Download citation
Download citation
link to html
The title compound, C8H7NO3, is an aromatic amide that forms an extensive hydrogen-bond network within the crystal. The crystals were obtained while preparing derivatives of benzoic acid as intermediaries in the synthesis of acridones.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100013615/da1154sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013615/da1154Isup2.hkl
Contains datablock I

CCDC reference: 158264

Comment top

The title compound, (I), is an aromatic amide obtained in the final stages in the synthesis of 2-[(4-carboxyphenyl)amino]benzoic acid (Novoa de Armas et al., 2000), which is used as an intermediate in the synthesis of acridones. Crystals of (I) were isolated as pale-yellow plates, possibly formed as a colateral by-product in the reaction of 2-chlorobenzoic acid with 4-aminobenzoic acid in the presence of K2CO3, dimethylformamide and copper powder. In previous work on N-aromatic amides, the crystal structures of the amides have been classified into three types according to their scheme of N—H···OC hydrogen bonds, namely 21, glide and translation (Haisa et al., 1980). The hydrogen-bond pattern in the present structure may be used to corroborate previous works in the systematization of crystal structures of aromatic compounds.

The bond lengths and angles in (I) are similar to those reported for p-amidoperbenzoic acids (Feeder & Jones, 1996) and N-aromatic amides (Kashino et al., 1986). In the crystal, nearly flat molecules lie almost parallel to (010) and extend approximately along a. The dihedral angle between the least-square planes involving the benzene ring (A) and the amide group (B) is 3.3 (1)°. The dihedral angle between the least-square planes involving A and the formyl group (C) is 15.0 (1)° and between planes B and C is 12.9 (1)°. The formyl group is out of the plane formed by A and B. An extensive hydrogen-bond network is formed within the crystal. Hydrogen bonds from the acid proton to the amido carbonyl O atom (O11···O4) are formed by a combination of a c glide and a translation in a. The imido proton is hydrogen bonded to the acid carbonyl O12 atom between molecules related by a and b translations (Fig. 2a). The hydrogen-bond motif forming this two-dimensional network is similar to those observed in p-amidoperbenzoic acids (Feeder & Jones, 1996). An N4—H4···O12 intermolecular hydrogen-bond connects translated molecules into a one-dimensional infinite chain running parallel to the [110] and [110] directions, respectively. The chains are cross-linked by O11—H12···O4 hydrogen bonds, resulting in a three-dimensional network (Fig. 2 b). The hydrogen-bond motifs in the crystal structure can be described using Etter's graph-set notation (Etter et al., 1990) as a first-order network C(10) and a second-order network of the type C22(8) C(10), obtained using the RPLUTO program implemented in a recent version of the Cambridge Structural Database (CSD release of April 2000; Allen & Kennard, 1993).

Experimental top

During the recrystallization of 2-[(4-carboxyphenyl)amino]benzoic acid (Novoa de Armas et al., 2000) from ethanol–water (1:1), pale-yellow plates of the title compound were obtained.

Refinement top

The H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms (O—H = 0.82, N—H = 0.86 and C—H = 0.93 Å). The isotropic displacement parameters of the H atoms were fixed to 1.5Ueq of their parent atoms. The absolute structure was not determined as the Flack (1983) parameter was indeterminate [given as 0.0 (4)] due to the lack of sufficient anomalous scatterers.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Figures top
[Figure 1] Fig. 1. Plot showing the atomic numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Projections of the crystal structure (a) viewed along b and (b) along a showing the cross-linked network.
p-Formamidebenzoic acid top
Crystal data top
C8H7NO3F(000) = 172
Mr = 165.15Dx = 1.491 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 8.0595 (7) ÅCell parameters from 58 reflections
b = 3.8631 (2) Åθ = 7.5–27.6°
c = 11.812 (1) ŵ = 0.98 mm1
β = 90.160 (8)°T = 293 K
V = 367.77 (5) Å3Plate, pale-yellow
Z = 20.48 × 0.36 × 0.06 mm
Data collection top
Siemens P4 four-circle
diffractometer
Rint = 0.080
ω/2θ scansθmax = 69.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 19
Tmin = 0.609, Tmax = 0.943k = 14
1166 measured reflectionsl = 1414
789 independent reflections3 standard reflections every 100 reflections
769 reflections with F2 > 2σ(F2) intensity decay: 0.0%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0921P)2 + 0.0348P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.046(Δ/σ)max = 0.001
wR(F2) = 0.129Δρmax = 0.21 e Å3
S = 1.13Δρmin = 0.22 e Å3
789 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin((2θ)]-1/4
111 parametersExtinction coefficient: 0.066 (8)
Crystal data top
C8H7NO3V = 367.77 (5) Å3
Mr = 165.15Z = 2
Monoclinic, PcCu Kα radiation
a = 8.0595 (7) ŵ = 0.98 mm1
b = 3.8631 (2) ÅT = 293 K
c = 11.812 (1) Å0.48 × 0.36 × 0.06 mm
β = 90.160 (8)°
Data collection top
Siemens P4 four-circle
diffractometer
769 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.609, Tmax = 0.9433 standard reflections every 100 reflections
1166 measured reflections intensity decay: 0.0%
789 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046111 parameters
wR(F2) = 0.129H-atom parameters constrained
S = 1.13Δρmax = 0.21 e Å3
789 reflectionsΔρmin = 0.22 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2422 (4)0.1414 (8)0.9069 (3)0.0292 (8)*
O110.0396 (3)0.1018 (7)1.0496 (2)0.0490 (8)*
C110.0762 (3)0.0236 (8)0.9427 (2)0.0317 (8)*
O120.0174 (3)0.1352 (6)0.8820 (2)0.0455 (7)*
C20.2933 (3)0.0814 (9)0.7959 (3)0.0309 (9)*
C30.4501 (4)0.1755 (9)0.7587 (3)0.0332 (8)*
O40.7670 (3)0.1527 (6)0.6374 (2)0.0447 (7)*
N40.7195 (3)0.4428 (7)0.8037 (2)0.0345 (8)*
C40.5580 (4)0.3352 (7)0.8342 (3)0.0284 (9)*
C410.8105 (4)0.3455 (9)0.7144 (3)0.036 (1)*
C50.5078 (4)0.4029 (8)0.9450 (2)0.0333 (9)*
C60.3508 (4)0.3066 (9)0.9804 (2)0.0325 (9)*
H110.040780.012251.070310.022 (1)*
H20.220560.024220.745580.025 (2)*
H30.48280.13270.68440.045*
H40.765220.590150.848330.030 (2)*
H410.91790.43280.71020.042*
H50.579750.512350.994980.029 (1)*
H60.31740.35301.05430.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0323 (12)0.0586 (15)0.0431 (11)0.0025 (11)0.0128 (10)0.0065 (11)
O110.0379 (13)0.0708 (17)0.0383 (11)0.0174 (13)0.0154 (11)0.0042 (11)
O120.0298 (11)0.0614 (15)0.0453 (12)0.0136 (11)0.0045 (10)0.0084 (11)
N40.0256 (13)0.0341 (13)0.0438 (15)0.0050 (11)0.0061 (11)0.0027 (11)
C10.0243 (15)0.0307 (13)0.0326 (14)0.0008 (12)0.0049 (13)0.0001 (12)
C20.0250 (16)0.0367 (16)0.0311 (14)0.0021 (13)0.0050 (12)0.0019 (13)
C30.0308 (15)0.0383 (16)0.0304 (13)0.0015 (14)0.0058 (13)0.0040 (12)
C40.0221 (14)0.0264 (13)0.0367 (15)0.0009 (13)0.0077 (12)0.0026 (13)
C50.0302 (15)0.0378 (16)0.0319 (15)0.0047 (13)0.0020 (13)0.0056 (12)
C60.0285 (14)0.0387 (16)0.0302 (13)0.0036 (14)0.0069 (12)0.0039 (12)
C110.0252 (13)0.0343 (14)0.0355 (15)0.0014 (13)0.0095 (12)0.0015 (13)
C410.0251 (16)0.0421 (17)0.0414 (16)0.0016 (13)0.0071 (13)0.0056 (13)
Geometric parameters (Å, º) top
C1—C111.474 (4)O4—C411.227 (4)
C1—C21.393 (4)N4—H40.860
C1—C61.389 (4)N4—C41.412 (4)
O11—H110.820N4—C411.337 (4)
O11—C111.331 (4)C4—C51.394 (4)
C11—O121.209 (4)C41—H410.930
C2—H20.930C5—H50.930
C2—C31.385 (4)C5—C61.383 (4)
C3—H30.930C6—H60.930
C3—C41.391 (4)
C11—C1—C2119.0 (3)H4—N4—C41115.8
C11—C1—C6122.4 (3)C4—N4—C41128.5 (3)
C2—C1—C6118.7 (3)C3—C4—N4123.0 (3)
H11—O11—C11109.5C3—C4—C5120.3 (3)
C1—C11—O11113.6 (3)N4—C4—C5116.7 (3)
C1—C11—O12123.6 (3)O4—C41—N4126.7 (3)
O11—C11—O12122.8 (3)O4—C41—H41116.7
C1—C2—H2119.3N4—C41—H41116.7
C1—C2—C3121.5 (3)C4—C5—H5120.1
H2—C2—C3119.3C4—C5—C6119.7 (3)
C2—C3—H3120.5H5—C5—C6120.1
C2—C3—C4118.9 (3)C1—C6—C5120.8 (3)
H3—C3—C4120.5C1—C6—H6119.6
H4—N4—C4115.8C5—C6—H6119.6
C2—C1—C11—O11178.6 (3)C2—C3—C4—C50.8 (4)
C2—C1—C11—O122.8 (5)H3—C3—C4—N40.5
C6—C1—C11—O112.2 (4)H3—C3—C4—C5179.2
C6—C1—C11—O12176.3 (3)H4—N4—C4—C3162.4
C11—C1—C2—H22.3H4—N4—C4—C516.4
C11—C1—C2—C3177.7 (3)C41—N4—C4—C317.6 (5)
C6—C1—C2—H2178.5C41—N4—C4—C5163.6 (3)
C6—C1—C2—C31.5 (5)H4—N4—C41—O4176.1
C11—C1—C6—C5177.7 (3)H4—N4—C41—H413.9
C11—C1—C6—H62.3C4—N4—C41—O43.9 (5)
C2—C1—C6—C51.4 (5)C4—N4—C41—H41176.1
C2—C1—C6—H6178.6C3—C4—C5—H5179.2
H11—O11—C11—C1164.8C3—C4—C5—C60.8 (4)
H11—O11—C11—O1213.8N4—C4—C5—H50.4
C1—C2—C3—H3179.6N4—C4—C5—C6179.6 (3)
C1—C2—C3—C40.4 (5)C4—C5—C6—C10.3 (5)
H2—C2—C3—H30.4C4—C5—C6—H6179.7
H2—C2—C3—C4179.6H5—C5—C6—C1179.7
C2—C3—C4—N4179.5 (3)H5—C5—C6—H60.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O12i0.862.092.832 (3)145
O11—H11···O4ii0.821.822.618 (3)164
C3—H3···O40.932.362.926 (4)119
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H7NO3
Mr165.15
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)8.0595 (7), 3.8631 (2), 11.812 (1)
β (°) 90.160 (8)
V3)367.77 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.98
Crystal size (mm)0.48 × 0.36 × 0.06
Data collection
DiffractometerSiemens P4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.609, 0.943
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
1166, 789, 769
Rint0.080
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.13
No. of reflections789
No. of parameters111
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: XSCANS (Siemens, 1996), XSCANS, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

Selected geometric parameters (Å, º) top
O11—C111.331 (4)N4—C41.412 (4)
C11—O121.209 (4)N4—C411.337 (4)
O4—C411.227 (4)
C1—C11—O11113.6 (3)C3—C4—N4123.0 (3)
C1—C11—O12123.6 (3)N4—C4—C5116.7 (3)
O11—C11—O12122.8 (3)O4—C41—N4126.7 (3)
C4—N4—C41128.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O12i0.862.092.832 (3)145
O11—H11···O4ii0.821.822.618 (3)164
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds