—C1228.4 (4)
O1—C4—C5—C6119.8 (4)C5—C9—C17—C1837.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.962.543.249 (4)131
C20—H20···O1i0.962.443.300 (5)150
C21—H21···O3ii0.962.533.263 (6)133
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds