Download citation
Download citation
link to html
Gabapentin [1-(amino­methyl)­cyclo­hexane­acetic acid, C9H17NO2] is a zwitterion in the solid state. Its crystal structure involves extensive hydrogen bonding between the NH3+ and COO- groups of neighboring mol­ecules. The structure of gabapentin monohydrate [1-(amino­methyl)­cyclo­hexane­acetic acid monohydrate, C9H17NO2·H2O] also involves such hydrogen bonding and, in addition, has a hydrogen-bonding network comprising the water mol­ecules and both the NH3+ and COO- groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101003341/da1172sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003341/da1172Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101003341/da1172IIsup3.hkl
Contains datablock II

CCDC references: 164684; 164685

Comment top

Gabapentin is a new-generation antiepileptic drug that is used as add-on therapy (Placidi et al., 2000), as well as monotherapy (Chadwick et al., 1998) in patients with partial seizures (Lima, 2000; Morton & Pellock, 2000). With the introduction of gabapentin and other promising new antiepileptic drugs, safe and effective seizure control may become a reality for an increasing number of adults with epilepsy (Mattson, 1998). The mechanism of action of gabapentin remains unclear, although it is apparently dissimilar to that of other antiepileptic agents (Gee et al., 1996). Earlier data suggest that an effect of gabapentin on the formation of γ-aminobutyric acid (gaba), a non-protein amino acid that functions as a neurotransmitter, might be involved in its mechanism of action (Loescher et al., 1991). A later study in which a [3H]gabapentin-binding protein was isolated and characterized indicates that [3H]gabapentin interacts with the α2δ subunit of a voltage-dependent Ca2+ channel (Gee et al., 1996).

Despite intense interest in gabapentin and its polymorphs (Pesachovich et al., 1998), its crystal structure is unknown, as is that of its monohydrate. The structures of these two compounds, (I) and (II), respectively, are presented here.

Gabapentin is a zwitterion in the solid state, as shown in Fig. 1. Metrical data for the non-H atoms are given in Table 1. These data are in good agreement with those found in the low-temperature determination of the structure of γ-aminobutyric acid (gaba; Craven & Weber, 1983; Weber et al., 1983). Gaba is also a zwitterion.

The structure of gabapentin monohydrate, (II), is shown in Fig. 2. It too is a zwitterion. Metrical data for the non-H atoms are given in Table 3 and again agree well with those in gaba as well as in anhydrous gabapentin.

In gabapentin, as in gaba, there is extensive hydrogen bonding between the NH3+ and COO- groups of neighboring molecules. These hydrogen-bonding interactions are detailed in Table 2. In the monohydrate, in addition to the direct hydrogen bonding between the NH3+ and COO- groups of neighboring molecules, the O atom (OW) of the water molecule is hydrogen bonded to both groups. The hydrogen-bonding interactions are detailed in Table 4.

In gaba, the difference [0.019 (6) Å] in carboxylate C—O bond lengths was ascribed to hydrogen bonding, with the longer bond involving an O atom that forms two N—H···O bonds and the shorter bond involving the other O atom which forms only one N—H···O bond. In gabapentin, the carboxylate C—O bonds differ by 0.020 (2) Å and again the long bond involves an O atom that forms two N—H···O bonds and the short bond involves an O atom that forms only one N—H···O bond. In the monohydrate, the C—O bond lengths differ by 0.017 (3) Å, with the long bond involving an O atom that forms two N—H···O bonds and the short bond involving an O atom that forms two OW—H···O bonds. In all three compounds, the hydrogen bonds are strong.

Related literature top

For related literature, see: Chadwick et al. (1998); Craven & Weber (1983); Gee et al. (1996); Lima (2000); Loescher et al. (1991); Mattson (1998); Morton & Pellock (2000); Pesachovich et al. (1998); Placidi et al. (2000); Weber et al. (1983).

Experimental top

The sample of gabapentin provided by Purepac Pharmaceutical Company contained crystals suitable for diffraction studies. For the preparation of the monohydrate, 160 mg of gabapentin was dissolved in 1 ml of water and 3 ml of 2-propanol was added. The resultant solution was placed in a freezer. Four days later, crystals of gabapentin monohydrate were harvested from the precipitate, which also contained gabapentin. The two materials differ in their crystal habits and are readily distinguished from one another.

Refinement top

The positional and isotropic displacement parameters of all H atoms were refined. The refined C—H distances are in the range 0.95 (2)–1.02 (2) Å for gabapentin and 0.96 (2)–1.05 (2) Å for gabapentin monohydrate.

Computing details top

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of gabapentin shown with 50% probability displacement ellipsoids, except for the H atoms, which are drawn as small circles.
[Figure 2] Fig. 2. The structure of gabapentin monohydrate shown with 50% probability displacement ellipsoids, except for the H atoms, which are drawn as small circles. The O atom of the water molecule is OW.
(I) 1-(aminomethyl)cyclohexaneacetic acid top
Crystal data top
C9H17NO2F(000) = 376
Mr = 171.24Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8759 (6) ÅCell parameters from 2674 reflections
b = 6.9198 (7) Åθ = 6.2–28.1°
c = 22.262 (2) ŵ = 0.09 mm1
β = 90.080 (2)°T = 153 K
V = 905.18 (16) Å3Needle, colourless
Z = 40.30 × 0.09 × 0.09 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1572 reflections with I > 2σ(I)
Radiation source: standard-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
ω scansh = 77
7951 measured reflectionsk = 88
2147 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 0.98 w = 1/[σ2(Fo2) + (0.0752Fo2)2]
2147 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H17NO2V = 905.18 (16) Å3
Mr = 171.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8759 (6) ŵ = 0.09 mm1
b = 6.9198 (7) ÅT = 153 K
c = 22.262 (2) Å0.30 × 0.09 × 0.09 mm
β = 90.080 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1572 reflections with I > 2σ(I)
7951 measured reflectionsRint = 0.042
2147 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 0.98Δρmax = 0.39 e Å3
2147 reflectionsΔρmin = 0.21 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32783 (16)0.22232 (14)0.47786 (5)0.0240 (3)
O20.03209 (16)0.32934 (15)0.42512 (5)0.0275 (3)
N10.2248 (2)0.83466 (18)0.48502 (6)0.0204 (3)
HN10.368 (3)0.786 (2)0.4921 (8)0.026 (4)*
HN20.128 (3)0.801 (3)0.5156 (9)0.036 (5)*
HN30.238 (3)0.973 (3)0.4858 (8)0.039 (5)*
C10.2946 (2)0.67267 (19)0.38403 (6)0.0191 (3)
C20.1690 (2)0.6198 (2)0.32528 (7)0.0227 (3)
H2A0.270 (2)0.534 (2)0.3024 (7)0.020 (4)*
H2B0.030 (3)0.547 (2)0.3354 (7)0.026 (4)*
C30.1122 (2)0.7931 (2)0.28509 (7)0.0256 (3)
H3A0.042 (3)0.746 (2)0.2468 (9)0.029 (4)*
H3B0.002 (3)0.877 (2)0.3054 (7)0.024 (4)*
C40.3237 (2)0.9141 (2)0.27181 (7)0.0262 (3)
H4A0.438 (2)0.836 (2)0.2475 (7)0.020 (4)*
H4B0.285 (3)1.031 (2)0.2465 (8)0.028 (4)*
C50.4363 (2)0.9798 (2)0.33004 (7)0.0249 (3)
H5A0.577 (2)1.051 (2)0.3221 (7)0.026 (4)*
H5B0.336 (3)1.071 (2)0.3521 (8)0.026 (4)*
C60.4984 (2)0.8074 (2)0.36947 (7)0.0210 (3)
H6A0.569 (2)0.851 (2)0.4078 (7)0.016 (4)*
H6B0.618 (2)0.730 (2)0.3481 (7)0.019 (4)*
C70.1240 (2)0.7711 (2)0.42632 (6)0.0209 (3)
H7A0.061 (2)0.886 (2)0.4076 (7)0.019 (4)*
H7B0.000 (3)0.686 (2)0.4339 (7)0.022 (4)*
C80.3956 (2)0.4900 (2)0.41369 (6)0.0203 (3)
H8A0.486 (2)0.425 (2)0.3827 (7)0.022 (4)*
H8B0.506 (2)0.525 (2)0.4449 (7)0.021 (4)*
C90.2368 (2)0.33823 (19)0.44058 (6)0.0204 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (5)0.0210 (5)0.0247 (6)0.0011 (4)0.0029 (4)0.0049 (4)
O20.0213 (5)0.0329 (6)0.0282 (6)0.0049 (4)0.0012 (4)0.0085 (5)
N10.0202 (6)0.0207 (6)0.0202 (6)0.0004 (4)0.0020 (5)0.0006 (5)
C10.0196 (6)0.0194 (7)0.0184 (7)0.0010 (5)0.0012 (5)0.0010 (5)
C20.0242 (7)0.0224 (7)0.0215 (8)0.0012 (5)0.0001 (6)0.0004 (6)
C30.0266 (7)0.0283 (8)0.0217 (8)0.0008 (6)0.0019 (6)0.0037 (6)
C40.0305 (8)0.0258 (8)0.0223 (8)0.0003 (6)0.0021 (6)0.0051 (6)
C50.0253 (7)0.0217 (7)0.0277 (8)0.0023 (5)0.0031 (6)0.0026 (6)
C60.0212 (7)0.0225 (7)0.0192 (7)0.0016 (5)0.0012 (6)0.0009 (6)
C70.0194 (6)0.0230 (7)0.0202 (7)0.0006 (5)0.0007 (5)0.0007 (6)
C80.0198 (6)0.0209 (7)0.0202 (7)0.0000 (5)0.0008 (6)0.0009 (6)
C90.0237 (7)0.0193 (7)0.0181 (7)0.0001 (5)0.0029 (5)0.0016 (5)
Geometric parameters (Å, º) top
O1—C91.2717 (17)C3—H3B0.995 (16)
O2—C91.2519 (17)C4—C51.524 (2)
N1—C71.4998 (19)C4—H4A1.018 (16)
N1—HN10.918 (18)C4—H4B1.011 (18)
N1—HN20.92 (2)C5—C61.525 (2)
N1—HN30.96 (2)C5—H5A0.978 (15)
C1—C71.5353 (19)C5—H5B0.994 (17)
C1—C21.544 (2)C6—H6A0.995 (16)
C1—C81.5446 (18)C6—H6B1.007 (15)
C1—C61.5524 (18)C7—H7A0.973 (16)
C2—C31.533 (2)C7—H7B0.954 (16)
C2—H2A0.981 (16)C8—C91.5277 (18)
C2—H2B0.987 (16)C8—H8A0.982 (17)
C3—C41.528 (2)C8—H8B0.979 (15)
C3—H3A0.999 (19)
C7—N1—HN1113.8 (11)H4A—C4—H4B106.1 (13)
C7—N1—HN2109.1 (12)C4—C5—C6111.07 (12)
HN1—N1—HN2110.2 (16)C4—C5—H5A111.2 (9)
C7—N1—HN3109.9 (11)C6—C5—H5A107.1 (9)
HN1—N1—HN3106.7 (14)C4—C5—H5B110.5 (9)
HN2—N1—HN3106.9 (15)C6—C5—H5B110.8 (10)
C7—C1—C2108.23 (11)H5A—C5—H5B106.0 (13)
C7—C1—C8110.60 (11)C5—C6—C1113.95 (11)
C2—C1—C8110.56 (11)C5—C6—H6A110.9 (9)
C7—C1—C6111.47 (11)C1—C6—H6A108.8 (9)
C2—C1—C6109.45 (11)C5—C6—H6B108.2 (9)
C8—C1—C6106.54 (10)C1—C6—H6B108.5 (8)
C3—C2—C1114.37 (12)H6A—C6—H6B106.1 (12)
C3—C2—H2A107.5 (9)N1—C7—C1114.03 (11)
C1—C2—H2A107.2 (9)N1—C7—H7A106.4 (9)
C3—C2—H2B110.7 (9)C1—C7—H7A110.5 (9)
C1—C2—H2B108.9 (10)N1—C7—H7B109.2 (10)
H2A—C2—H2B108.0 (13)C1—C7—H7B109.6 (10)
C4—C3—C2111.42 (12)H7A—C7—H7B106.8 (13)
C4—C3—H3A110.2 (10)C9—C8—C1119.68 (11)
C2—C3—H3A109.5 (10)C9—C8—H8A107.1 (9)
C4—C3—H3B108.3 (9)C1—C8—H8A106.4 (9)
C2—C3—H3B109.8 (10)C9—C8—H8B107.2 (9)
H3A—C3—H3B107.4 (13)C1—C8—H8B110.7 (9)
C5—C4—C3110.54 (12)H8A—C8—H8B104.7 (12)
C5—C4—H4A109.0 (9)O2—C9—O1123.48 (12)
C3—C4—H4A110.4 (9)O2—C9—C8120.88 (12)
C5—C4—H4B109.4 (10)O1—C9—C8115.62 (12)
C3—C4—H4B111.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.918 (18)1.910 (18)2.7827 (16)158.2 (15)
N1—HN2···O2ii0.92 (2)1.85 (2)2.7525 (16)165.3 (16)
N1—HN3···O1iii0.96 (2)1.81 (2)2.7547 (16)165.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.
(II) 1-(aminomethyl)cyclohexaneacetic acid monohydrate top
Crystal data top
C9H17NO2·H2OF(000) = 416
Mr = 189.25Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.567 (3) ÅCell parameters from 1958 reflections
b = 9.2153 (18) Åθ = 2.6–28.2°
c = 7.6503 (15) ŵ = 0.09 mm1
β = 93.375 (3)°T = 153 K
V = 1025.2 (3) Å3Flat plate, colourless
Z = 40.35 × 0.26 × 0.03 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2461 independent reflections
Radiation source: standard-focus sealed tube1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: numerical
face indexed
h = 1918
Tmin = 0.972, Tmax = 0.998k = 1212
9122 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133All H-atom parameters refined
S = 0.97 w = 1/[σ2(Fo2) + (0.07Fo2)2]
2461 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H17NO2·H2OV = 1025.2 (3) Å3
Mr = 189.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.567 (3) ŵ = 0.09 mm1
b = 9.2153 (18) ÅT = 153 K
c = 7.6503 (15) Å0.35 × 0.26 × 0.03 mm
β = 93.375 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2461 independent reflections
Absorption correction: numerical
face indexed
1550 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.998Rint = 0.058
9122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.133All H-atom parameters refined
S = 0.97Δρmax = 0.42 e Å3
2461 reflectionsΔρmin = 0.22 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83595 (10)0.39302 (13)1.10528 (16)0.0257 (3)
O20.89054 (10)0.61784 (14)1.08593 (16)0.0295 (4)
OW0.96959 (10)0.84570 (16)0.91842 (19)0.0283 (4)
HWA0.9419 (15)0.766 (3)0.953 (3)0.042 (7)*
HWB0.938 (2)0.863 (3)0.814 (4)0.077 (10)*
N10.84714 (12)0.39236 (18)0.4660 (2)0.0203 (4)
HN10.8344 (14)0.294 (2)0.499 (3)0.033 (6)*
HN20.9057 (15)0.411 (2)0.508 (3)0.028 (6)*
HN30.8494 (15)0.394 (2)0.333 (3)0.038 (6)*
C10.76548 (13)0.49637 (19)0.7233 (2)0.0189 (4)
C20.70261 (13)0.3682 (2)0.7676 (2)0.0222 (4)
H2A0.7299 (12)0.279 (2)0.729 (2)0.019 (5)*
H2B0.6992 (13)0.362 (2)0.899 (3)0.025 (5)*
C30.60350 (15)0.3842 (2)0.6939 (3)0.0319 (5)
H3A0.5693 (14)0.300 (2)0.735 (3)0.035 (6)*
H3B0.6032 (15)0.377 (2)0.557 (3)0.034 (6)*
C40.56156 (15)0.5276 (3)0.7484 (3)0.0358 (5)
H4A0.5583 (15)0.529 (2)0.883 (3)0.039 (6)*
H4B0.4967 (17)0.539 (2)0.705 (3)0.038 (6)*
C50.62091 (15)0.6548 (2)0.6957 (3)0.0315 (5)
H5A0.6187 (13)0.666 (2)0.562 (3)0.033 (6)*
H5B0.5957 (13)0.749 (2)0.735 (3)0.029 (5)*
C60.71894 (14)0.6400 (2)0.7735 (3)0.0237 (4)
H6A0.7161 (13)0.644 (2)0.905 (3)0.027 (5)*
H6B0.7582 (13)0.723 (2)0.742 (3)0.026 (5)*
C70.78050 (13)0.5022 (2)0.5256 (2)0.0207 (4)
H7A0.7209 (13)0.4862 (19)0.458 (3)0.022 (5)*
H7B0.8059 (12)0.603 (2)0.496 (2)0.014 (4)*
C80.86156 (13)0.4847 (2)0.8203 (2)0.0193 (4)
H8A0.8909 (13)0.392 (2)0.802 (2)0.017 (5)*
H8B0.9023 (13)0.560 (2)0.780 (3)0.023 (5)*
C90.86289 (13)0.50075 (19)1.0188 (2)0.0203 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (9)0.0240 (7)0.0091 (6)0.0046 (6)0.0023 (5)0.0012 (5)
O20.0503 (9)0.0253 (8)0.0127 (7)0.0079 (6)0.0009 (6)0.0027 (5)
OW0.0340 (8)0.0310 (8)0.0191 (8)0.0069 (6)0.0044 (6)0.0039 (6)
N10.0273 (9)0.0230 (9)0.0104 (8)0.0003 (7)0.0006 (6)0.0001 (6)
C10.0254 (9)0.0224 (9)0.0089 (8)0.0000 (7)0.0013 (7)0.0009 (7)
C20.0269 (11)0.0255 (11)0.0141 (9)0.0007 (8)0.0014 (8)0.0014 (7)
C30.0306 (11)0.0365 (12)0.0284 (12)0.0063 (9)0.0005 (9)0.0044 (9)
C40.0256 (12)0.0480 (14)0.0339 (13)0.0045 (10)0.0031 (10)0.0057 (10)
C50.0370 (13)0.0340 (12)0.0236 (11)0.0112 (10)0.0034 (9)0.0023 (9)
C60.0307 (11)0.0252 (11)0.0154 (10)0.0015 (8)0.0041 (8)0.0010 (8)
C70.0273 (10)0.0246 (10)0.0102 (9)0.0040 (8)0.0010 (7)0.0013 (7)
C80.0266 (10)0.0231 (10)0.0083 (8)0.0013 (8)0.0012 (7)0.0001 (7)
C90.0257 (10)0.0234 (10)0.0117 (9)0.0006 (8)0.0014 (7)0.0000 (7)
Geometric parameters (Å, º) top
O1—C91.268 (2)C3—H3A0.98 (2)
O2—C91.251 (2)C3—H3B1.05 (2)
OW—HWA0.88 (3)C4—C51.525 (3)
OW—HWB0.91 (3)C4—H4A1.03 (2)
N1—C71.493 (2)C4—H4B0.99 (2)
N1—HN10.96 (2)C5—C61.521 (3)
N1—HN20.91 (2)C5—H5A1.03 (2)
N1—HN31.02 (2)C5—H5B0.99 (2)
C1—C71.542 (2)C6—H6A1.01 (2)
C1—C21.544 (2)C6—H6B0.99 (2)
C1—C61.546 (2)C7—H7A0.99 (2)
C1—C81.549 (3)C7—H7B1.033 (18)
C2—C31.526 (3)C8—C91.525 (2)
C2—H2A0.965 (19)C8—H8A0.969 (19)
C2—H2B1.01 (2)C8—H8B0.98 (2)
C3—C41.524 (3)
HWA—OW—HWB101 (2)C5—C4—H4B111.8 (12)
C7—N1—HN1114.8 (12)H4A—C4—H4B103.4 (18)
C7—N1—HN2112.2 (13)C6—C5—C4111.17 (17)
HN1—N1—HN2106.3 (17)C6—C5—H5A111.9 (11)
C7—N1—HN3110.9 (12)C4—C5—H5A110.6 (11)
HN1—N1—HN3106.9 (17)C6—C5—H5B108.5 (12)
HN2—N1—HN3105.2 (18)C4—C5—H5B111.5 (11)
C7—C1—C2111.23 (15)H5A—C5—H5B102.9 (15)
C7—C1—C6107.67 (15)C5—C6—C1113.28 (16)
C2—C1—C6109.01 (15)C5—C6—H6A107.1 (11)
C7—C1—C8107.22 (15)C1—C6—H6A108.8 (11)
C2—C1—C8111.88 (15)C5—C6—H6B112.1 (11)
C6—C1—C8109.73 (15)C1—C6—H6B109.2 (11)
C3—C2—C1113.95 (16)H6A—C6—H6B106.0 (15)
C3—C2—H2A111.5 (11)N1—C7—C1114.11 (15)
C1—C2—H2A108.9 (11)N1—C7—H7A107.7 (11)
C3—C2—H2B105.8 (11)C1—C7—H7A109.4 (11)
C1—C2—H2B108.9 (11)N1—C7—H7B107.3 (10)
H2A—C2—H2B107.5 (15)C1—C7—H7B108.6 (10)
C4—C3—C2111.62 (18)H7A—C7—H7B109.6 (14)
C4—C3—H3A112.2 (12)C9—C8—C1115.38 (15)
C2—C3—H3A107.0 (12)C9—C8—H8A104.6 (11)
C4—C3—H3B110.6 (11)C1—C8—H8A112.6 (11)
C2—C3—H3B108.1 (12)C9—C8—H8B105.7 (12)
H3A—C3—H3B107.1 (16)C1—C8—H8B110.4 (11)
C3—C4—C5110.60 (18)H8A—C8—H8B107.6 (16)
C3—C4—H4A109.1 (12)O2—C9—O1124.28 (17)
C5—C4—H4A108.2 (13)O2—C9—C8118.50 (16)
C3—C4—H4B113.3 (13)O1—C9—C8117.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O20.88 (3)1.89 (3)2.748 (2)165 (2)
OW—HWB···O2i0.91 (3)1.85 (3)2.7503 (19)170 (3)
N1—HN1···O1ii0.96 (2)1.91 (2)2.846 (2)165.1 (18)
N1—HN2···OWiii0.91 (2)1.97 (2)2.796 (2)151.0 (18)
N1—HN3···O1iv1.02 (2)1.74 (2)2.755 (2)171.7 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+3/2; (iv) x, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC9H17NO2C9H17NO2·H2O
Mr171.24189.25
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)153153
a, b, c (Å)5.8759 (6), 6.9198 (7), 22.262 (2)14.567 (3), 9.2153 (18), 7.6503 (15)
β (°) 90.080 (2) 93.375 (3)
V3)905.18 (16)1025.2 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.30 × 0.09 × 0.090.35 × 0.26 × 0.03
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Bruker SMART 1000 CCD
diffractometer
Absorption correctionNumerical
face indexed
Tmin, Tmax0.972, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
7951, 2147, 1572 9122, 2461, 1550
Rint0.0420.058
(sin θ/λ)max1)0.6670.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 0.98 0.057, 0.133, 0.97
No. of reflections21472461
No. of parameters177194
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.39, 0.210.42, 0.22

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL/PC (Sheldrick, 1997b), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O1—C91.2717 (17)C1—C61.5524 (18)
O2—C91.2519 (17)C2—C31.533 (2)
N1—C71.4998 (19)C3—C41.528 (2)
C1—C71.5353 (19)C4—C51.524 (2)
C1—C21.544 (2)C5—C61.525 (2)
C1—C81.5446 (18)C8—C91.5277 (18)
C7—C1—C2108.23 (11)C5—C4—C3110.54 (12)
C7—C1—C8110.60 (11)C4—C5—C6111.07 (12)
C2—C1—C8110.56 (11)C5—C6—C1113.95 (11)
C7—C1—C6111.47 (11)N1—C7—C1114.03 (11)
C2—C1—C6109.45 (11)C9—C8—C1119.68 (11)
C8—C1—C6106.54 (10)O2—C9—O1123.48 (12)
C3—C2—C1114.37 (12)O2—C9—C8120.88 (12)
C4—C3—C2111.42 (12)O1—C9—C8115.62 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.918 (18)1.910 (18)2.7827 (16)158.2 (15)
N1—HN2···O2ii0.92 (2)1.85 (2)2.7525 (16)165.3 (16)
N1—HN3···O1iii0.96 (2)1.81 (2)2.7547 (16)165.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
O1—C91.268 (2)C1—C81.549 (3)
O2—C91.251 (2)C2—C31.526 (3)
N1—C71.493 (2)C3—C41.524 (3)
C1—C71.542 (2)C4—C51.525 (3)
C1—C21.544 (2)C5—C61.521 (3)
C1—C61.546 (2)C8—C91.525 (2)
C7—C1—C2111.23 (15)C3—C4—C5110.60 (18)
C7—C1—C6107.67 (15)C6—C5—C4111.17 (17)
C2—C1—C6109.01 (15)C5—C6—C1113.28 (16)
C7—C1—C8107.22 (15)N1—C7—C1114.11 (15)
C2—C1—C8111.88 (15)C9—C8—C1115.38 (15)
C6—C1—C8109.73 (15)O2—C9—O1124.28 (17)
C3—C2—C1113.95 (16)O2—C9—C8118.50 (16)
C4—C3—C2111.62 (18)O1—C9—C8117.22 (16)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···O20.88 (3)1.89 (3)2.748 (2)165 (2)
OW—HWB···O2i0.91 (3)1.85 (3)2.7503 (19)170 (3)
N1—HN1···O1ii0.96 (2)1.91 (2)2.846 (2)165.1 (18)
N1—HN2···OWiii0.91 (2)1.97 (2)2.796 (2)151.0 (18)
N1—HN3···O1iv1.02 (2)1.74 (2)2.755 (2)171.7 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y1/2, z+3/2; (iv) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds