Download citation
Download citation
link to html
Two isomeric trans-4-amino­azoxy­benzenes, trans-1-(4-amino­phenyl)-2-phenyl­diazene 2-oxide (α, C12H11N3O) and trans-2-(4-amino­phenyl)-1-phenyl­diazene 2-oxide (β, C12H11N3O), have been characterized by X-ray diffraction. The α isomer is almost planar, having torsion angles along the Caryl—N bonds of only 4.9 (2) and 8.0 (2)°. The relatively short Caryl—N bond to the non-oxidized site of the azoxy group [1.401 (2) Å], together with the significant quinoid deformation of the respective phenyl ring, is evidence of conjugation between the aromatic sextet and the π-electron system of the azoxy group. The geometry of the β isomer is different. The non-substituted phenyl ring is twisted with respect to the NNO plane by ca 50°, whereas the substituted ring is almost coplanar with the NNO plane. The non-oxidized N atom in the β isomer has increased sp3 character, which leads to a decrease in the N—N—C bond angle to 116.8 (2)°, in contrast with 120.9 (1)° for the α isomer. The deformation of the C—C—C angles (1–2°) in the phenyl rings at the substitution positions is evidence of the different character of the oxidized and non-oxidized N atoms of the azoxy group. In the crystal structures, mol­ecules of both isomers are arranged in chains connected by weak N—H...O (α and β) and N—H...N (β) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101000518/da1152sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000518/da1152Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101000518/da1152IIsup3.hkl
Contains datablock II

CCDC references: 163934; 163935

Computing details top

For both compounds, data collection: Kuma Diffraction Software (Kuma, 1998); cell refinement: Kuma Diffraction Software; data reduction: Kuma Diffraction Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

(I) trans-1-(4-aminophenyl)-2-phenyldiazene 2-oxide top
Crystal data top
C12H11N3OF(000) = 448
Mr = 213.24Dx = 1.330 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.733 (1) ÅCell parameters from 28 reflections
b = 11.602 (2) Åθ = 8–13°
c = 16.038 (3) ŵ = 0.09 mm1
β = 93.16 (3)°T = 293 K
V = 1065.1 (3) Å3Prism, orange
Z = 40.7 × 0.6 × 0.2 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 3.1°
Graphite monochromatorh = 66
ω/θ scansk = 130
4164 measured reflectionsl = 1919
1888 independent reflections2 standard reflections every 50 reflections
1480 reflections with I > 2σ(I) intensity decay: 0.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.101All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.1764P]
where P = (Fo2 + 2Fc2)/3
1888 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2548 (2)0.30930 (13)0.11594 (9)0.0966 (6)
N10.0834 (2)0.31672 (11)0.06282 (7)0.0485 (3)
N20.0788 (2)0.39013 (10)0.06244 (7)0.0445 (3)
N30.2063 (3)0.73408 (15)0.29746 (10)0.0697 (5)
C10.0835 (2)0.47497 (12)0.12451 (8)0.0410 (3)
C1'0.0665 (2)0.23009 (13)0.00289 (9)0.0462 (4)
C20.0850 (3)0.50300 (13)0.18770 (10)0.0492 (4)
C2'0.2487 (3)0.15477 (17)0.00918 (12)0.0669 (5)
C30.0439 (3)0.58957 (14)0.24344 (10)0.0518 (4)
C3'0.2361 (4)0.07247 (18)0.07149 (13)0.0765 (6)
C40.1636 (3)0.65113 (13)0.23948 (9)0.0479 (4)
C4'0.0450 (4)0.06598 (17)0.12593 (13)0.0733 (5)
C50.3316 (3)0.62343 (14)0.17657 (10)0.0515 (4)
C5'0.1347 (4)0.14192 (18)0.11885 (13)0.0763 (6)
C60.2911 (3)0.53820 (14)0.12043 (9)0.0486 (4)
C6'0.1258 (3)0.22458 (16)0.05703 (11)0.0611 (5)
H20.230 (3)0.4641 (15)0.1919 (10)0.061 (5)*
H2'0.382 (4)0.1598 (17)0.0265 (12)0.081 (6)*
H30.163 (3)0.6091 (15)0.2838 (10)0.062 (5)*
H3'0.360 (4)0.0215 (19)0.0781 (13)0.090 (7)*
H4'0.037 (3)0.0071 (18)0.1683 (12)0.085 (6)*
H50.480 (3)0.6657 (16)0.1726 (10)0.068 (5)*
H5'0.271 (4)0.138 (2)0.1561 (13)0.100 (7)*
H60.411 (3)0.5189 (14)0.0768 (10)0.062 (5)*
H6'0.258 (3)0.2780 (17)0.0485 (11)0.081 (6)*
H310.084 (4)0.7602 (18)0.3269 (14)0.093 (7)*
H320.333 (4)0.779 (2)0.2878 (13)0.099 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0827 (9)0.0949 (11)0.1060 (11)0.0442 (8)0.0514 (8)0.0425 (9)
N10.0478 (7)0.0473 (7)0.0495 (7)0.0051 (6)0.0058 (5)0.0016 (6)
N20.0466 (7)0.0443 (7)0.0424 (6)0.0041 (5)0.0003 (5)0.0041 (5)
N30.0648 (10)0.0759 (11)0.0679 (10)0.0066 (9)0.0021 (8)0.0275 (8)
C10.0451 (7)0.0398 (7)0.0380 (7)0.0018 (6)0.0014 (5)0.0042 (6)
C1'0.0520 (8)0.0407 (8)0.0463 (8)0.0010 (6)0.0055 (6)0.0023 (6)
C20.0435 (8)0.0496 (8)0.0539 (9)0.0023 (7)0.0036 (6)0.0004 (7)
C2'0.0644 (11)0.0652 (11)0.0703 (11)0.0177 (9)0.0037 (9)0.0084 (9)
C30.0477 (8)0.0555 (9)0.0509 (8)0.0027 (7)0.0080 (7)0.0048 (7)
C3'0.0791 (13)0.0674 (12)0.0831 (13)0.0256 (10)0.0062 (10)0.0152 (11)
C40.0495 (8)0.0479 (9)0.0464 (8)0.0029 (7)0.0051 (6)0.0020 (7)
C4'0.0845 (13)0.0639 (12)0.0717 (12)0.0073 (10)0.0053 (10)0.0203 (10)
C50.0460 (8)0.0534 (9)0.0546 (9)0.0065 (7)0.0006 (7)0.0029 (7)
C5'0.0739 (12)0.0764 (13)0.0766 (13)0.0088 (10)0.0127 (10)0.0251 (11)
C60.0460 (8)0.0527 (9)0.0463 (8)0.0024 (7)0.0060 (6)0.0007 (7)
C6'0.0593 (10)0.0589 (10)0.0643 (10)0.0096 (8)0.0039 (8)0.0115 (8)
Geometric parameters (Å, º) top
O1—N11.268 (2)C4'—C5'1.365 (3)
N1—N21.261 (2)C5—C61.366 (2)
N1—C1'1.456 (2)C5'—C6'1.378 (2)
N2—C11.401 (2)N3—H320.90 (2)
N3—C41.369 (2)N3—H310.88 (2)
C1—C61.396 (2)C2—H20.95 (2)
C1—C21.399 (2)C2'—H2'0.93 (2)
C1'—C6'1.367 (2)C3—H30.94 (2)
C1'—C2'1.370 (2)C3'—H3'0.93 (2)
C2—C31.374 (2)C4'—H4'0.96 (2)
C2'—C3'1.381 (3)C5—H50.98 (2)
C3—C41.386 (2)C5'—H5'0.96 (2)
C3'—C4'1.365 (3)C6—H60.98 (2)
C4—C51.393 (2)C6'—H6'0.99 (2)
N2—N1—O1126.4 (1)C4—N3—H32117 (1)
N2—N1—C1'116.3 (1)C4—N3—H31116 (1)
O1—N1—C1'117.2 (1)H32—N3—H31121 (2)
N1—N2—C1120.9 (1)C3—C2—H2119 (1)
C6—C1—C2117.7 (1)C1—C2—H2121 (1)
C6—C1—N2112.7 (1)C1'—C2'—H2'121 (1)
C2—C1—N2129.7 (1)C3'—C2'—H2'120 (1)
C6'—C1'—C2'121.0 (2)C2—C3—H3119 (1)
C6'—C1'—N1120.7 (1)C4—C3—H3120 (1)
C2'—C1'—N1118.2 (1)C4'—C3'—H3'119 (1)
C3—C2—C1120.3 (1)C2'—C3'—H3'121 (1)
C1'—C2'—C3'119.0 (2)C3'—C4'—H4'120 (1)
C2—C3—C4121.6 (1)C5'—C4'—H4'121 (1)
C4'—C3'—C2'120.6 (2)C6—C5—H5120 (1)
N3—C4—C3121.0 (1)C4—C5—H5120 (1)
N3—C4—C5120.8 (1)C4'—C5'—H5'121 (1)
C3—C4—C5118.1 (1)C6'—C5'—H5'119 (1)
C3'—C4'—C5'119.6 (2)C5—C6—H6120 (1)
C6—C5—C4120.6 (1)C1—C6—H6118 (1)
C4'—C5'—C6'120.7 (2)C1'—C6'—H6'119 (1)
C5—C6—C1121.7 (1)C5'—C6'—H6'122 (1)
C1'—C6'—C5'119.1 (2)
O1—N1—N2—C10.0 (2)C1'—C2'—C3'—C4'0.1 (3)
C1'—N1—N2—C1177.9 (1)C2—C3—C4—N3177.3 (2)
N1—N2—C1—C6171.8 (1)C2—C3—C4—C50.4 (2)
N1—N2—C1—C27.8 (2)C2'—C3'—C4'—C5'0.3 (3)
N2—N1—C1'—C6'5.2 (2)N3—C4—C5—C6178.0 (2)
O1—N1—C1'—C6'172.9 (2)C3—C4—C5—C60.3 (2)
N2—N1—C1'—C2'174.5 (1)C3'—C4'—C5'—C6'0.4 (3)
O1—N1—C1'—C2'7.4 (2)C4—C5—C6—C11.0 (2)
C6—C1—C2—C30.3 (2)C2—C1—C6—C51.0 (2)
N2—C1—C2—C3179.3 (1)N2—C1—C6—C5178.7 (1)
C6'—C1'—C2'—C3'0.1 (3)C2'—C1'—C6'—C5'0.2 (3)
N1—C1'—C2'—C3'179.6 (2)N1—C1'—C6'—C5'179.5 (2)
C1—C2—C3—C40.3 (2)C4'—C5'—C6'—C1'0.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···O1i0.88 (2)2.13 (2)2.999 (2)171 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II) trans-2-(4-aminophenyl)-1-phenyldiazene 2-oxide top
Crystal data top
C12H11N3OF(000) = 224
Mr = 213.24Dx = 1.333 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.764 (2) ÅCell parameters from 25 reflections
b = 6.103 (1) Åθ = 8–12°
c = 10.791 (2) ŵ = 0.09 mm1
β = 112.97 (3)°T = 293 K
V = 531.4 (2) Å3Prism, yellow
Z = 20.6 × 0.4 × 0.4 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 30.1°, θmin = 2.1°
Graphite monochromatorh = 1111
ω/θ scansk = 77
2506 measured reflectionsl = 1115
1432 independent reflections2 standard reflections every 50 reflections
973 reflections with I > 2σ(I) intensity decay: 0.03%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: dimap
wR(F2) = 0.096All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0451P]
where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max = 0.081
189 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.13 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13808 (19)0.3189 (3)0.19579 (18)0.0615 (5)
N10.0237 (2)0.4585 (3)0.22602 (18)0.0441 (5)
N20.0175 (2)0.6360 (3)0.2885 (2)0.0534 (5)
N30.5030 (3)0.2624 (5)0.0737 (3)0.0645 (7)
C10.1115 (3)0.4122 (4)0.1843 (2)0.0432 (5)
C20.1128 (3)0.2151 (4)0.1242 (3)0.0514 (6)
C30.2433 (3)0.1629 (5)0.0886 (3)0.0550 (6)
C40.3736 (3)0.3084 (5)0.1129 (2)0.0501 (6)
C50.3690 (3)0.5085 (5)0.1727 (3)0.0539 (7)
C60.2387 (3)0.5618 (5)0.2087 (2)0.0507 (6)
C1'0.1405 (3)0.6676 (4)0.3421 (2)0.0479 (5)
C2'0.1675 (3)0.5181 (5)0.4271 (3)0.0577 (7)
C3'0.2678 (4)0.5751 (6)0.4941 (3)0.0686 (8)
C4'0.3439 (4)0.7748 (6)0.4745 (3)0.0693 (9)
C5'0.3203 (4)0.9209 (6)0.3882 (4)0.0710 (8)
C6'0.2163 (4)0.8694 (5)0.3225 (3)0.0601 (7)
H20.032 (3)0.113 (5)0.113 (3)0.064 (9)*
H30.246 (3)0.030 (6)0.049 (3)0.059 (8)*
H50.466 (3)0.602 (5)0.204 (3)0.069 (8)*
H60.239 (3)0.689 (6)0.265 (3)0.072 (9)*
H320.604 (4)0.331 (7)0.132 (3)0.076 (8)*
H310.508 (4)0.136 (6)0.059 (3)0.058 (10)*
H2'0.115 (3)0.383 (6)0.444 (3)0.067 (9)*
H3'0.282 (4)0.477 (7)0.560 (3)0.089 (11)*
H4'0.415 (3)0.814 (6)0.520 (3)0.077 (9)*
H5'0.378 (4)1.058 (7)0.373 (3)0.079 (10)*
H6'0.195 (3)0.966 (6)0.276 (3)0.061 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (9)0.0570 (11)0.0853 (11)0.0192 (9)0.0335 (8)0.0148 (10)
N10.0379 (9)0.0423 (11)0.0519 (10)0.0064 (8)0.0173 (7)0.0017 (9)
N20.0512 (11)0.0436 (13)0.0714 (13)0.0083 (10)0.0306 (10)0.0073 (11)
N30.0477 (12)0.076 (2)0.0753 (16)0.0029 (13)0.0297 (11)0.0092 (16)
C10.0381 (10)0.0450 (14)0.0465 (11)0.0046 (10)0.0164 (9)0.0016 (10)
C20.0416 (12)0.0506 (16)0.0610 (13)0.0112 (11)0.0189 (11)0.0067 (12)
C30.0510 (13)0.0539 (16)0.0618 (15)0.0038 (13)0.0238 (11)0.0089 (14)
C40.0390 (11)0.0645 (17)0.0454 (12)0.0027 (12)0.0148 (9)0.0009 (12)
C50.0453 (12)0.0607 (18)0.0590 (14)0.0182 (12)0.0239 (11)0.0085 (13)
C60.0497 (13)0.0490 (14)0.0559 (14)0.0141 (12)0.0233 (11)0.0070 (12)
C1'0.0410 (11)0.0449 (13)0.0564 (13)0.0065 (10)0.0176 (10)0.0044 (12)
C2'0.0563 (14)0.0546 (17)0.0615 (15)0.0045 (13)0.0221 (11)0.0091 (13)
C3'0.0700 (17)0.083 (2)0.0581 (16)0.0013 (17)0.0303 (14)0.0061 (16)
C4'0.0630 (16)0.085 (2)0.0665 (16)0.0047 (16)0.0324 (13)0.0196 (18)
C5'0.0624 (17)0.0572 (19)0.096 (2)0.0045 (15)0.0336 (15)0.0151 (17)
C6'0.0605 (15)0.0435 (16)0.0814 (19)0.0042 (12)0.0332 (14)0.0008 (15)
Geometric parameters (Å, º) top
O1—N11.257 (3)C3'—C4'1.366 (5)
N1—N21.266 (3)C4'—C5'1.362 (5)
N1—C11.450 (3)C5'—C6'1.392 (4)
N2—C1'1.421 (3)N3—H320.95 (3)
N3—C41.385 (3)N3—H310.81 (2)
C1—C21.369 (3)C2—H20.93 (2)
C1—C61.385 (3)C3—H30.92 (3)
C2—C31.379 (4)C5—H50.97 (2)
C3—C41.388 (4)C6—H60.98 (3)
C4—C51.389 (4)C2'—H2'0.93 (3)
C5—C61.381 (3)C3'—H3'0.98 (3)
C1'—C2'1.378 (4)C4'—H4'0.95 (2)
C1'—C6'1.375 (4)C5'—H5'0.96 (3)
C2'—C3'1.383 (4)C6'—H6'0.87 (2)
O1—N1—N2125.6 (2)C4—N3—H32112 (2)
O1—N1—C1116.9 (2)C4—N3—H31112 (2)
N2—N1—C1117.5 (2)H32—N3—H31118 (3)
N1—N2—C1'116.8 (2)C1—C2—H2120 (1)
C2—C1—C6121.0 (2)C3—C2—H2121 (1)
C2—C1—N1118.5 (2)C2—C3—H3121 (1)
C6—C1—N1120.5 (2)C4—C3—H3119 (1)
C1—C2—C3119.7 (2)C6—C5—H5118 (1)
C2—C3—C4120.7 (3)C4—C5—H5120 (1)
N3—C4—C5119.8 (3)C5—C6—H6125 (1)
N3—C4—C3121.5 (3)C1—C6—H6116 (1)
C5—C4—C3118.6 (2)C1'—C2'—H2'120 (1)
C6—C5—C4121.0 (2)C3'—C2'—H2'120 (1)
C5—C6—C1118.9 (2)C4'—C3'—H3'120 (2)
C2'—C1'—C6'119.8 (3)C2'—C3'—H3'120 (2)
C2'—C1'—N2122.4 (2)C5'—C4'—H4'119 (2)
C6'—C1'—N2117.1 (2)C3'—C4'—H4'121 (2)
C1'—C2'—C3'119.4 (3)C4'—C5'—H5'119 (2)
C4'—C3'—C2'121.0 (3)C6'—C5'—H5'121 (2)
C5'—C4'—C3'119.7 (3)C1'—C6'—H6'120 (2)
C4'—C5'—C6'120.3 (3)C5'—C6'—H6'120 (2)
C1'—C6'—C5'119.8 (3)
O1—N1—N2—C1'7.7 (3)C4—C5—C6—C10.0 (4)
C1—N1—N2—C1'173.0 (2)C2—C1—C6—C50.7 (4)
O1—N1—C1—C24.7 (3)N1—C1—C6—C5177.3 (2)
N2—N1—C1—C2175.9 (2)N1—N2—C1'—C2'54.6 (3)
O1—N1—C1—C6177.3 (2)N1—N2—C1'—C6'134.9 (2)
N2—N1—C1—C62.1 (3)C6'—C1'—C2'—C3'1.5 (4)
C6—C1—C2—C30.7 (4)N2—C1'—C2'—C3'168.8 (2)
N1—C1—C2—C3177.3 (2)C1'—C2'—C3'—C4'1.8 (4)
C1—C2—C3—C40.0 (4)C2'—C3'—C4'—C5'0.3 (5)
C2—C3—C4—N3177.7 (3)C3'—C4'—C5'—C6'1.5 (5)
C2—C3—C4—C50.6 (4)C2'—C1'—C6'—C5'0.3 (4)
N3—C4—C5—C6177.8 (3)N2—C1'—C6'—C5'171.1 (2)
C3—C4—C5—C60.6 (4)C4'—C5'—C6'—C1'1.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H32···O1i0.96 (3)2.09 (3)2.918 (3)143 (3)
N3—H31···N3ii0.79 (3)2.68 (3)3.432 (2)161 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds