Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The stereoisomers of 7-phenyl-1-oxa-4-thia­spiro­[4.5]­decan-7-ol, C14H18O2S, have the same stereochemistry at the C atom bearing an OH group, i.e. axial OH and equatorial phenyl groups. However, the acetal S and O atoms are axial and equatorial, respectively, in one isomer and reversed in the second. Furthermore, the crystals of one isomer are composed of hydrogen-bonded mol­ecules involving the hydroxyl H atom and the O atom of the five-membered heterocyclic ring, with an O...O distance of 2.962 (3) Å, forming a polymeric chain along the b axis. The asymmetric unit of the other isomer is composed of two mol­ecules, wherein hydroxyl H atoms and the O atoms of the five-membered heterocyclic rings display intramolecular O—H...O hydrogen bonds with O...O separations of 2.820 (2) and 2.834 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101001573/da1168sup1.cif
Contains datablocks Global, IIa, IIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101001573/da1168IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101001573/da1168IIbsup3.hkl
Contains datablock IIb

CCDC references: 164652; 164653

Comment top

The most recent theory of products distribution relies upon the ground state relative abundance of the conformational isomers and argues against the transition state structure (Gung & Francis, 1993; Tomoda, 1999). 1-Oxa-4-thiaspiro[4.5]decan-7-one, (I), would be expected to exist as an equilibrium mixture of (Ia) and (Ib). The isomer (Ib) is 0.92 kcal/mol (1 kcal = 4.1868 J) more stable than the isomer (Ia), as determined from energy calculations using the program GAUSSIAN94 (Frisch et al., 1995). This small energy difference would correlate to (IIa):(IIb) = 1:1 on reaction with a nucleophile. Due to very similar geometry and to the high steric resistance arising from the acetal function to axial attack, the conformers (Ia) and (Ib) would be expected to undergo predominantly equatorial attack at equal rates. In order to investigate the validity of this prediction, we reacted (I) with phenylmagnesium bromide, PhMgBr, to obtain the two title products, (IIa) and (IIb). The stereochemical characterization of these products from spectrometric data was difficult. We therefore resorted to single-crystal X-ray determination for the structural characterization of these compounds. In this paper, we describe the crystal structures of (IIa) and (IIb). \sch

The structure of (IIa) (Fig. 1) is composed of molecules having intermolecular interactions between the hydroxyl H atom and the O atom of the five-membered heterocyclic ring, with O2···O1 2.962 (3) Å, forming a polymeric chain along the b axis (Fig. 2). The acetal S and O atoms are axial and equatorial, respectively, and the heterocyclic ring adopts an O-envelope conformation with O1 0.509 (4) Å out of the plane formed by the rest of the atoms of the ring; the maximum deviation of any atom from this plane is 0.014 (2) Å. The six-membered ring C3—C8 adopts a classical chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.542 (3) Å, and θ = 5.1 (3) and ϕ = 259 (4)°, while the phenyl ring (C9—C14) is essentially planar [maximum deviation 0.006 (2) Å].

The asymmetric unit of (IIb) (Fig. 3), on the other hand, is composed of two independent molecules separated by normal van der Waals distances. The hydroxyl H atoms and the O atoms of the five-membered heterocyclic rings in the two molecules display intramolecular interactions with O···O 2.834 (2) and 2.820 (2) Å, unlike the intermolecular hydrogen-bonding pattern observed in (IIa). The acetal S and O atoms in (IIb) have been reversed from (IIa) and are equatorial and axial, respectively. Atoms S1, C1 and C2 of the heterocyclic rings are disordered, resulting in S1/C1/C2/O1/C3 and S1'/C1'/C2'/O1/C3 rings in one molecule, and S1A/C1A/C2A/O1A/C3A and S1A'/C1A'/C2A'/O1/C3 rings in the second. These rings adopt C2, C2', C2A and C2A'-envelope conformations, with these atoms 0.557 (17), 0.44 (5), 0.559 (13) and 0.39 (5) Å, respectively, out of the planes formed by the rest of the atoms of the rings. This is also in contrast with the heterocyclic ring conformation in (IIa), which adopts an O-envelope conformation. The separation between the disordered fractions of atoms ranges between 0.035 and 0.843 Å for S1, S1' and C2A, C2A', respectively. The six-membered rings C3—C8 and C3A—C8A in (IIb) adopt a classical chair conformation, with puckering parameters Q = 0.552 (3) and 0.550 (3) Å, and θ = 5.2 (3) and 4.1 (3), and ϕ = 248 (4) and 259 (4)°, respectively. The phenyl rings (C9—C14 and C9A—C14A) are essentially planar.

The bond distances and angles in the two structures are normal and agree well with the corresponding values reported for similar compounds in the Cambridge Structural Database (Allen & Kennard, 1993). The S—Csp3 bond distances of 1.853 (3) and 1.794 (4) Å in (IIa), although significantly different from each other, are in excellent agreement with the corresponding bond distances in the two molecules of (IIb). Similar inequivalent S—C bond distances have been reported in the crystal structures of cyclohexanespiro-2'-(1',3'-oxathiolan-5-one 3'-oxide) (Frechina et al., 1992), (+)-(3S,4R)-6-phenyl-1-oxa-4-thiaspiro[4.5]decan-8-one (Sonoda et al., 1992), two derivatives of an oxathiaspirodecene (Parvez et al., 1997), 2-(7-ethylidene-6-methyl-1-oxa-4-thiaspiro[4.5]dec-7-yl)ethanol (Parvez et al., 1998), two derivatives of 1-oxa-4-thiaspirodecane (Parvez et al., 2000a) and some Diels-Alder adducts of an 1-oxa-4-thia-6-vinylspirodec-6-ene (Parvez et al., 2000b).

Related literature top

For related literature, see: Allen & Kennard (1993); Cremer & Pople (1975); Frechina et al. (1992); Frisch et al. (1995); Gung & Francis (1993); Mertes (1961); Parvez et al. (1997, 1998, 2000a, 2000b); Sonoda et al. (1992); Tomoda (1999).

Experimental top

The two title stereoisomers, (IIa) and (IIb), were prepared according to the literature protocol of Mertes (1961). Condensation of mercaptoethanol and cyclohexane-1,3-dione in benzene at reflux furnished a mixture of the acetals (Ia) and (Ib). This mixture was reacted further with PhMgBr in Et2O to obtain a mixture of the desired compounds (IIa) and (IIb) in quantitative yield.

Refinement top

The asymmetric unit of (IIb) is composed of two independent molecules, which are related by pseudo centres of symmetry located at -0.375, -0.126, 0.000 and -0.125, 0.624, 0.000. The cell constants and space group were verified on a Nonius KappaCCD instrument. The corresponding atoms S1, C1 and C2 of the heterocyclic rings in both the molecules of (IIb) were disordered, with inequivalent site occupancy factors; the major fractions were 0.717 (18) and 0.794 (16) in the two molecules. Atoms O1 and C3 did not seem to be affected by this disorder. For both compounds (IIa) and (IIb), most of the H atoms were located from difference Fourier syntheses and all were included in the refinements at geometrically idealized positions, with C—H 0.93 and 0.97, and O—H 0.82 Å, utilizing a riding model. In order to avoid collisions with the cryogenic system, reflections with k > 10 could not be collected for both crystals.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The ORTEPII (Johnson, 1976) drawing of (IIa) with displacement ellipsoids plotted at the 30% probability level. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The unit-cell packing of (IIa), showing hydrogen bonds forming a polymeric chain along the b axis. Only those H atoms involved in hydrogen bonding are shown.
[Figure 3] Fig. 3. The ORTEPII (Johnson, 1976) drawing of the two molecules in the asymmetric unit of (IIb), with displacement ellipsoids plotted at the 30% probability level and H atoms drawn as small spheres of arbitrary radii. Intramolecular hydrogen bonds have been plotted with thin lines and the minor fractions of the disordered atoms have been omitted.
(IIa) 7-phenyl-1-oxa-4-thiaspiro[4.5]decan-7-ol top
Crystal data top
C14H18O2SF(000) = 1072
Mr = 250.34Dx = 1.295 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.313 (2) Åθ = 20–30°
b = 10.674 (5) ŵ = 2.13 mm1
c = 19.535 (2) ÅT = 293 K
V = 2568 (1) Å3Needle, colourless
Z = 80.52 × 0.18 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1529 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.00
Graphite monochromatorθmax = 68°, θmin = 5°
ω/2θ scansh = 014
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
k = 010
Tmin = 0.40, Tmax = 0.82l = 230
2199 measured reflections3 standard reflections every 200 reflections
2199 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.082P)2 + 0.255P]
where P = (Fo2 + 2Fc2)/3
2199 reflections(Δ/σ)max < 0.01
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H18O2SV = 2568 (1) Å3
Mr = 250.34Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.313 (2) ŵ = 2.13 mm1
b = 10.674 (5) ÅT = 293 K
c = 19.535 (2) Å0.52 × 0.18 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1529 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.00
Tmin = 0.40, Tmax = 0.823 standard reflections every 200 reflections
2199 measured reflections intensity decay: <0.1%
2199 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2199 reflectionsΔρmin = 0.25 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39544 (7)0.72254 (8)0.69252 (4)0.0607 (3)
O10.28413 (17)0.90777 (19)0.74269 (11)0.0608 (6)
O20.39003 (15)0.54544 (19)0.81541 (10)0.0509 (5)
H20.33900.50890.79730.076*
C10.3596 (4)0.8486 (4)0.63612 (19)0.0845 (12)
H1A0.42200.87360.60910.101*
H1B0.30210.82260.60530.101*
C20.3228 (3)0.9529 (3)0.67882 (17)0.0760 (11)
H2A0.38251.01050.68640.091*
H2B0.26520.99790.65550.091*
C30.3547 (2)0.8137 (3)0.76904 (14)0.0475 (7)
C40.2867 (2)0.7381 (3)0.81889 (13)0.0452 (7)
H4A0.22990.69560.79350.054*
H4B0.25180.79540.85050.054*
C50.3495 (2)0.6409 (2)0.86000 (13)0.0414 (6)
C60.4505 (2)0.7005 (3)0.89227 (15)0.0540 (8)
H6A0.42800.75770.92820.065*
H6B0.49440.63540.91310.065*
C70.5188 (2)0.7713 (3)0.84053 (17)0.0634 (9)
H7A0.57960.81050.86370.076*
H7B0.54760.71290.80710.076*
C80.4530 (3)0.8702 (3)0.80434 (16)0.0585 (8)
H8A0.49820.91200.77070.070*
H8B0.42910.93250.83730.070*
C90.2818 (2)0.5811 (3)0.91640 (13)0.0429 (6)
C100.3233 (3)0.4801 (3)0.95213 (15)0.0549 (8)
H100.39040.44740.93940.066*
C110.2681 (3)0.4265 (3)1.00598 (16)0.0645 (9)
H110.29840.35911.02930.077*
C120.1691 (3)0.4719 (3)1.02521 (16)0.0641 (9)
H120.13190.43581.06160.077*
C130.1251 (3)0.5709 (3)0.99051 (17)0.0636 (9)
H130.05770.60221.00350.076*
C140.1802 (2)0.6247 (3)0.93627 (15)0.0516 (7)
H140.14880.69120.91270.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0746 (6)0.0581 (6)0.0494 (4)0.0001 (4)0.0134 (4)0.0050 (4)
O10.0663 (14)0.0577 (13)0.0586 (13)0.0126 (11)0.0117 (10)0.0109 (10)
O20.0496 (11)0.0518 (12)0.0512 (12)0.0029 (9)0.0071 (9)0.0093 (9)
C10.107 (3)0.089 (3)0.058 (2)0.016 (2)0.016 (2)0.015 (2)
C20.097 (3)0.067 (2)0.064 (2)0.005 (2)0.014 (2)0.0172 (18)
C30.0469 (15)0.0480 (17)0.0474 (15)0.0008 (13)0.0074 (12)0.0006 (13)
C40.0383 (13)0.0516 (17)0.0458 (15)0.0019 (12)0.0046 (11)0.0023 (13)
C50.0391 (13)0.0454 (16)0.0398 (14)0.0009 (12)0.0037 (11)0.0056 (12)
C60.0469 (16)0.0629 (19)0.0524 (17)0.0080 (15)0.0063 (13)0.0032 (14)
C70.0441 (16)0.077 (2)0.069 (2)0.0131 (16)0.0041 (15)0.0023 (18)
C80.0599 (18)0.0538 (19)0.0617 (19)0.0159 (16)0.0078 (15)0.0038 (15)
C90.0449 (15)0.0459 (16)0.0380 (14)0.0048 (12)0.0004 (11)0.0074 (12)
C100.0562 (17)0.0562 (19)0.0525 (17)0.0075 (15)0.0001 (14)0.0027 (15)
C110.076 (2)0.067 (2)0.0508 (18)0.0029 (19)0.0047 (16)0.0093 (16)
C120.074 (2)0.072 (2)0.0469 (16)0.019 (2)0.0072 (16)0.0009 (16)
C130.0569 (19)0.070 (2)0.064 (2)0.0079 (17)0.0168 (16)0.0019 (17)
C140.0458 (15)0.0534 (18)0.0557 (18)0.0012 (15)0.0052 (13)0.0003 (14)
Geometric parameters (Å, º) top
S1—C11.794 (4)C6—H6A0.9700
S1—C31.853 (3)C6—H6B0.9700
O1—C21.420 (4)C7—C81.507 (4)
O1—C31.424 (3)C7—H7A0.9700
O2—C51.430 (3)C7—H7B0.9700
O2—H20.8200C8—H8A0.9700
C1—C21.463 (5)C8—H8B0.9700
C1—H1A0.9700C9—C101.383 (4)
C1—H1B0.9700C9—C141.390 (4)
C2—H2A0.9700C10—C111.377 (4)
C2—H2B0.9700C10—H100.9300
C3—C41.517 (4)C11—C121.365 (5)
C3—C81.518 (4)C11—H110.9300
C4—C51.523 (4)C12—C131.367 (5)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C13—C141.383 (4)
C5—C91.522 (4)C13—H130.9300
C5—C61.533 (4)C14—H140.9300
C6—C71.516 (4)
C1—S1—C392.00 (16)C5—C6—H6A109.1
C2—O1—C3110.6 (2)C7—C6—H6B109.1
C5—O2—H2109.5C5—C6—H6B109.1
C2—C1—S1107.3 (3)H6A—C6—H6B107.8
C2—C1—H1A110.3C8—C7—C6111.3 (3)
S1—C1—H1A110.3C8—C7—H7A109.4
C2—C1—H1B110.3C6—C7—H7A109.4
S1—C1—H1B110.3C8—C7—H7B109.4
H1A—C1—H1B108.5C6—C7—H7B109.4
O1—C2—C1110.3 (3)H7A—C7—H7B108.0
O1—C2—H2A109.6C7—C8—C3111.3 (2)
C1—C2—H2A109.6C7—C8—H8A109.4
O1—C2—H2B109.6C3—C8—H8A109.4
C1—C2—H2B109.6C7—C8—H8B109.4
H2A—C2—H2B108.1C3—C8—H8B109.4
O1—C3—C4105.7 (2)H8A—C8—H8B108.0
O1—C3—C8111.7 (2)C10—C9—C14116.9 (3)
C4—C3—C8111.1 (2)C10—C9—C5119.3 (2)
O1—C3—S1104.12 (18)C14—C9—C5123.7 (2)
C4—C3—S1112.8 (2)C11—C10—C9121.8 (3)
C8—C3—S1111.1 (2)C11—C10—H10119.1
C3—C4—C5114.9 (2)C9—C10—H10119.1
C3—C4—H4A108.5C12—C11—C10120.2 (3)
C5—C4—H4A108.5C12—C11—H11119.9
C3—C4—H4B108.5C10—C11—H11119.9
C5—C4—H4B108.5C11—C12—C13119.5 (3)
H4A—C4—H4B107.5C11—C12—H12120.3
O2—C5—C9109.5 (2)C13—C12—H12120.3
O2—C5—C4110.0 (2)C12—C13—C14120.4 (3)
C9—C5—C4112.9 (2)C12—C13—H13119.8
O2—C5—C6105.2 (2)C14—C13—H13119.8
C9—C5—C6108.7 (2)C13—C14—C9121.1 (3)
C4—C5—C6110.2 (2)C13—C14—H14119.5
C7—C6—C5112.5 (2)C9—C14—H14119.5
C7—C6—H6A109.1
C3—S1—C1—C22.0 (3)C6—C7—C8—C357.3 (3)
C3—O1—C2—C143.0 (4)O1—C3—C8—C7172.0 (2)
S1—C1—C2—O124.6 (4)C4—C3—C8—C754.2 (3)
C2—O1—C3—C4157.9 (3)S1—C3—C8—C772.2 (3)
C2—O1—C3—C881.2 (3)O2—C5—C9—C1048.9 (3)
C2—O1—C3—S138.8 (3)C4—C5—C9—C10171.7 (2)
C1—S1—C3—O120.2 (2)C6—C5—C9—C1065.6 (3)
C1—S1—C3—C4134.3 (2)O2—C5—C9—C14133.3 (3)
C1—S1—C3—C8100.1 (2)C4—C5—C9—C1410.4 (4)
O1—C3—C4—C5173.0 (2)C6—C5—C9—C14112.2 (3)
C8—C3—C4—C551.7 (3)C14—C9—C10—C111.4 (4)
S1—C3—C4—C573.8 (3)C5—C9—C10—C11176.6 (3)
C3—C4—C5—O265.9 (3)C9—C10—C11—C120.6 (5)
C3—C4—C5—C9171.5 (2)C10—C11—C12—C130.1 (5)
C3—C4—C5—C649.7 (3)C11—C12—C13—C140.0 (5)
O2—C5—C6—C767.2 (3)C12—C13—C14—C90.9 (5)
C9—C5—C6—C7175.6 (2)C10—C9—C14—C131.6 (4)
C4—C5—C6—C751.3 (3)C5—C9—C14—C13176.3 (3)
C5—C6—C7—C856.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.142.962 (3)175
Symmetry code: (i) x+1/2, y1/2, z.
(IIb) 7-phenyl-1-oxa-4-thiaspiro[4.5]decan-7-ol top
Crystal data top
C14H18O2SF(000) = 2144
Mr = 250.34Dx = 1.303 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 22.136 (8) ÅCell parameters from 25 reflections
b = 10.144 (2) Åθ = 20–30°
c = 24.923 (6) ŵ = 2.15 mm1
β = 114.17 (2)°T = 293 K
V = 5106 (2) Å3Block, colourless
Z = 160.41 × 0.33 × 0.31 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 68°, θmin = 5°
ω/2θ scansh = 250
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
k = 100
Tmin = 0.43, Tmax = 0.51l = 2729
4577 measured reflections3 standard reflections every 200 reflections
4459 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.057P)2 + 2.16P]
where P = (Fo2 + 2Fc2)/3
4459 reflections(Δ/σ)max < 0.01
365 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H18O2SV = 5106 (2) Å3
Mr = 250.34Z = 16
Monoclinic, C2/cCu Kα radiation
a = 22.136 (8) ŵ = 2.15 mm1
b = 10.144 (2) ÅT = 293 K
c = 24.923 (6) Å0.41 × 0.33 × 0.31 mm
β = 114.17 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2869 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.022
Tmin = 0.43, Tmax = 0.513 standard reflections every 200 reflections
4577 measured reflections intensity decay: 1.1%
4459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4459 reflectionsΔρmin = 0.18 e Å3
365 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.07869 (12)0.3682 (3)0.49358 (11)0.0620 (10)0.717 (18)
C10.1483 (8)0.3168 (15)0.4822 (5)0.063 (3)0.717 (18)
H1A0.14450.34130.44330.076*0.717 (18)
H1B0.15440.22220.48700.076*0.717 (18)
C20.2042 (3)0.3897 (10)0.5293 (2)0.0565 (16)0.717 (18)
H2A0.20450.48090.51760.068*0.717 (18)
H2B0.24620.35000.53470.068*0.717 (18)
S1'0.0780 (4)0.3668 (9)0.4945 (4)0.092 (4)0.283 (18)
C1'0.1536 (19)0.345 (4)0.4797 (15)0.080 (11)0.283 (18)
H1'10.16360.42440.46330.096*0.283 (18)
H1'20.14810.27230.45270.096*0.283 (18)
C2'0.2058 (8)0.316 (3)0.5379 (7)0.066 (5)0.283 (18)
H2'10.24840.33960.53840.079*0.283 (18)
H2'20.20620.22200.54550.079*0.283 (18)
O10.19592 (8)0.38421 (17)0.58134 (7)0.0541 (5)
O20.22455 (7)0.58800 (18)0.66598 (8)0.0574 (5)
H20.23420.52810.64880.086*
C30.12878 (11)0.4062 (2)0.57218 (9)0.0439 (5)
C40.11861 (11)0.5492 (2)0.58480 (9)0.0427 (5)
H4A0.13420.60570.56170.051*
H4B0.07160.56520.57210.051*
C50.15445 (10)0.5873 (2)0.64997 (9)0.0406 (5)
C60.13858 (13)0.4885 (2)0.68876 (10)0.0512 (6)
H6A0.09230.49700.68180.061*
H6B0.16500.50920.72980.061*
C70.15215 (15)0.3471 (3)0.67682 (11)0.0600 (7)
H7A0.19910.33600.68700.072*
H7B0.13980.28770.70110.072*
C80.11287 (13)0.3130 (3)0.61213 (11)0.0571 (7)
H8A0.06590.31750.60290.068*
H8B0.12310.22340.60500.068*
C90.13527 (11)0.7260 (2)0.65987 (9)0.0421 (5)
C100.18134 (13)0.8246 (3)0.68430 (10)0.0524 (6)
H100.22600.80690.69510.063*
C110.16190 (16)0.9493 (3)0.69293 (12)0.0647 (8)
H110.19371.01440.70960.078*
C120.09714 (16)0.9783 (3)0.67748 (12)0.0647 (8)
H120.08451.06270.68330.078*
C130.05050 (15)0.8817 (3)0.65319 (13)0.0651 (8)
H130.00590.90070.64220.078*
C140.06945 (12)0.7565 (3)0.64496 (11)0.0536 (6)
H140.03740.69140.62910.064*
S1A0.17349 (11)0.1055 (2)0.49505 (8)0.0550 (7)0.794 (16)
C1A0.1058 (5)0.0630 (10)0.4801 (3)0.063 (2)0.794 (16)
H1A10.11290.08850.44040.076*0.794 (16)
H1A20.09750.03110.48460.076*0.794 (16)
C2A0.0486 (2)0.1401 (9)0.5255 (2)0.0557 (15)0.794 (16)
H2A20.05020.23130.51330.067*0.794 (16)
H2A30.00660.10270.52950.067*0.794 (16)
S1A'0.1738 (8)0.1171 (18)0.4944 (6)0.140 (7)0.206 (16)
C1A'0.094 (2)0.080 (4)0.4814 (16)0.086 (14)0.206 (16)
H1A30.08370.15430.46200.103*0.206 (16)
H1A40.10040.00250.45710.103*0.206 (16)
C2A'0.0444 (9)0.061 (4)0.5362 (10)0.067 (7)0.206 (16)
H2A40.04210.03240.54600.080*0.206 (16)
H2A50.00240.08580.53570.080*0.206 (16)
O1A0.05462 (8)0.13291 (17)0.57908 (7)0.0540 (5)
O2A0.02599 (7)0.34124 (19)0.66071 (8)0.0579 (5)
H2A10.01630.27850.64500.087*
C3A0.12113 (11)0.1512 (2)0.57221 (9)0.0445 (6)
C4A0.13313 (11)0.2940 (2)0.58343 (9)0.0431 (6)
H4A10.12020.35020.55840.052*
H4A20.18010.30670.57240.052*
C5A0.09502 (10)0.3369 (2)0.64782 (9)0.0412 (5)
C6A0.10607 (13)0.2395 (2)0.68970 (10)0.0521 (6)
H6A10.15160.24570.68520.062*
H6A20.07770.26320.72990.062*
C7A0.09154 (16)0.0978 (3)0.67847 (11)0.0634 (8)
H7A10.10140.03910.70450.076*
H7A20.04490.08900.68680.076*
C8A0.13300 (14)0.0592 (3)0.61484 (11)0.0588 (7)
H8A10.17950.06130.60750.071*
H8A20.12210.03020.60830.071*
C9A0.11606 (11)0.4747 (2)0.65716 (9)0.0433 (6)
C10A0.07107 (13)0.5755 (3)0.68012 (11)0.0548 (6)
H10A0.02650.55990.68950.066*
C11A0.09089 (16)0.6992 (3)0.68953 (12)0.0672 (8)
H11A0.05960.76560.70540.081*
C12A0.15592 (16)0.7246 (3)0.67570 (12)0.0658 (8)
H12A0.16910.80810.68190.079*
C13A0.20161 (14)0.6270 (3)0.65277 (12)0.0614 (7)
H13A0.24610.64420.64320.074*
C14A0.18207 (12)0.5018 (3)0.64368 (10)0.0523 (6)
H14A0.21360.43560.62840.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0608 (14)0.0836 (18)0.0325 (14)0.0086 (14)0.0099 (10)0.0194 (11)
C10.092 (6)0.066 (4)0.043 (4)0.001 (3)0.039 (4)0.014 (4)
C20.064 (3)0.062 (4)0.057 (3)0.008 (3)0.038 (2)0.004 (3)
S1'0.085 (5)0.128 (7)0.056 (6)0.067 (5)0.021 (4)0.013 (4)
C1'0.077 (16)0.11 (3)0.060 (13)0.039 (16)0.036 (12)0.026 (13)
C2'0.082 (8)0.071 (12)0.048 (7)0.020 (9)0.031 (6)0.011 (8)
O10.0505 (10)0.0693 (12)0.0443 (9)0.0127 (8)0.0211 (8)0.0067 (8)
O20.0439 (9)0.0629 (13)0.0595 (11)0.0031 (8)0.0153 (8)0.0087 (9)
C30.0494 (13)0.0492 (14)0.0345 (11)0.0055 (11)0.0187 (10)0.0030 (10)
C40.0481 (13)0.0483 (14)0.0335 (11)0.0088 (11)0.0184 (10)0.0021 (10)
C50.0413 (12)0.0442 (14)0.0356 (11)0.0019 (10)0.0150 (9)0.0010 (10)
C60.0749 (17)0.0486 (15)0.0355 (12)0.0002 (13)0.0283 (12)0.0009 (11)
C70.101 (2)0.0422 (16)0.0464 (14)0.0017 (15)0.0401 (15)0.0036 (12)
C80.0792 (18)0.0451 (16)0.0577 (15)0.0058 (13)0.0390 (14)0.0091 (12)
C90.0508 (13)0.0439 (14)0.0339 (11)0.0015 (11)0.0195 (10)0.0009 (10)
C100.0599 (15)0.0483 (16)0.0456 (13)0.0080 (12)0.0182 (12)0.0036 (12)
C110.092 (2)0.0457 (17)0.0557 (16)0.0161 (15)0.0292 (16)0.0087 (13)
C120.097 (2)0.0436 (17)0.0600 (17)0.0082 (16)0.0389 (16)0.0012 (13)
C130.0710 (18)0.0586 (19)0.0705 (18)0.0131 (15)0.0339 (15)0.0049 (15)
C140.0547 (15)0.0462 (15)0.0608 (15)0.0030 (12)0.0245 (12)0.0087 (12)
S1A0.0536 (11)0.0727 (13)0.0326 (10)0.0056 (8)0.0115 (8)0.0162 (7)
C1A0.085 (5)0.072 (4)0.044 (3)0.006 (3)0.038 (3)0.021 (3)
C2A0.063 (3)0.061 (4)0.054 (2)0.002 (2)0.036 (2)0.001 (2)
S1A'0.118 (10)0.193 (15)0.080 (9)0.021 (8)0.010 (7)0.041 (8)
C1A'0.070 (17)0.11 (3)0.11 (2)0.057 (19)0.061 (16)0.044 (19)
C2A'0.079 (11)0.060 (15)0.065 (11)0.008 (10)0.032 (9)0.018 (10)
O1A0.0523 (10)0.0679 (12)0.0435 (9)0.0127 (8)0.0214 (8)0.0060 (8)
O2A0.0458 (9)0.0654 (13)0.0596 (11)0.0051 (8)0.0184 (8)0.0104 (9)
C3A0.0496 (13)0.0518 (15)0.0332 (11)0.0037 (11)0.0179 (10)0.0050 (10)
C4A0.0473 (13)0.0517 (15)0.0313 (11)0.0082 (11)0.0172 (10)0.0007 (10)
C5A0.0424 (12)0.0477 (14)0.0337 (11)0.0044 (10)0.0157 (9)0.0017 (10)
C6A0.0725 (17)0.0514 (16)0.0354 (12)0.0060 (13)0.0253 (12)0.0007 (11)
C7A0.103 (2)0.0499 (17)0.0433 (14)0.0094 (15)0.0364 (15)0.0080 (12)
C8A0.0814 (18)0.0489 (16)0.0534 (15)0.0044 (14)0.0349 (14)0.0056 (12)
C9A0.0527 (14)0.0454 (15)0.0317 (11)0.0024 (11)0.0171 (10)0.0001 (10)
C10A0.0618 (16)0.0513 (17)0.0493 (14)0.0021 (13)0.0207 (12)0.0036 (12)
C11A0.087 (2)0.0522 (19)0.0597 (17)0.0094 (16)0.0272 (15)0.0100 (14)
C12A0.100 (2)0.0465 (18)0.0576 (16)0.0112 (16)0.0388 (16)0.0002 (13)
C13A0.0693 (18)0.0591 (19)0.0607 (16)0.0186 (15)0.0315 (14)0.0042 (14)
C14A0.0575 (15)0.0521 (16)0.0483 (14)0.0069 (12)0.0228 (12)0.0030 (12)
Geometric parameters (Å, º) top
S1—C11.757 (15)S1A—C1A1.741 (10)
S1—C31.854 (3)S1A—C3A1.852 (3)
C1—C21.506 (16)C1A—C2A1.525 (11)
C1—H1A0.9700C1A—H1A10.9700
C1—H1B0.9700C1A—H1A20.9700
C2—O11.383 (5)C2A—O1A1.397 (4)
C2—H2A0.9700C2A—H2A20.9700
C2—H2B0.9700C2A—H2A30.9700
S1'—C31.841 (8)S1A'—C3A1.842 (13)
S1'—C1'1.87 (4)S1A'—C1A'1.95 (4)
C1'—C2'1.47 (4)C1A'—C2A'1.38 (4)
C1'—H1'10.9700C1A'—H1A30.9700
C1'—H1'20.9700C1A'—H1A40.9700
C2'—O11.377 (12)C2A'—O1A1.389 (15)
C2'—H2'10.9700C2A'—H2A40.9700
C2'—H2'20.9700C2A'—H2A50.9700
O1—C31.426 (3)O1A—C3A1.423 (3)
O2—C51.435 (3)O2A—C5A1.428 (3)
O2—H20.8200O2A—H2A10.8200
C3—C81.515 (3)C3A—C8A1.516 (3)
C3—C41.520 (3)C3A—C4A1.519 (3)
C4—C51.537 (3)C4A—C5A1.539 (3)
C4—H4A0.9700C4A—H4A10.9700
C4—H4B0.9700C4A—H4A20.9700
C5—C91.519 (3)C5A—C9A1.521 (3)
C5—C61.530 (3)C5A—C6A1.528 (3)
C6—C71.519 (3)C6A—C7A1.523 (3)
C6—H6A0.9700C6A—H6A10.9700
C6—H6B0.9700C6A—H6A20.9700
C7—C81.526 (3)C7A—C8A1.523 (3)
C7—H7A0.9700C7A—H7A10.9700
C7—H7B0.9700C7A—H7A20.9700
C8—H8A0.9700C8A—H8A10.9700
C8—H8B0.9700C8A—H8A20.9700
C9—C101.379 (3)C9A—C10A1.378 (3)
C9—C141.383 (3)C9A—C14A1.386 (3)
C10—C111.381 (4)C10A—C11A1.381 (4)
C10—H100.9300C10A—H10A0.9300
C11—C121.356 (4)C11A—C12A1.360 (4)
C11—H110.9300C11A—H11A0.9300
C12—C131.372 (4)C12A—C13A1.363 (4)
C12—H120.9300C12A—H12A0.9300
C13—C141.379 (3)C13A—C14A1.389 (3)
C13—H130.9300C13A—H13A0.9300
C14—H140.9300C14A—H14A0.9300
C1—S1—C392.7 (4)C1A—S1A—C3A93.3 (3)
C2—C1—S1102.9 (7)C2A—C1A—S1A103.9 (4)
C2—C1—H1A111.2C2A—C1A—H1A1111.0
S1—C1—H1A111.2S1A—C1A—H1A1111.0
C2—C1—H1B111.2C2A—C1A—H1A2111.0
S1—C1—H1B111.2S1A—C1A—H1A2111.0
H1A—C1—H1B109.1H1A1—C1A—H1A2109.0
O1—C2—C1109.3 (7)O1A—C2A—C1A107.9 (5)
O1—C2—H2A109.8O1A—C2A—H2A2110.1
C1—C2—H2A109.8C1A—C2A—H2A2110.1
O1—C2—H2B109.8O1A—C2A—H2A3110.1
C1—C2—H2B109.8C1A—C2A—H2A3110.1
H2A—C2—H2B108.3H2A2—C2A—H2A3108.4
C3—S1'—C1'91.4 (11)C3A—S1A'—C1A'89.1 (13)
C2'—C1'—S1'104 (2)C2A'—C1A'—S1A'106 (2)
C2'—C1'—H1'1111.0C2A'—C1A'—H1A3110.6
S1'—C1'—H1'1111.0S1A'—C1A'—H1A3110.6
C2'—C1'—H1'2111.0C2A'—C1A'—H1A4110.6
S1'—C1'—H1'2111.0S1A'—C1A'—H1A4110.6
H1'1—C1'—H1'2109.0H1A3—C1A'—H1A4108.7
O1—C2'—C1'111.3 (19)C1A'—C2A'—O1A112 (2)
O1—C2'—H2'1109.4C1A'—C2A'—H2A4109.3
C1'—C2'—H2'1109.4O1A—C2A'—H2A4109.3
O1—C2'—H2'2109.4C1A'—C2A'—H2A5109.3
C1'—C2'—H2'2109.4O1A—C2A'—H2A5109.3
H2'1—C2'—H2'2108.0H2A4—C2A'—H2A5107.9
C2'—O1—C232.7 (9)C2A'—O1A—C2A35.2 (13)
C2'—O1—C3116.3 (7)C2A'—O1A—C3A117.6 (8)
C2—O1—C3111.9 (3)C2A—O1A—C3A112.2 (3)
C5—O2—H2109.5C5A—O2A—H2A1109.5
O1—C3—C8107.74 (19)O1A—C3A—C8A107.6 (2)
O1—C3—C4110.42 (19)O1A—C3A—C4A110.65 (19)
C8—C3—C4111.44 (18)C8A—C3A—C4A111.37 (19)
O1—C3—S1'106.4 (3)O1A—C3A—S1A'106.3 (5)
C8—C3—S1'110.5 (4)C8A—C3A—S1A'113.9 (6)
C4—C3—S1'110.2 (3)C4A—C3A—S1A'106.9 (6)
O1—C3—S1105.66 (16)O1A—C3A—S1A105.61 (15)
C8—C3—S1111.43 (19)C8A—C3A—S1A111.05 (18)
C4—C3—S1109.98 (18)C4A—C3A—S1A110.33 (17)
S1'—C3—S11.0 (4)S1A'—C3A—S1A3.7 (6)
C3—C4—C5113.73 (18)C3A—C4A—C5A113.53 (18)
C3—C4—H4A108.8C3A—C4A—H4A1108.9
C5—C4—H4A108.8C5A—C4A—H4A1108.9
C3—C4—H4B108.8C3A—C4A—H4A2108.9
C5—C4—H4B108.8C5A—C4A—H4A2108.9
H4A—C4—H4B107.7H4A1—C4A—H4A2107.7
O2—C5—C9107.00 (18)O2A—C5A—C9A107.69 (19)
O2—C5—C6109.25 (19)O2A—C5A—C6A108.80 (19)
C9—C5—C6110.63 (18)C9A—C5A—C6A110.18 (18)
O2—C5—C4109.06 (18)O2A—C5A—C4A108.82 (17)
C9—C5—C4110.30 (18)C9A—C5A—C4A110.37 (18)
C6—C5—C4110.52 (19)C6A—C5A—C4A110.90 (19)
C7—C6—C5112.29 (19)C7A—C6A—C5A112.30 (19)
C7—C6—H6A109.1C7A—C6A—H6A1109.1
C5—C6—H6A109.1C5A—C6A—H6A1109.1
C7—C6—H6B109.1C7A—C6A—H6A2109.1
C5—C6—H6B109.1C5A—C6A—H6A2109.1
H6A—C6—H6B107.9H6A1—C6A—H6A2107.9
C6—C7—C8110.4 (2)C8A—C7A—C6A110.6 (2)
C6—C7—H7A109.6C8A—C7A—H7A1109.5
C8—C7—H7A109.6C6A—C7A—H7A1109.5
C6—C7—H7B109.6C8A—C7A—H7A2109.5
C8—C7—H7B109.6C6A—C7A—H7A2109.5
H7A—C7—H7B108.1H7A1—C7A—H7A2108.1
C3—C8—C7111.6 (2)C3A—C8A—C7A111.6 (2)
C3—C8—H8A109.3C3A—C8A—H8A1109.3
C7—C8—H8A109.3C7A—C8A—H8A1109.3
C3—C8—H8B109.3C3A—C8A—H8A2109.3
C7—C8—H8B109.3C7A—C8A—H8A2109.3
H8A—C8—H8B108.0H8A1—C8A—H8A2108.0
C10—C9—C14117.6 (2)C10A—C9A—C14A117.6 (2)
C10—C9—C5122.5 (2)C10A—C9A—C5A122.1 (2)
C14—C9—C5119.8 (2)C14A—C9A—C5A120.3 (2)
C9—C10—C11120.8 (2)C9A—C10A—C11A121.3 (3)
C9—C10—H10119.6C9A—C10A—H10A119.4
C11—C10—H10119.6C11A—C10A—H10A119.4
C12—C11—C10121.0 (3)C12A—C11A—C10A120.4 (3)
C12—C11—H11119.5C12A—C11A—H11A119.8
C10—C11—H11119.5C10A—C11A—H11A119.8
C11—C12—C13119.2 (3)C11A—C12A—C13A119.7 (3)
C11—C12—H12120.4C11A—C12A—H12A120.1
C13—C12—H12120.4C13A—C12A—H12A120.1
C12—C13—C14120.3 (3)C12A—C13A—C14A120.3 (3)
C12—C13—H13119.9C12A—C13A—H13A119.8
C14—C13—H13119.9C14A—C13A—H13A119.8
C13—C14—C9121.1 (3)C9A—C14A—C13A120.7 (3)
C13—C14—H14119.4C9A—C14A—H14A119.7
C9—C14—H14119.4C13A—C14A—H14A119.7
C3—S1—C1—C225.1 (9)C3A—S1A—C1A—C2A23.4 (6)
S1—C1—C2—O142.8 (12)S1A—C1A—C2A—O1A41.4 (8)
C3—S1'—C1'—C2'23 (3)C3A—S1A'—C1A'—C2A'17 (3)
S1'—C1'—C2'—O135 (3)S1A'—C1A'—C2A'—O1A30 (4)
C1'—C2'—O1—C257 (3)C1A'—C2A'—O1A—C2A55 (3)
C1'—C2'—O1—C333 (3)C1A'—C2A'—O1A—C3A34 (4)
C1—C2—O1—C2'62.0 (15)C1A—C2A—O1A—C2A'63.6 (14)
C1—C2—O1—C343.0 (10)C1A—C2A—O1A—C3A43.2 (8)
C2'—O1—C3—C8105.1 (15)C2A'—O1A—C3A—C8A103.9 (19)
C2—O1—C3—C8140.6 (5)C2A—O1A—C3A—C8A142.4 (4)
C2'—O1—C3—C4133.0 (14)C2A'—O1A—C3A—C4A134.2 (19)
C2—O1—C3—C497.5 (5)C2A—O1A—C3A—C4A95.7 (4)
C2'—O1—C3—S1'13.4 (15)C2A'—O1A—C3A—S1A'19 (2)
C2—O1—C3—S1'22.2 (6)C2A—O1A—C3A—S1A'20.0 (9)
C2'—O1—C3—S114.1 (15)C2A'—O1A—C3A—S1A14.8 (19)
C2—O1—C3—S121.4 (5)C2A—O1A—C3A—S1A23.7 (5)
C1'—S1'—C3—O16.7 (13)C1A'—S1A'—C3A—O1A0.1 (14)
C1'—S1'—C3—C8123.3 (13)C1A'—S1A'—C3A—C8A118.2 (13)
C1'—S1'—C3—C4113.1 (13)C1A'—S1A'—C3A—C4A118.3 (13)
C1'—S1'—C3—S138 (18)C1A'—S1A'—C3A—S1A80 (8)
C1—S1—C3—O14.0 (6)C1A—S1A—C3A—O1A1.7 (4)
C1—S1—C3—C8112.7 (6)C1A—S1A—C3A—C8A114.7 (4)
C1—S1—C3—C4123.2 (6)C1A—S1A—C3A—C4A121.4 (4)
C1—S1—C3—S1'132 (19)C1A—S1A—C3A—S1A'103 (8)
O1—C3—C4—C567.8 (2)O1A—C3A—C4A—C5A67.5 (2)
C8—C3—C4—C551.9 (3)C8A—C3A—C4A—C5A52.1 (3)
S1'—C3—C4—C5174.9 (3)S1A'—C3A—C4A—C5A177.2 (5)
S1—C3—C4—C5175.93 (17)S1A—C3A—C4A—C5A175.95 (16)
C3—C4—C5—O269.5 (2)C3A—C4A—C5A—O2A69.1 (2)
C3—C4—C5—C9173.32 (18)C3A—C4A—C5A—C9A172.94 (18)
C3—C4—C5—C650.7 (3)C3A—C4A—C5A—C6A50.5 (3)
O2—C5—C6—C766.8 (3)O2A—C5A—C6A—C7A67.2 (3)
C9—C5—C6—C7175.6 (2)C9A—C5A—C6A—C7A174.9 (2)
C4—C5—C6—C753.2 (3)C4A—C5A—C6A—C7A52.4 (3)
C5—C6—C7—C857.0 (3)C5A—C6A—C7A—C8A56.2 (3)
O1—C3—C8—C766.6 (3)O1A—C3A—C8A—C7A66.3 (3)
C4—C3—C8—C754.6 (3)C4A—C3A—C8A—C7A55.1 (3)
S1'—C3—C8—C7177.6 (3)S1A'—C3A—C8A—C7A176.1 (6)
S1—C3—C8—C7177.9 (2)S1A—C3A—C8A—C7A178.54 (19)
C6—C7—C8—C357.3 (3)C6A—C7A—C8A—C3A57.3 (3)
O2—C5—C9—C104.5 (3)O2A—C5A—C9A—C10A6.1 (3)
C6—C5—C9—C10114.4 (2)C6A—C5A—C9A—C10A112.5 (2)
C4—C5—C9—C10123.0 (2)C4A—C5A—C9A—C10A124.7 (2)
O2—C5—C9—C14176.5 (2)O2A—C5A—C9A—C14A175.29 (19)
C6—C5—C9—C1464.6 (3)C6A—C5A—C9A—C14A66.2 (3)
C4—C5—C9—C1458.0 (3)C4A—C5A—C9A—C14A56.6 (3)
C14—C9—C10—C110.6 (4)C14A—C9A—C10A—C11A0.1 (4)
C5—C9—C10—C11179.6 (2)C5A—C9A—C10A—C11A178.5 (2)
C9—C10—C11—C120.2 (4)C9A—C10A—C11A—C12A0.6 (4)
C10—C11—C12—C130.3 (4)C10A—C11A—C12A—C13A0.4 (4)
C11—C12—C13—C140.4 (4)C11A—C12A—C13A—C14A0.2 (4)
C12—C13—C14—C91.2 (4)C10A—C9A—C14A—C13A0.5 (3)
C10—C9—C14—C131.2 (4)C5A—C9A—C14A—C13A179.2 (2)
C5—C9—C14—C13179.7 (2)C12A—C13A—C14A—C9A0.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.122.834 (2)145
O2A—H2A1···O1A0.822.112.820 (2)145

Experimental details

(IIa)(IIb)
Crystal data
Chemical formulaC14H18O2SC14H18O2S
Mr250.34250.34
Crystal system, space groupOrthorhombic, PbcaMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)12.313 (2), 10.674 (5), 19.535 (2)22.136 (8), 10.144 (2), 24.923 (6)
α, β, γ (°)90, 90, 9090, 114.17 (2), 90
V3)2568 (1)5106 (2)
Z816
Radiation typeCu KαCu Kα
µ (mm1)2.132.15
Crystal size (mm)0.52 × 0.18 × 0.100.41 × 0.33 × 0.31
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Tmin, Tmax0.40, 0.820.43, 0.51
No. of measured, independent and
observed [I > 2σ(I)] reflections
2199, 2199, 1529 4577, 4459, 2869
Rint0.000.022
(sin θ/λ)max1)0.6010.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.03 0.044, 0.124, 1.03
No. of reflections21994459
No. of parameters155365
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.250.16, 0.18

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN, SHELXL97.

Selected geometric parameters (Å, º) for (IIa) top
S1—C11.794 (4)O1—C31.424 (3)
S1—C31.853 (3)O2—C51.430 (3)
O1—C21.420 (4)
C1—S1—C392.00 (16)C2—O1—C3110.6 (2)
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.142.962 (3)175
Symmetry code: (i) x+1/2, y1/2, z.
Selected geometric parameters (Å, º) for (IIb) top
S1—C11.757 (15)S1A—C1A1.741 (10)
S1—C31.854 (3)S1A—C3A1.852 (3)
C2—O11.383 (5)C2A—O1A1.397 (4)
O1—C31.426 (3)O1A—C3A1.423 (3)
O2—C51.435 (3)O2A—C5A1.428 (3)
C1—S1—C392.7 (4)C1A—S1A—C3A93.3 (3)
C2—O1—C3111.9 (3)C2A—O1A—C3A112.2 (3)
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.122.834 (2)145
O2A—H2A1···O1A0.822.112.820 (2)145
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds