Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The carboxy group of 2-methyl-N-[(2-nitrophenyl)sulfonyl]­alanine, C10H12N2O6S, forms centrosymmetric hydrogen-bonded dimers with an O...O distance of 2.629 (2) Å and an intramolecular N—H...O(nitro) hydrogen bond N...O distance of 2.823 (2) Å. 1-[(2-Nitro­phenyl)­sulfonyl­amino]­cyclo­hexane­carboxyl­ic acid, C13H16N2O6S, has Z′ = 2 and forms similar interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012464/da1155sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012464/da1155Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012464/da1155IIsup3.hkl
Supplementary material

CCDC references: 156173; 156174

Comment top

The incorporation of α,α-disubstituted amino acids into short peptide segments can dramatically increase the helical propensity of sequences as short as ten residues (Prasad & Balaram, 1984; Marshall, et al., 1990). This effect has been of recent interest in the development of novel amphipathic helical peptides, designed to exhibit anti-microbial activity under physiological conditions (Wysong et al., 1997; Yokum et al., 1996). However, the incorporation of some α,α-disubstituted amino acids into peptide sequences has proven to be difficult during solid phase peptide synthesis (SPPS) by the use of the Fmoc-acid fluoride (Fmoc = 9-fluorenylmethoxycarbonyl) conditions set forth by Wenschuh et al. (1994). As part of an effort to increase the overall efficacy of the couplings, we have probed the utilization of the acid chloride analogues of several commonly used α,α-disubstituted amino acids, two of which are described here, Aib (2-aminoisobutyric acid) and Cyh (1-amino-1-cyclohexanecarboxylic acid). Because the use of acid chlorides greatly increases the propensity of oxazolone formation under SPPS conditions (Carpino et al., 1991), we experimented with the use of the ortho-nitrobenzensulfonyl protecting group as an alternative to the Fmoc protecting group. The ortho-nitrobenzenesulfonyl group is readily cleaved by nucleophilic displacement (Fukuyama et al., 1995). It is, however, stable under acidic conditions, and is thus orthogonal to the Boc chemistry (Boc = t-butyloxycarbonyl) required for sidegroup protection of several amino acids during SPPS. In addition, due to the lower nucleophilicity of the sulfonyl group, oxazolone formation by intramolecular cyclization is minimized (Miller & Scanlan, 1998). The incorporation of the ortho-nitrobenzenesulfonyl group has the added advantage of introducing a greater propensity towards crystallization of the amino acid derivatives. We herein report the first crystallographic data on the o-nitrobenzenesulfonyl derivatives of these α,α-disubstituted amino acids, oNBS-Aib, (I), and oNBS-Cyh, (II). \sch

oNBS-Aib has Z' = 1, while compound oNBS-Cyh has Z' = 2. The conformations of the molecules are described by five torsion angles: that about the C—NO2 bond, and the four in the CSNCC(carboxy) chain. The conformations of oNBS-Aib and the two independent molecules of oNBS-Cyh are quite similar. In all three cases, the NO2 group is rotated out of the plane of its attached phenyl group by 38.5 (2)–47.1 (3)°, as measured by the magnitudes of torsion angles O5—N2—C8—C3. This is similar to, but slightly smaller than the 52.4 (6)° seen in N,N-dimethyl-o-nitrobenzenesulfonamide (Ruostesuo et al., 1989). The four torsion angles about the CSNCC(carboxy) chain exhibit good agreement between the two molecules of oNBS-Cyh (mean difference 4.6°), and between oNBS-Aib and oNBS-Cyh (mean differences 4.3° with the unprimed molecule and 6.1° with the primed molecule). This conformation is different, however, from the conformation seen in N-p-toluenesulfonyl-α-aminoisobutyric acid (Crisma et al., 1999), which differs from oNBS-Aib only by having a p-tosyl subsituent on S rather than o-nitrophenyl. In that p-tosyl compound, torsion angles along the CSNCC(carboxy) chain are, respectively, 52.5 (2), 84.1 (3), 80.1 (3), and 33.7 (4)°. While the N—C—C—O torsion angle of the p-tosyl compound agrees well with those seen in oNBS-Aib and oNBS-Cyh, the other three torsion angles differ by 20–30°.

The likely cause of this conformational difference is hydrogen bonding by the N—H group. In the p-tosyl compound (Crisma et al., 1999), the N—H group forms a near-linear intermolecular hydrogen bond of N···O length 2.893 (3) Å to sulfonyl oxygen. In both oNBS-Aib and oNBS-Cyh, all N—H groups form nonlinear intramolecular contacts to nitro oxygen atoms, and longer, more linear intermolecular interactions with nitro or carboxy O. The COOH group of oNBS-Aib forms a centrosymmetric hydrogen-bonded dimer with O···O distance 2.629 (2) Å. The two independent molecules of oNBS-Cyh form a hydrogen-bonded dimer about a pseudocenter near 1/4, 3/4, 1/2, with O···O distances 2.619 (2) and 2.705 (2) Å.

The difference in the environments of the primed and unprimed molecules may be seen in the hydrogen bonding by the N—H group. That of the primed molecule forms a near-linear intermolecular contact to nitro oxygen O5i (i = x, 3/2 − y, 1/2 + z, see Table 2), while the nearest distance to the unprimed N—H group is somewhat longer, 3.767 (2) Å to sulfonyl oxygen O1' at x, 3/2 − y, z − 1/2, and somewhat less linear, with N—H···O angle 152 (2)°.

The cyclohexyl group of oNBS-Cyh is in the chair conformation, having endocyclic torsion angle magnitudes in the range 53.9 (2)–57.3 (2)°, in good agreement with the mean value of 54.6° observed in 1-aminocyclohexane-1-carboxylic acid and six of its derivatives (Valle et al., 1988).

We have isolated a second polymorph of oNBS-Cyh having Z' = 1 from the same crystallization, but have not obtained crystals of sufficient quality to report the full structure here. That polymorph has space group P1, with cell dimensions a = 8.48 (2), b = 8.52 (2), c = 11.44 (3) Å, α = 97.2 (2), β = 102.8 (2), γ = 106.1 (2)°, V = 759 (3) Å3 at 297 K, R = 0.090. Its conformation is quite similar to that of the Z' = 2 polymorph described here.

Experimental top

Compounds (1) and (2) were prepared by reacting the corresponding amino acid (1 eq.) with chlorotrimethylsilane (1.85 eq), diisopropylethylamine, (2.3 eq) and ortho-nitrobenzenesulfonyl chloride (0.9 eq) in anhydrous dichloromethane over 12 h (273 K to reflux), followed by aqueous work-up and extraction. Both amino acid derivatives were crystallized by dissolving the crude material in a hot ethanol solution, followed by slow cooling to room temperature.

Refinement top

Carboxy and N—H H atoms were located in difference maps and refined individually. Other H atoms were placed in calculated positions with C—H bond distances 0.95 for phenyl and 0.98 Å for methyl, and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso = 1.2Ueq of the attached C (1.5 for methyl).

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS. Data reduction: XCAD4 (Harms & Wocadlo, 1995) for (I); maXus (Mackay et al., 1999) for (II). Program(s) used to solve structure: SHELXS97 (Sheldrick, 199b) for (I); SIR92 (Altomare et al., 1993) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997). Software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) for (I); SHELXL97 (Sheldrick, 1997) for (II).

Figures top
[Figure 1] Fig. 1. The molecular structure of oNBS-Aib with 50% ellipsoids.
[Figure 2] Fig. 2. The two independent molecules of oNBS-Cyh with 50% ellipsoids.
(I) N-(2-nitrobenzenesulfonyl)-2-amino isobutyric acid top
Crystal data top
C10H12N2O6SF(000) = 600
Mr = 288.28Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.665 (3) ÅCell parameters from 25 reflections
b = 10.614 (2) Åθ = 14.8–21.1°
c = 11.121 (4) ŵ = 0.29 mm1
β = 117.80 (2)°T = 100 K
V = 1217.9 (6) Å3Prism, colorless
Z = 40.45 × 0.43 × 0.20 mm
Data collection top
Enraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
Rint = 0.035
ω–2θ scansθmax = 30.0°, θmin = 2.7°
Absorption correction: ψ scan
(North et al., 1968)
h = 1614
Tmin = 0.880, Tmax = 0.944k = 148
4282 measured reflectionsl = 015
3536 independent reflections3 standard reflections every 60 min
2710 reflections with I > 2σ(I) intensity decay: 5.0%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0437P)2 + 0.4249P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max = 0.001
wR(F2) = 0.109Δρmax = 0.46 e Å3
S = 1.03Δρmin = 0.37 e Å3
3536 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
183 parametersExtinction coefficient: 0.0105 (14)
0 restraints
Crystal data top
C10H12N2O6SV = 1217.9 (6) Å3
Mr = 288.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.665 (3) ŵ = 0.29 mm1
b = 10.614 (2) ÅT = 100 K
c = 11.121 (4) Å0.45 × 0.43 × 0.20 mm
β = 117.80 (2)°
Data collection top
Enraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
2710 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.880, Tmax = 0.9443 standard reflections every 60 min
4282 measured reflections intensity decay: 5.0%
3536 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
3536 reflectionsΔρmin = 0.37 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.72056 (4)0.74709 (4)0.66517 (4)0.01288 (11)
O10.73513 (12)0.63104 (13)0.73690 (13)0.0188 (3)
O20.69106 (12)0.86147 (12)0.71433 (13)0.0189 (3)
O30.98574 (12)0.85716 (12)0.91026 (12)0.0152 (3)
O40.94016 (12)1.05851 (11)0.84208 (12)0.0149 (3)
O50.78235 (12)0.53798 (12)0.52256 (14)0.0204 (3)
O60.62615 (13)0.40202 (12)0.44478 (14)0.0227 (3)
N10.84935 (14)0.77553 (14)0.65117 (15)0.0147 (3)
N20.66683 (14)0.50992 (14)0.46771 (15)0.0146 (3)
C10.94529 (15)0.94668 (16)0.81806 (16)0.0121 (3)
C20.91241 (16)0.89947 (16)0.67511 (16)0.0131 (3)
C30.59119 (16)0.72314 (16)0.49805 (16)0.0129 (3)
C40.49572 (17)0.81608 (17)0.44523 (18)0.0165 (3)
H40.50510.89100.49560.020*
C50.38713 (17)0.80018 (19)0.31969 (19)0.0200 (4)
H50.32410.86520.28400.024*
C60.37020 (17)0.69041 (19)0.24650 (18)0.0198 (4)
H60.2960.68040.16050.024*
C70.46168 (16)0.59461 (18)0.29862 (17)0.0168 (4)
H70.44920.51780.25020.020*
C80.57152 (16)0.61270 (16)0.42241 (17)0.0134 (3)
C91.04188 (17)0.87881 (18)0.6737 (2)0.0189 (4)
H9A1.09290.81580.74240.028*
H9B1.08990.95840.69420.028*
H9C1.02560.84900.58370.028*
C100.82947 (18)0.99529 (18)0.56642 (18)0.0191 (4)
H10A0.81110.96340.47650.029*
H10B0.87631.07540.58350.029*
H10C0.74781.00850.56960.029*
H3O1.010 (3)0.894 (3)0.991 (3)0.053 (9)*
H1N0.887 (2)0.716 (2)0.648 (3)0.034 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.01306 (19)0.0156 (2)0.01038 (19)0.00238 (15)0.00576 (15)0.00250 (15)
O10.0188 (6)0.0226 (7)0.0142 (6)0.0027 (5)0.0071 (5)0.0032 (5)
O20.0184 (6)0.0227 (7)0.0172 (6)0.0025 (5)0.0097 (5)0.0081 (5)
O30.0194 (6)0.0140 (6)0.0105 (6)0.0020 (5)0.0055 (5)0.0017 (5)
O40.0181 (6)0.0134 (6)0.0116 (6)0.0001 (5)0.0054 (5)0.0013 (5)
O50.0135 (6)0.0189 (6)0.0243 (7)0.0004 (5)0.0050 (5)0.0030 (5)
O60.0277 (7)0.0129 (6)0.0289 (7)0.0044 (5)0.0145 (6)0.0041 (5)
N10.0144 (7)0.0138 (7)0.0174 (7)0.0035 (5)0.0085 (6)0.0057 (6)
N20.0173 (7)0.0150 (7)0.0130 (7)0.0008 (5)0.0084 (6)0.0026 (5)
C10.0105 (7)0.0145 (8)0.0107 (7)0.0017 (6)0.0045 (6)0.0008 (6)
C20.0150 (7)0.0140 (8)0.0097 (7)0.0030 (6)0.0053 (6)0.0023 (6)
C30.0119 (7)0.0151 (8)0.0108 (7)0.0020 (6)0.0044 (6)0.0006 (6)
C40.0170 (8)0.0154 (8)0.0177 (8)0.0005 (6)0.0086 (7)0.0006 (7)
C50.0153 (8)0.0228 (9)0.0198 (9)0.0042 (7)0.0065 (7)0.0039 (7)
C60.0137 (8)0.0299 (10)0.0125 (8)0.0019 (7)0.0034 (6)0.0007 (7)
C70.0159 (8)0.0213 (9)0.0136 (8)0.0043 (6)0.0072 (7)0.0041 (7)
C80.0138 (7)0.0131 (7)0.0143 (7)0.0014 (6)0.0074 (6)0.0003 (6)
C90.0186 (8)0.0201 (9)0.0217 (9)0.0042 (7)0.0126 (7)0.0057 (7)
C100.0257 (9)0.0186 (9)0.0115 (8)0.0004 (7)0.0075 (7)0.0002 (7)
Geometric parameters (Å, º) top
S—O11.4338 (13)C3—C81.398 (2)
S—O21.4376 (13)C4—C51.390 (3)
S—N11.6096 (16)C4—H40.95
S—C31.7832 (18)C5—C61.382 (3)
O3—C11.314 (2)C5—H50.95
O3—H3O0.90 (3)C6—C71.390 (3)
O4—C11.224 (2)C6—H60.95
O5—N21.2287 (18)C7—C81.389 (2)
O6—N21.2203 (19)C7—H70.95
N1—C21.470 (2)C9—H9A0.98
N1—H1N0.78 (3)C9—H9B0.98
N2—C81.469 (2)C9—H9C0.98
C1—C21.535 (2)C10—H10A0.98
C2—C101.530 (2)C10—H10B0.98
C2—C91.533 (2)C10—H10C0.98
C3—C41.396 (2)
O1—S—O2120.08 (8)C5—C4—H4119.6
O1—S—N1109.95 (8)C3—C4—H4119.6
O2—S—N1106.15 (8)C6—C5—C4120.46 (17)
O1—S—C3106.29 (8)C6—C5—H5119.8
O2—S—C3106.28 (8)C4—C5—H5119.8
N1—S—C3107.47 (8)C5—C6—C7120.02 (16)
C1—O3—H3O107.2 (19)C5—C6—H6120
C2—N1—S124.14 (12)C7—C6—H6120
C2—N1—H1N119.4 (19)C8—C7—C6119.09 (17)
S—N1—H1N115.0 (19)C8—C7—H7120.5
O6—N2—O5124.11 (15)C6—C7—H7120.5
O6—N2—C8117.84 (14)C7—C8—C3121.94 (16)
O5—N2—C8118.01 (14)C7—C8—N2115.99 (15)
O4—C1—O3124.56 (16)C3—C8—N2122.06 (15)
O4—C1—C2121.90 (15)C2—C9—H9A109.5
O3—C1—C2113.42 (14)C2—C9—H9B109.5
N1—C2—C10111.92 (14)H9A—C9—H9B109.5
N1—C2—C9106.39 (14)C2—C9—H9C109.5
C10—C2—C9110.50 (15)H9A—C9—H9C109.5
N1—C2—C1110.00 (14)H9B—C9—H9C109.5
C10—C2—C1111.20 (14)C2—C10—H10A109.5
C9—C2—C1106.58 (14)C2—C10—H10B109.5
C4—C3—C8117.68 (15)H10A—C10—H10B109.5
C4—C3—S117.33 (13)C2—C10—H10C109.5
C8—C3—S124.63 (13)H10A—C10—H10C109.5
C5—C4—C3120.75 (17)H10B—C10—H10C109.5
O1—S—N1—C2135.75 (14)N1—S—C3—C877.28 (16)
O2—S—N1—C24.43 (16)C8—C3—C4—C52.0 (3)
C3—S—N1—C2108.97 (15)S—C3—C4—C5175.44 (14)
S—N1—C2—C1068.35 (19)C3—C4—C5—C61.7 (3)
S—N1—C2—C9170.86 (12)C4—C5—C6—C70.4 (3)
S—N1—C2—C155.80 (19)C5—C6—C7—C82.1 (3)
O4—C1—C2—N1145.24 (16)C6—C7—C8—C31.8 (3)
O3—C1—C2—N138.50 (19)C6—C7—C8—N2177.08 (16)
O4—C1—C2—C1020.7 (2)C4—C3—C8—C70.2 (2)
O3—C1—C2—C10163.06 (14)S—C3—C8—C7173.18 (14)
O4—C1—C2—C999.81 (18)C4—C3—C8—N2179.02 (15)
O3—C1—C2—C976.45 (17)S—C3—C8—N28.0 (2)
O1—S—C3—C4132.56 (14)O6—N2—C8—C737.5 (2)
O2—S—C3—C43.56 (16)O5—N2—C8—C7140.35 (16)
N1—S—C3—C4109.76 (14)O6—N2—C8—C3143.65 (17)
O1—S—C3—C840.41 (16)O5—N2—C8—C338.5 (2)
O2—S—C3—C8169.41 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.90 (3)1.74 (3)2.629 (2)171 (3)
N1—H1N···O50.78 (3)2.32 (3)2.823 (2)123 (2)
N1—H1N···O4ii0.78 (3)2.58 (3)3.342 (2)165 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y1/2, z+3/2.
(II) N-(2-nitrobenzenesulfonyl)-1-amino-1-cyclohexane carboxylic acid top
Crystal data top
C13H16N2O6SF(000) = 1376
Mr = 328.34Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.9780 (12) ÅCell parameters from 25 reflections
b = 14.9840 (11) Åθ = 10.6–21.2°
c = 13.436 (1) ŵ = 0.25 mm1
β = 113.568 (6)°T = 100 K
V = 2948.4 (4) Å3Fragment, colorless
Z = 80.55 × 0.42 × 0.35 mm
Data collection top
Enraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
5772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 29.0°, θmin = 2.1°
ω–2θ scansh = 021
Absorption correction: ψ scan
(North et al., 1968)
k = 2020
Tmin = 0.887, Tmax = 0.916l = 1816
9183 measured reflections3 standard reflections every 60 min
7815 independent reflections intensity decay: 2.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0311P)2 + 2.1884P]
where P = (Fo2 + 2Fc2)/3
7815 reflections(Δ/σ)max = 0.001
413 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C13H16N2O6SV = 2948.4 (4) Å3
Mr = 328.34Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.9780 (12) ŵ = 0.25 mm1
b = 14.9840 (11) ÅT = 100 K
c = 13.436 (1) Å0.55 × 0.42 × 0.35 mm
β = 113.568 (6)°
Data collection top
Enraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
5772 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.887, Tmax = 0.9163 standard reflections every 60 min
9183 measured reflections intensity decay: 2.7%
7815 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.63 e Å3
7815 reflectionsΔρmin = 0.61 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09596 (3)0.97588 (3)0.32063 (4)0.01886 (11)
O10.07698 (10)0.95375 (10)0.21026 (12)0.0263 (3)
O20.06725 (10)0.91675 (10)0.38543 (13)0.0253 (3)
O30.24607 (11)0.81592 (10)0.40654 (12)0.0231 (3)
H3O0.241 (2)0.760 (2)0.413 (2)0.055 (10)*
O40.24094 (10)0.81240 (9)0.57073 (11)0.0214 (3)
O50.14870 (10)1.12141 (11)0.19518 (12)0.0257 (3)
O60.01772 (13)1.15342 (15)0.06488 (13)0.0448 (5)
N10.20410 (11)0.99212 (11)0.38608 (14)0.0177 (3)
H1N0.2302 (18)1.0027 (18)0.345 (2)0.032 (7)*
N20.06654 (12)1.13870 (12)0.15986 (14)0.0241 (4)
C10.24585 (12)0.85404 (13)0.49489 (16)0.0173 (4)
C20.25654 (13)0.95561 (13)0.49575 (15)0.0170 (4)
C30.04003 (12)1.07902 (13)0.31794 (16)0.0172 (4)
C40.00172 (14)1.09270 (15)0.39323 (18)0.0245 (4)
H40.01131.04960.44860.029*
C50.05019 (14)1.16799 (15)0.38932 (18)0.0259 (4)
H50.07451.17670.44260.031*
C60.06639 (13)1.23023 (14)0.30794 (17)0.0210 (4)
H60.10311.28110.30410.025*
C70.02901 (13)1.21842 (13)0.23183 (16)0.0203 (4)
H70.04011.26090.17550.024*
C80.02452 (13)1.14433 (13)0.23865 (15)0.0166 (4)
C90.35848 (13)0.97477 (14)0.52258 (17)0.0215 (4)
H9A0.39660.94470.59150.026*
H9B0.37470.94980.46450.026*
C100.22940 (14)0.99947 (13)0.58202 (17)0.0215 (4)
H10A0.16360.98940.56310.026*
H10B0.26400.97140.65350.026*
C110.37919 (14)1.07499 (14)0.53325 (18)0.0256 (4)
H11A0.44561.08410.55590.031*
H11B0.34751.10380.46160.031*
C120.34900 (16)1.11890 (16)0.61550 (18)0.0302 (5)
H12A0.35841.18420.61520.036*
H12B0.38701.09630.68910.036*
C130.24882 (15)1.09985 (14)0.58985 (18)0.0259 (4)
H13A0.21041.12870.52020.031*
H13B0.23251.12590.64740.031*
S1'0.39312 (3)0.48665 (3)0.68607 (4)0.01874 (11)
O1'0.39760 (11)0.49706 (10)0.79381 (12)0.0277 (3)
O2'0.42115 (10)0.55820 (10)0.63517 (13)0.0258 (3)
O3'0.23298 (11)0.63264 (10)0.58293 (12)0.0233 (3)
H3O'0.231 (2)0.691 (2)0.573 (2)0.054 (9)*
O4'0.23567 (10)0.64204 (9)0.41800 (11)0.0223 (3)
O5'0.34019 (10)0.31660 (11)0.77393 (12)0.0268 (3)
O6'0.46285 (12)0.27744 (12)0.91166 (13)0.0334 (4)
N1'0.29094 (11)0.46090 (11)0.60551 (13)0.0172 (3)
H1N'0.2599 (18)0.4333 (18)0.632 (2)0.033 (7)*
N2'0.42296 (12)0.30432 (11)0.81867 (14)0.0224 (4)
C1'0.23842 (12)0.59795 (13)0.49588 (16)0.0176 (4)
C2'0.24470 (13)0.49593 (12)0.49482 (15)0.0161 (4)
C3'0.46525 (13)0.39516 (13)0.68908 (16)0.0189 (4)
C4'0.51743 (13)0.40143 (15)0.62783 (18)0.0248 (4)
H4'0.51190.45280.58410.030*
C5'0.57751 (15)0.33409 (16)0.6293 (2)0.0302 (5)
H5'0.61090.33870.58490.036*
C6'0.58903 (14)0.25994 (15)0.69563 (19)0.0277 (5)
H6'0.63040.21400.69680.033*
C7'0.53985 (14)0.25345 (14)0.75990 (18)0.0243 (4)
H7'0.54860.20400.80720.029*
C8'0.47783 (13)0.31967 (13)0.75465 (16)0.0182 (4)
C9'0.14586 (13)0.45971 (14)0.45016 (16)0.0201 (4)
H9'10.11780.47420.50190.024*
H9'20.10960.48960.38040.024*
C10'0.29091 (14)0.46655 (13)0.41918 (16)0.0197 (4)
H10C0.26010.49600.34780.024*
H10D0.35540.48640.45030.024*
C11'0.14241 (14)0.35880 (14)0.43242 (18)0.0241 (4)
H11C0.17230.32850.50350.029*
H11D0.07790.33920.39970.029*
C12'0.18975 (15)0.33127 (15)0.35862 (18)0.0263 (5)
H12C0.18980.26540.35310.032*
H12D0.15570.35570.28490.032*
C13'0.28770 (14)0.36558 (14)0.40289 (18)0.0230 (4)
H13C0.31590.35020.35160.028*
H13D0.32340.33610.47310.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (2)0.0109 (2)0.0234 (2)0.00006 (17)0.00072 (18)0.00085 (18)
O10.0237 (7)0.0180 (7)0.0255 (8)0.0024 (6)0.0023 (6)0.0046 (6)
O20.0182 (7)0.0142 (7)0.0367 (9)0.0004 (6)0.0038 (6)0.0074 (6)
O30.0322 (8)0.0151 (7)0.0228 (7)0.0032 (6)0.0118 (6)0.0021 (6)
O40.0261 (7)0.0155 (7)0.0237 (7)0.0038 (6)0.0112 (6)0.0044 (6)
O50.0223 (7)0.0281 (8)0.0276 (8)0.0021 (6)0.0110 (6)0.0002 (6)
O60.0444 (11)0.0687 (14)0.0205 (8)0.0264 (10)0.0123 (8)0.0153 (8)
N10.0154 (8)0.0156 (8)0.0184 (8)0.0014 (6)0.0030 (6)0.0037 (6)
N20.0261 (9)0.0240 (9)0.0219 (9)0.0065 (7)0.0094 (7)0.0046 (7)
C10.0129 (8)0.0161 (9)0.0204 (9)0.0048 (7)0.0040 (7)0.0030 (7)
C20.0148 (8)0.0145 (9)0.0179 (9)0.0020 (7)0.0026 (7)0.0025 (7)
C30.0121 (8)0.0147 (9)0.0212 (9)0.0007 (7)0.0028 (7)0.0006 (7)
C40.0214 (10)0.0242 (11)0.0303 (11)0.0042 (8)0.0129 (9)0.0104 (9)
C50.0214 (10)0.0284 (11)0.0311 (11)0.0027 (9)0.0140 (9)0.0045 (9)
C60.0156 (9)0.0163 (9)0.0285 (10)0.0021 (7)0.0060 (8)0.0001 (8)
C70.0194 (9)0.0148 (9)0.0232 (10)0.0017 (7)0.0050 (8)0.0044 (7)
C80.0156 (8)0.0149 (9)0.0175 (9)0.0014 (7)0.0046 (7)0.0003 (7)
C90.0143 (9)0.0232 (10)0.0222 (10)0.0011 (8)0.0024 (8)0.0029 (8)
C100.0224 (10)0.0181 (10)0.0230 (10)0.0012 (8)0.0081 (8)0.0012 (8)
C110.0184 (9)0.0234 (11)0.0285 (11)0.0057 (8)0.0027 (8)0.0026 (9)
C120.0316 (12)0.0230 (11)0.0275 (11)0.0081 (9)0.0030 (9)0.0039 (9)
C130.0304 (11)0.0183 (10)0.0267 (11)0.0017 (9)0.0090 (9)0.0054 (8)
S1'0.0185 (2)0.0112 (2)0.0201 (2)0.00045 (17)0.00089 (18)0.00002 (17)
O1'0.0337 (9)0.0224 (8)0.0192 (7)0.0030 (6)0.0022 (6)0.0057 (6)
O2'0.0215 (7)0.0129 (7)0.0344 (8)0.0038 (6)0.0024 (6)0.0045 (6)
O3'0.0348 (8)0.0144 (7)0.0238 (7)0.0040 (6)0.0149 (7)0.0011 (6)
O4'0.0292 (8)0.0148 (7)0.0224 (7)0.0032 (6)0.0099 (6)0.0035 (6)
O5'0.0213 (7)0.0271 (8)0.0303 (8)0.0018 (6)0.0087 (6)0.0061 (7)
O6'0.0386 (9)0.0337 (9)0.0248 (8)0.0096 (8)0.0096 (7)0.0139 (7)
N1'0.0158 (8)0.0157 (8)0.0183 (8)0.0020 (6)0.0048 (6)0.0043 (6)
N2'0.0273 (9)0.0158 (8)0.0223 (8)0.0018 (7)0.0080 (7)0.0047 (7)
C1'0.0126 (8)0.0164 (9)0.0215 (9)0.0027 (7)0.0045 (7)0.0019 (7)
C2'0.0160 (8)0.0133 (9)0.0169 (9)0.0017 (7)0.0045 (7)0.0021 (7)
C3'0.0129 (8)0.0156 (9)0.0217 (9)0.0015 (7)0.0001 (7)0.0006 (7)
C4'0.0160 (9)0.0251 (11)0.0301 (11)0.0002 (8)0.0058 (8)0.0084 (9)
C5'0.0202 (10)0.0342 (13)0.0378 (13)0.0025 (9)0.0134 (9)0.0037 (10)
C6'0.0185 (10)0.0251 (11)0.0355 (12)0.0030 (8)0.0068 (9)0.0021 (9)
C7'0.0205 (10)0.0167 (9)0.0285 (11)0.0011 (8)0.0022 (8)0.0013 (8)
C8'0.0161 (9)0.0141 (9)0.0199 (9)0.0021 (7)0.0026 (7)0.0004 (7)
C9'0.0137 (8)0.0213 (10)0.0224 (10)0.0002 (7)0.0041 (7)0.0006 (8)
C10'0.0207 (9)0.0167 (9)0.0222 (10)0.0018 (7)0.0092 (8)0.0009 (7)
C11'0.0230 (10)0.0215 (10)0.0258 (10)0.0072 (8)0.0076 (8)0.0051 (8)
C12'0.0284 (11)0.0232 (11)0.0258 (11)0.0045 (9)0.0093 (9)0.0078 (9)
C13'0.0258 (10)0.0166 (9)0.0274 (11)0.0006 (8)0.0114 (9)0.0033 (8)
Geometric parameters (Å, º) top
S1—O11.4287 (16)S1'—O1'1.4290 (15)
S1—O21.4397 (15)S1'—O2'1.4363 (15)
S1—N11.6134 (17)S1'—N1'1.6041 (17)
S1—C31.778 (2)S1'—C3'1.781 (2)
O3—C11.319 (2)O3'—C1'1.314 (2)
O3—H3O0.85 (3)O3'—H3O'0.89 (3)
O4—C11.224 (2)O4'—C1'1.223 (2)
O5—N21.232 (2)O5'—N2'1.228 (2)
O6—N21.221 (2)O6'—N2'1.222 (2)
N1—C21.478 (2)N1'—C2'1.468 (2)
N1—H1N0.83 (3)N1'—H1N'0.83 (3)
N2—C81.465 (3)N2'—C8'1.471 (3)
C1—C21.531 (3)C1'—C2'1.532 (3)
C2—C101.538 (3)C2'—C10'1.540 (3)
C2—C91.548 (3)C2'—C9'1.546 (3)
C3—C41.391 (3)C3'—C4'1.389 (3)
C3—C81.394 (3)C3'—C8'1.398 (3)
C4—C51.389 (3)C4'—C5'1.387 (3)
C4—H40.9500C4'—H4'0.9500
C5—C61.381 (3)C5'—C6'1.389 (3)
C5—H50.9500C5'—H5'0.9500
C6—C71.386 (3)C6'—C7'1.384 (3)
C6—H60.9500C6'—H6'0.9500
C7—C81.382 (3)C7'—C8'1.384 (3)
C7—H70.9500C7'—H7'0.9500
C9—C111.532 (3)C9'—C11'1.528 (3)
C9—H9A0.9900C9'—H9'10.9900
C9—H9B0.9900C9'—H9'20.9900
C10—C131.531 (3)C10'—C13'1.527 (3)
C10—H10A0.9900C10'—H10C0.9900
C10—H10B0.9900C10'—H10D0.9900
C11—C121.521 (3)C11'—C12'1.525 (3)
C11—H11A0.9900C11'—H11C0.9900
C11—H11B0.9900C11'—H11D0.9900
C12—C131.524 (3)C12'—C13'1.524 (3)
C12—H12A0.9900C12'—H12C0.9900
C12—H12B0.9900C12'—H12D0.9900
C13—H13A0.9900C13'—H13C0.9900
C13—H13B0.9900C13'—H13D0.9900
O1—S1—O2119.88 (10)O1'—S1'—O2'120.14 (10)
O1—S1—N1109.71 (10)O1'—S1'—N1'109.58 (9)
O2—S1—N1107.09 (9)O2'—S1'—N1'106.57 (9)
O1—S1—C3106.51 (9)O1'—S1'—C3'106.93 (9)
O2—S1—C3105.55 (9)O2'—S1'—C3'105.26 (10)
N1—S1—C3107.46 (9)N1'—S1'—C3'107.76 (9)
C1—O3—H3O108 (2)C1'—O3'—H3O'105 (2)
C2—N1—S1122.97 (14)C2'—N1'—S1'124.19 (13)
C2—N1—H1N120.0 (19)C2'—N1'—H1N'117.9 (18)
S1—N1—H1N112.2 (18)S1'—N1'—H1N'117.1 (18)
O6—N2—O5125.31 (19)O6'—N2'—O5'124.70 (18)
O6—N2—C8117.33 (17)O6'—N2'—C8'117.40 (17)
O5—N2—C8117.34 (17)O5'—N2'—C8'117.85 (16)
O4—C1—O3123.57 (18)O4'—C1'—O3'123.72 (18)
O4—C1—C2123.00 (18)O4'—C1'—C2'120.72 (18)
O3—C1—C2113.38 (17)O3'—C1'—C2'115.52 (17)
N1—C2—C1110.08 (16)N1'—C2'—C1'110.83 (16)
N1—C2—C10112.02 (16)N1'—C2'—C10'112.74 (15)
C1—C2—C10111.48 (16)C1'—C2'—C10'109.98 (16)
N1—C2—C9106.73 (16)N1'—C2'—C9'106.85 (15)
C1—C2—C9106.86 (15)C1'—C2'—C9'107.06 (15)
C10—C2—C9109.44 (16)C10'—C2'—C9'109.17 (16)
C4—C3—C8117.19 (18)C4'—C3'—C8'117.32 (18)
C4—C3—S1118.49 (15)C4'—C3'—S1'118.08 (16)
C8—C3—S1124.05 (15)C8'—C3'—S1'124.45 (16)
C5—C4—C3121.46 (19)C5'—C4'—C3'121.2 (2)
C5—C4—H4119.3C5'—C4'—H4'119.4
C3—C4—H4119.3C3'—C4'—H4'119.4
C6—C5—C4119.9 (2)C4'—C5'—C6'120.3 (2)
C6—C5—H5120.0C4'—C5'—H5'119.8
C4—C5—H5120.0C6'—C5'—H5'119.8
C5—C6—C7119.89 (19)C7'—C6'—C5'119.6 (2)
C5—C6—H6120.1C7'—C6'—H6'120.2
C7—C6—H6120.1C5'—C6'—H6'120.2
C8—C7—C6119.44 (18)C6'—C7'—C8'119.4 (2)
C8—C7—H7120.3C6'—C7'—H7'120.3
C6—C7—H7120.3C8'—C7'—H7'120.3
C7—C8—C3122.05 (18)C7'—C8'—C3'122.13 (19)
C7—C8—N2116.66 (17)C7'—C8'—N2'116.10 (17)
C3—C8—N2121.26 (17)C3'—C8'—N2'121.73 (17)
C11—C9—C2111.80 (17)C11'—C9'—C2'112.05 (16)
C11—C9—H9A109.3C11'—C9'—H9'1109.2
C2—C9—H9A109.3C2'—C9'—H9'1109.2
C11—C9—H9B109.3C11'—C9'—H9'2109.2
C2—C9—H9B109.3C2'—C9'—H9'2109.2
H9A—C9—H9B107.9H9'1—C9'—H9'2107.9
C13—C10—C2111.17 (17)C13'—C10'—C2'112.35 (16)
C13—C10—H10A109.4C13'—C10'—H10C109.1
C2—C10—H10A109.4C2'—C10'—H10C109.1
C13—C10—H10B109.4C13'—C10'—H10D109.1
C2—C10—H10B109.4C2'—C10'—H10D109.1
H10A—C10—H10B108.0H10C—C10'—H10D107.9
C12—C11—C9111.87 (18)C12'—C11'—C9'111.88 (18)
C12—C11—H11A109.2C12'—C11'—H11C109.2
C9—C11—H11A109.2C9'—C11'—H11C109.2
C12—C11—H11B109.2C12'—C11'—H11D109.2
C9—C11—H11B109.2C9'—C11'—H11D109.2
H11A—C11—H11B107.9H11C—C11'—H11D107.9
C11—C12—C13111.37 (18)C13'—C12'—C11'110.72 (17)
C11—C12—H12A109.4C13'—C12'—H12C109.5
C13—C12—H12A109.4C11'—C12'—H12C109.5
C11—C12—H12B109.4C13'—C12'—H12D109.5
C13—C12—H12B109.4C11'—C12'—H12D109.5
H12A—C12—H12B108.0H12C—C12'—H12D108.1
C12—C13—C10111.43 (18)C12'—C13'—C10'111.14 (18)
C12—C13—H13A109.3C12'—C13'—H13C109.4
C10—C13—H13A109.3C10'—C13'—H13C109.4
C12—C13—H13B109.3C12'—C13'—H13D109.4
C10—C13—H13B109.3C10'—C13'—H13D109.4
H13A—C13—H13B108.0H13C—C13'—H13D108.0
O1—S1—N1—C2135.74 (16)O1'—S1'—N1'—C2'140.35 (16)
O2—S1—N1—C24.15 (18)O2'—S1'—N1'—C2'8.92 (18)
C3—S1—N1—C2108.84 (16)C3'—S1'—N1'—C2'103.64 (17)
S1—N1—C2—C156.7 (2)S1'—N1'—C2'—C1'59.4 (2)
S1—N1—C2—C1067.9 (2)S1'—N1'—C2'—C10'64.3 (2)
S1—N1—C2—C9172.30 (14)S1'—N1'—C2'—C9'175.73 (13)
O4—C1—C2—N1143.38 (18)O4'—C1'—C2'—N1'152.01 (17)
O3—C1—C2—N139.1 (2)O3'—C1'—C2'—N1'30.4 (2)
O4—C1—C2—C1018.4 (3)O4'—C1'—C2'—C10'26.7 (2)
O3—C1—C2—C10164.06 (16)O3'—C1'—C2'—C10'155.69 (16)
O4—C1—C2—C9101.1 (2)O4'—C1'—C2'—C9'91.8 (2)
O3—C1—C2—C976.4 (2)O3'—C1'—C2'—C9'85.8 (2)
O1—S1—C3—C4143.90 (16)O1'—S1'—C3'—C4'141.09 (16)
O2—S1—C3—C415.46 (18)O2'—S1'—C3'—C4'12.26 (18)
N1—S1—C3—C498.58 (17)N1'—S1'—C3'—C4'101.18 (17)
O1—S1—C3—C829.91 (19)O1'—S1'—C3'—C8'34.36 (19)
O2—S1—C3—C8158.35 (16)O2'—S1'—C3'—C8'163.20 (16)
N1—S1—C3—C887.61 (18)N1'—S1'—C3'—C8'83.36 (18)
C8—C3—C4—C50.3 (3)C8'—C3'—C4'—C5'1.9 (3)
S1—C3—C4—C5173.91 (17)S1'—C3'—C4'—C5'177.69 (17)
C3—C4—C5—C61.5 (3)C3'—C4'—C5'—C6'2.3 (3)
C4—C5—C6—C71.5 (3)C4'—C5'—C6'—C7'0.3 (3)
C5—C6—C7—C80.3 (3)C5'—C6'—C7'—C8'2.0 (3)
C6—C7—C8—C32.1 (3)C6'—C7'—C8'—C3'2.3 (3)
C6—C7—C8—N2176.32 (18)C6'—C7'—C8'—N2'175.20 (19)
C4—C3—C8—C72.1 (3)C4'—C3'—C8'—C7'0.4 (3)
S1—C3—C8—C7171.76 (15)S1'—C3'—C8'—C7'175.09 (16)
C4—C3—C8—N2176.24 (18)C4'—C3'—C8'—N2'177.00 (18)
S1—C3—C8—N29.9 (3)S1'—C3'—C8'—N2'7.5 (3)
O6—N2—C8—C747.1 (3)O6'—N2'—C8'—C7'45.3 (3)
O5—N2—C8—C7131.3 (2)O5'—N2'—C8'—C7'132.4 (2)
O6—N2—C8—C3134.4 (2)O6'—N2'—C8'—C3'137.2 (2)
O5—N2—C8—C347.1 (3)O5'—N2'—C8'—C3'45.1 (3)
N1—C2—C9—C1166.0 (2)N1'—C2'—C9'—C11'68.0 (2)
C1—C2—C9—C11176.22 (17)C1'—C2'—C9'—C11'173.22 (17)
C10—C2—C9—C1155.4 (2)C10'—C2'—C9'—C11'54.2 (2)
N1—C2—C10—C1361.5 (2)N1'—C2'—C10'—C13'63.4 (2)
C1—C2—C10—C13174.60 (16)C1'—C2'—C10'—C13'172.35 (16)
C9—C2—C10—C1356.6 (2)C9'—C2'—C10'—C13'55.2 (2)
C2—C9—C11—C1254.6 (2)C2'—C9'—C11'—C12'55.5 (2)
C9—C11—C12—C1353.9 (2)C9'—C11'—C12'—C13'55.3 (2)
C11—C12—C13—C1055.3 (3)C11'—C12'—C13'—C10'55.7 (2)
C2—C10—C13—C1257.3 (2)C2'—C10'—C13'—C12'56.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.85 (3)1.77 (3)2.619 (2)175 (3)
N1—H1N···O50.83 (3)2.61 (3)3.050 (2)115 (2)
O3—H3O···O40.89 (3)1.82 (3)2.705 (2)172 (3)
N1—H1N···O50.83 (3)2.53 (3)2.999 (2)117 (2)
N1—H1N···O5i0.83 (3)2.40 (3)3.214 (2)168 (3)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC10H12N2O6SC13H16N2O6S
Mr288.28328.34
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)100100
a, b, c (Å)11.665 (3), 10.614 (2), 11.121 (4)15.9780 (12), 14.9840 (11), 13.436 (1)
α, β, γ (°)90, 117.80 (2), 9090, 113.568 (6), 90
V3)1217.9 (6)2948.4 (4)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.290.25
Crystal size (mm)0.45 × 0.43 × 0.200.55 × 0.42 × 0.35
Data collection
DiffractometerEnraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
Enraf-Nonius CAD4 (with Oxford Cryostream)
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.880, 0.9440.887, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
4282, 3536, 2710 9183, 7815, 5772
Rint0.0350.033
(sin θ/λ)max1)0.7030.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03 0.043, 0.116, 1.09
No. of reflections35367815
No. of parameters183413
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.370.63, 0.61

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), maXus (Mackay et al., 1999), SHELXS97 (Sheldrick, 199b), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
S—O11.4338 (13)S—C31.7832 (18)
S—O21.4376 (13)O3—C11.314 (2)
S—N11.6096 (16)O4—C11.224 (2)
C10—C2—C9110.50 (15)
C3—S—N1—C2108.97 (15)N1—S—C3—C877.28 (16)
S—N1—C2—C155.80 (19)O5—N2—C8—C338.5 (2)
O3—C1—C2—N138.50 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.90 (3)1.74 (3)2.629 (2)171 (3)
N1—H1N···O50.78 (3)2.32 (3)2.823 (2)123 (2)
N1—H1N···O4ii0.78 (3)2.58 (3)3.342 (2)165 (2)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
S1—O11.4287 (16)S1'—O1'1.4290 (15)
S1—O21.4397 (15)S1'—O2'1.4363 (15)
S1—N11.6134 (17)S1'—N1'1.6041 (17)
S1—C31.778 (2)S1'—C3'1.781 (2)
O3—C11.319 (2)O3'—C1'1.314 (2)
O4—C11.224 (2)O4'—C1'1.223 (2)
C10—C2—C9109.44 (16)C10'—C2'—C9'109.17 (16)
C3—S1—N1—C2108.84 (16)C3'—S1'—N1'—C2'103.64 (17)
S1—N1—C2—C156.7 (2)S1'—N1'—C2'—C1'59.4 (2)
O3—C1—C2—N139.1 (2)O3'—C1'—C2'—N1'30.4 (2)
N1—S1—C3—C887.61 (18)N1'—S1'—C3'—C8'83.36 (18)
O5—N2—C8—C347.1 (3)O5'—N2'—C8'—C3'45.1 (3)
C10—C2—C9—C1155.4 (2)C10'—C2'—C9'—C11'54.2 (2)
C9—C2—C10—C1356.6 (2)C9'—C2'—C10'—C13'55.2 (2)
C2—C9—C11—C1254.6 (2)C2'—C9'—C11'—C12'55.5 (2)
C9—C11—C12—C1353.9 (2)C9'—C11'—C12'—C13'55.3 (2)
C11—C12—C13—C1055.3 (3)C11'—C12'—C13'—C10'55.7 (2)
C2—C10—C13—C1257.3 (2)C2'—C10'—C13'—C12'56.9 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4'0.85 (3)1.77 (3)2.619 (2)175 (3)
N1—H1N···O50.83 (3)2.61 (3)3.050 (2)115 (2)
O3'—H3O'···O40.89 (3)1.82 (3)2.705 (2)172 (3)
N1'—H1N'···O5'0.83 (3)2.53 (3)2.999 (2)117 (2)
N1'—H1N'···O5i0.83 (3)2.40 (3)3.214 (2)168 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds