Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Addition of 1,2-phenylenediamine to solutions ofbis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O')cobalt(II),-iron(II) and -nickel(II) resulted in crystals containing centrosymmetric octahedral complexes with two amines per metal atom. In all three iso­structural complexes, i.e. [M(C5HF6O2)2(C6H8N2)2] where M = Fe, Cu and Ni, the two C-N bonds differ significantly in length by an average of 0.031 (3) Å. The phenyl C-C bonds display a pattern of small differences, the C-C bond between the amines being longer than the shortest phenyl C-C bonds by an average of 0.022 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013487/da1091sup1.cif
Contains datablocks global, (I), (II), (III)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013487/da1091Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013487/da1091IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013487/da1091IIIsup4.hkl
Contains datablock III

CCDC references: 140942; 140943; 140944

Comment top

The title complexes were synthesized in order to explore the coordination of bidentate ligands with M(hfac)2 complexes (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O'). Tetramethylethylenediamine and other strong bidentate bases have been observed to coordinate to Fe(hfac)2 in a bidentate fashion to form neutral monomers (Dickman, 1998; Bailey et al., 1981). In contrast, addition of a bidentate nitrone to Fe(hfac)2 resulted in ligand exchange to produce a complex salt (Villamena et al., 1998). The reason for this difference is not clear. 1,2-Phenylenediamine (opda) was chosen for the present study because it is a weaker σ donor than tetramethylethylenediamine. Even when opda was added in a 1:1 ratio to Co(hfac)2, Fe(hfac)2 and Ni(hfac)2 hydrates, only 2:1 amine–metal complexes were isolated from CHCl3/n-heptane solution. The resulting crystal structures show discrete centrosymmetric octahedrally coordinated complexes, with two mondentate opda ligands per metal atom (Fig. 1). The two amine functions on each phenyl ring have different C—N bond lengths. The bond to the metal-coordinated amine, C1—N1, is longer than C2—N2 by 0.031 (3) Å on average. Shortening of the non-coordinated amine function has been seen previously in a monodentate opda complex of bis(1,3-diphenyl-1,3-propanedionato-O,O')nickel(II) [difference of 0.027 (3) Å; Hotz et al., 1987] and in [Cr(opda)2(NCS)2] [difference of 0.059 (3) Å; Jubb et al., 1991]. However, in [Ni(opda)4]2− (Elder et al., 1974) and in a macrocyclic Cd complex (Nelson et al., 1982), monodentate opda showed no significant difference in the C—N bond lengths. Both of these structures had either poor data (e.g. twinning) or larger than usual s.u.'s.

In the present structures, bis(1,2-diaminobenzene-N)bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O')- iron(II), (I), bis(1,2-diaminobenzene-N)bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O')- cobalt(II), (II), and bis(1,2-diaminobenzene-N)bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-O,O')- nickel(II), (III), the N2 NH2 group is slightly more planar than that of N1, as evidenced by the out-of-plane distances of the C atoms bound to the N atoms from the planes of the amines. This value averages 1.07 (4) Å for C2 out of the H1N2—N2—H2N2 plane compared with 1.25 (3) Å for C1 out of the H1N1—N1—H2N1 plane.

The phenyl C—C bond lengths show a pattern of differences not seen in previous structures. The C1—C2 bond, averaging 1.405 (3) Å, is longer by 0.022 (4) Å than the C4—C5 and C5—C6 bonds, which average 1.383 (4) Å. The C2—C3, C5—C6 and C6—C1 bond lengths fall between these values, with an average of 1.393 (4) Å.

A network of apparent intermolecular hydrogen bonds involving H atoms on N1 as donors to N2 and F3 extends through the crystal and an intramolecular hydrogen bond between N2 and O2 is also observed. This intramolecular hydrogen bond, although not especially short, might be one reason that only 2:1 complexes were isolated.

Experimental top

Crystals were grown by addition of stoichiometric amounts of opda to CHCl3 solutions of the appropriate hydrated M(hfac)2 complexes (Morris et al., 1968) with stirring and gentle heating, followed by addition of n-heptane and slow evaporation at room temperature in loosely covered beakers. 19F NMR spectra were measured on a Varian Mercury 300 MHz s pectrometer interfaced with a Sun Microsystems workstation. Spectra were recorded at 294.5 K with CF3COOH in CDCl3 as an external reference. No peak was observed for (I), and peaks for (II) and (III) were observed at 60.79 and 48.40 p.p.m. in CDCl3, respectively. IR spectra were recorded with a Nicolet FT-7000 spectrometer as KBr pellets. The IR spectra were essentially identical for all three compounds, with peaks at (cm−1): 1637 (s), 1600 (m), 1558 (m), 1531 (m), 1506 (m), 1481 (s), 1350 (w), 1261 (s), 1216 (s), 1195 (m), 1151 (s), 1134 (s), 1097 (w), 1074 (m), 1060 (m), 931 (w), 864 (w), 856 (w), 800 (s), 777 (w), 756 (m), 723 (w), 670 (m), 589 (m), 524 (w), 468 (m). Some splitting of peaks was evident in the case of (I), presumably due to oxidation in the pellet press.

Refinement top

For each crystal, decay was monitored by recollection of the first 50 frames at the end of the data collection. H atoms were refined isotropically in observed positions. For all three complexes, final C–H distances ranged from 0.91 (3) to 0.99 (4) Å and final N–H distances ranged from 0.84 (3) to 0.94 (3) Å. In compound (I), the highest peak in the final difference Fourier map was 1.14 Å from F3, for compound (II), it was 1.09 Å from F3, and for compound (III), it was 1.11 Å from F3.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability) of compound (I) showing the atom-numbering scheme. H atoms are drawn as small circles of arbitrary radii.
(I) trans-bis(1,2-Diaminobenzene-N)bis(1,1,1,5,5,5- hexafluoropentane-2,4-dionato-O,O')iron(II) top
Crystal data top
[Fe(C5HF6O2)2(C6H8N2)2]F(000) = 688
Mr = 686.25Dx = 1.744 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8148 (1) ÅCell parameters from 8192 reflections
b = 10.9332 (2) Åθ = 2.3–28.2°
c = 15.4893 (3) ŵ = 0.70 mm1
β = 99.002 (1)°T = 173 K
V = 1307.12 (4) Å3Prism, red
Z = 20.40 × 0.37 × 0.16 mm
Data collection top
Bruker SMART area-detector
diffractometer
3129 independent reflections
Radiation source: normal-focus sealed tube2818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1010
Tmin = 0.620, Tmax = 0.735k = 1414
13875 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0555P)2 + 1.492P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3129 reflectionsΔρmax = 1.06 e Å3
233 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (16)
Crystal data top
[Fe(C5HF6O2)2(C6H8N2)2]V = 1307.12 (4) Å3
Mr = 686.25Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8148 (1) ŵ = 0.70 mm1
b = 10.9332 (2) ÅT = 173 K
c = 15.4893 (3) Å0.40 × 0.37 × 0.16 mm
β = 99.002 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
3129 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2818 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 0.735Rint = 0.022
13875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.00Δρmax = 1.06 e Å3
3129 reflectionsΔρmin = 0.80 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.00000.00000.02108 (14)
O10.06852 (18)0.04011 (13)0.13074 (8)0.0249 (3)
O20.11676 (19)0.16135 (13)0.02403 (8)0.0245 (3)
N10.2516 (2)0.10817 (16)0.00874 (11)0.0242 (3)
N20.3923 (2)0.02931 (17)0.11703 (12)0.0272 (4)
C10.2929 (2)0.16728 (18)0.06870 (12)0.0231 (4)
C20.3557 (2)0.09625 (18)0.13270 (12)0.0234 (4)
C30.3902 (3)0.1534 (2)0.20878 (13)0.0296 (4)
C40.3647 (3)0.2782 (2)0.22122 (16)0.0367 (5)
C50.3024 (3)0.3477 (2)0.15869 (17)0.0379 (5)
C60.2662 (3)0.2919 (2)0.08231 (15)0.0309 (4)
C70.1583 (3)0.1376 (2)0.26449 (13)0.0350 (5)
C80.1351 (2)0.13691 (18)0.16382 (12)0.0229 (4)
C90.1894 (3)0.23942 (18)0.12125 (12)0.0241 (4)
C100.1760 (2)0.24310 (17)0.03073 (12)0.0214 (4)
C110.2351 (3)0.35817 (19)0.01294 (13)0.0289 (4)
F10.2707 (2)0.0490 (2)0.29646 (10)0.0627 (5)
F20.0142 (2)0.1112 (2)0.29299 (10)0.0646 (6)
F30.2281 (4)0.23925 (19)0.30001 (10)0.0853 (8)
F40.3088 (2)0.44170 (13)0.04305 (9)0.0444 (4)
F50.0991 (2)0.41101 (14)0.06257 (10)0.0488 (4)
F60.3479 (2)0.32971 (14)0.06576 (10)0.0479 (4)
H1N10.344 (4)0.067 (3)0.0322 (17)0.033 (7)*
H2N10.234 (3)0.167 (2)0.0447 (17)0.028 (6)*
H1N20.403 (4)0.068 (3)0.1672 (19)0.037 (7)*
H2N20.319 (3)0.066 (2)0.0894 (18)0.032 (7)*
H30.433 (3)0.104 (2)0.2505 (18)0.034 (7)*
H40.388 (4)0.318 (3)0.270 (2)0.053 (9)*
H50.285 (4)0.433 (3)0.169 (2)0.052 (9)*
H60.224 (4)0.341 (3)0.0370 (19)0.041 (7)*
H90.241 (3)0.306 (2)0.1549 (17)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0282 (2)0.0191 (2)0.0167 (2)0.00436 (14)0.00569 (14)0.00155 (13)
O10.0325 (7)0.0245 (7)0.0180 (6)0.0025 (6)0.0052 (5)0.0006 (5)
O20.0337 (7)0.0223 (7)0.0183 (6)0.0057 (5)0.0066 (5)0.0013 (5)
N10.0284 (8)0.0240 (8)0.0204 (8)0.0024 (7)0.0042 (6)0.0022 (6)
N20.0316 (9)0.0269 (9)0.0240 (8)0.0034 (7)0.0070 (7)0.0028 (7)
C10.0214 (8)0.0244 (9)0.0230 (9)0.0012 (7)0.0019 (7)0.0003 (7)
C20.0196 (8)0.0278 (10)0.0220 (8)0.0005 (7)0.0012 (7)0.0004 (7)
C30.0246 (9)0.0413 (12)0.0230 (9)0.0017 (8)0.0043 (7)0.0022 (8)
C40.0322 (11)0.0437 (13)0.0338 (11)0.0043 (9)0.0040 (9)0.0152 (10)
C50.0373 (12)0.0279 (11)0.0473 (13)0.0007 (9)0.0023 (10)0.0107 (10)
C60.0303 (10)0.0249 (10)0.0368 (11)0.0003 (8)0.0034 (9)0.0004 (8)
C70.0425 (12)0.0448 (13)0.0173 (9)0.0121 (10)0.0033 (8)0.0005 (8)
C80.0251 (9)0.0286 (10)0.0152 (8)0.0011 (7)0.0035 (6)0.0005 (7)
C90.0283 (9)0.0250 (9)0.0189 (8)0.0031 (7)0.0030 (7)0.0029 (7)
C100.0241 (8)0.0200 (8)0.0207 (8)0.0013 (7)0.0050 (7)0.0002 (7)
C110.0409 (11)0.0233 (9)0.0228 (9)0.0064 (8)0.0057 (8)0.0005 (7)
F10.0533 (10)0.0999 (15)0.0328 (8)0.0069 (10)0.0001 (7)0.0277 (9)
F20.0442 (9)0.1277 (17)0.0258 (7)0.0114 (10)0.0178 (6)0.0046 (9)
F30.163 (2)0.0693 (12)0.0228 (7)0.0515 (14)0.0128 (10)0.0154 (8)
F40.0704 (10)0.0294 (7)0.0321 (7)0.0225 (7)0.0041 (7)0.0031 (5)
F50.0582 (9)0.0361 (8)0.0473 (8)0.0026 (7)0.0067 (7)0.0180 (7)
F60.0640 (10)0.0424 (8)0.0454 (8)0.0153 (7)0.0336 (7)0.0007 (6)
Geometric parameters (Å, º) top
Fe1—O22.0468 (13)C2—C31.397 (3)
Fe1—O2i2.0468 (13)C3—C41.387 (3)
Fe1—O1i2.0593 (13)C3—H30.94 (3)
Fe1—O12.0593 (13)C4—C51.378 (4)
Fe1—N12.2803 (17)C4—H40.91 (3)
Fe1—N1i2.2803 (17)C5—C61.398 (3)
O1—C81.253 (2)C5—H50.95 (3)
O2—C101.269 (2)C6—H60.98 (3)
O2—H2N22.26 (3)C7—F21.305 (3)
O2—N23.125 (2)C7—F31.320 (3)
N1—C11.443 (2)C7—F11.348 (3)
N1—N2ii3.137 (3)C7—C81.542 (3)
N1—H1N10.88 (3)C8—C91.399 (3)
N1—H2N10.87 (3)C9—C101.390 (3)
N2—C21.415 (3)C9—H90.95 (3)
N2—H1N20.90 (3)C10—C111.533 (3)
N2—H2N20.86 (3)C11—F41.328 (2)
C1—C61.390 (3)C11—F61.330 (3)
C1—C21.407 (3)C11—F51.341 (3)
O2—Fe1—O2i180.0C6—C1—N1121.19 (18)
O2—Fe1—O1i93.41 (5)C2—C1—N1119.12 (17)
O2i—Fe1—O1i86.59 (5)C3—C2—C1118.82 (19)
O2—Fe1—O186.59 (5)C3—C2—N2121.22 (19)
O2i—Fe1—O193.41 (5)C1—C2—N2119.85 (18)
O1i—Fe1—O1180.0C4—C3—C2121.0 (2)
O2—Fe1—N193.04 (6)C4—C3—H3121.7 (16)
O2i—Fe1—N186.96 (6)C2—C3—H3117.4 (16)
O1i—Fe1—N192.12 (6)C5—C4—C3120.2 (2)
O1—Fe1—N187.88 (6)C5—C4—H4117 (2)
O2—Fe1—N1i86.96 (6)C3—C4—H4122 (2)
O2i—Fe1—N1i93.04 (6)C4—C5—C6119.6 (2)
O1i—Fe1—N1i87.88 (6)C4—C5—H5119.0 (19)
O1—Fe1—N1i92.12 (6)C6—C5—H5121.4 (19)
N1—Fe1—N1i180.0C1—C6—C5120.7 (2)
C8—O1—Fe1127.55 (12)C1—C6—H6119.2 (17)
C10—O2—Fe1127.74 (12)C5—C6—H6120.1 (17)
C10—O2—H2N2114.7 (7)F2—C7—F3111.6 (2)
Fe1—O2—H2N292.6 (7)F2—C7—F1105.3 (2)
C10—O2—N2115.34 (12)F3—C7—F1104.4 (2)
Fe1—O2—N292.55 (6)F2—C7—C8111.72 (18)
H2N2—O2—N20.9 (7)F3—C7—C8113.66 (18)
C1—N1—Fe1119.06 (12)F1—C7—C8109.55 (19)
C1—N1—N2ii105.82 (12)O1—C8—C9128.38 (17)
Fe1—N1—N2ii125.02 (8)O1—C8—C7113.16 (17)
C1—N1—H1N1107.4 (17)C9—C8—C7118.45 (18)
Fe1—N1—H1N1113.5 (18)C10—C9—C8121.20 (18)
N2ii—N1—H1N115.8 (18)C10—C9—H9119.3 (16)
C1—N1—H2N1106.2 (17)C8—C9—H9119.4 (16)
Fe1—N1—H2N1101.5 (17)O2—C10—C9128.01 (18)
N2ii—N1—H2N194.3 (17)O2—C10—C11112.75 (16)
H1N1—N1—H2N1108 (2)C9—C10—C11119.24 (17)
C2—N2—O2113.09 (12)F4—C11—F6107.52 (18)
C2—N2—H1N2110.4 (18)F4—C11—F5107.59 (18)
O2—N2—H1N2110.3 (18)F6—C11—F5106.88 (18)
C2—N2—H2N2113.6 (18)F4—C11—C10113.96 (16)
O2—N2—H2N22.3 (18)F6—C11—C10110.72 (17)
H1N2—N2—H2N2112 (3)F5—C11—C10109.87 (17)
C6—C1—C2119.66 (19)
Fe1—N1—C1—C277.0 (2)C6—C5—C4—C30.5 (4)
N1—C1—C2—N25.6 (3)C5—C4—C3—C20.8 (3)
Fe1—N1—C1—C6100.86 (19)C4—C3—C2—C10.5 (3)
N1—C1—C6—C5178.30 (19)C3—C2—C1—N1178.00 (17)
C1—C6—C5—C40.2 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.88 (3)2.30 (3)3.137 (3)158 (2)
N1—H2N1···F3iii0.87 (3)2.59 (3)3.382 (2)151 (2)
N2—H2N2···O20.86 (3)2.26 (3)3.125 (2)177 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
(II) trans-bis(1,2-Diaminobenzene-N)bis(1,1,1,5,5,5- hexafluoropentane-2,4-dionato-O,O')cobalt(II) top
Crystal data top
[Co(C5HF6O2)2(C6H8N2)2]F(000) = 690
Mr = 689.33Dx = 1.774 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.769 ÅCell parameters from 6146 reflections
b = 10.9013 (1) Åθ = 2.3–28.6°
c = 15.4431 (1) ŵ = 0.79 mm1
β = 99.288 (1)°T = 158 K
V = 1290.73 (1) Å3Block, orange
Z = 20.36 × 0.32 × 0.30 mm
Data collection top
Bruker SMART area-detector
diffractometer
4392 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 35.5°, θmin = 2.3°
ω scansh = 1212
20859 measured reflectionsk = 1717
5646 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.721P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5646 reflectionsΔρmax = 1.31 e Å3
233 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (2)
Crystal data top
[Co(C5HF6O2)2(C6H8N2)2]V = 1290.73 (1) Å3
Mr = 689.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.769 ŵ = 0.79 mm1
b = 10.9013 (1) ÅT = 158 K
c = 15.4431 (1) Å0.36 × 0.32 × 0.30 mm
β = 99.288 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
4392 reflections with I > 2σ(I)
20859 measured reflectionsRint = 0.037
5646 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.01Δρmax = 1.31 e Å3
5646 reflectionsΔρmin = 1.00 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.02045 (9)
N10.24687 (18)0.10591 (12)0.00839 (8)0.0235 (2)
N20.3919 (2)0.02983 (14)0.11746 (10)0.0273 (3)
O10.06855 (15)0.03671 (11)0.13165 (7)0.0246 (2)
O20.11780 (15)0.16042 (10)0.02596 (7)0.0246 (2)
C10.29016 (19)0.16622 (14)0.06841 (10)0.0229 (2)
C20.35467 (18)0.09614 (14)0.13248 (10)0.0232 (3)
C30.3904 (2)0.15446 (17)0.20797 (11)0.0295 (3)
C40.3648 (2)0.27943 (19)0.22007 (13)0.0353 (4)
C50.3010 (3)0.34841 (18)0.15684 (14)0.0363 (4)
C60.2639 (2)0.29133 (15)0.08122 (12)0.0298 (3)
C70.1589 (3)0.13677 (18)0.26464 (10)0.0336 (4)
C80.13342 (19)0.13476 (14)0.16381 (9)0.0225 (2)
C90.1860 (2)0.23802 (14)0.12037 (9)0.0241 (3)
C100.17404 (18)0.24175 (13)0.02972 (9)0.0212 (2)
C110.2337 (2)0.35766 (15)0.01287 (10)0.0275 (3)
F10.2731 (2)0.04849 (18)0.29697 (9)0.0579 (4)
F20.01359 (17)0.11011 (18)0.29343 (8)0.0598 (4)
F30.2281 (3)0.23951 (16)0.29963 (9)0.0778 (6)
F40.30780 (18)0.44105 (11)0.04408 (8)0.0413 (3)
F50.09702 (18)0.41110 (11)0.06245 (9)0.0457 (3)
F60.34814 (19)0.33034 (12)0.06560 (9)0.0448 (3)
H1N10.337 (3)0.066 (2)0.0323 (17)0.036 (6)*
H2N10.229 (3)0.169 (2)0.0470 (16)0.033 (6)*
H1N20.398 (3)0.069 (2)0.1689 (18)0.041 (7)*
H2N20.318 (3)0.068 (2)0.0894 (17)0.035 (6)*
H30.430 (3)0.106 (2)0.2508 (16)0.034 (6)*
H40.395 (3)0.319 (2)0.2680 (18)0.041 (7)*
H50.280 (4)0.435 (3)0.167 (2)0.063 (9)*
H60.229 (4)0.339 (3)0.0346 (19)0.045 (7)*
H90.236 (3)0.307 (2)0.1561 (16)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02629 (14)0.01974 (13)0.01608 (12)0.00334 (9)0.00571 (9)0.00083 (8)
N10.0265 (6)0.0243 (6)0.0198 (5)0.0013 (4)0.0043 (4)0.0021 (4)
N20.0307 (6)0.0272 (6)0.0248 (6)0.0033 (5)0.0068 (5)0.0028 (5)
O10.0323 (5)0.0244 (5)0.0178 (4)0.0025 (4)0.0057 (4)0.0006 (4)
O20.0325 (5)0.0233 (5)0.0189 (4)0.0061 (4)0.0071 (4)0.0016 (4)
C10.0214 (6)0.0248 (6)0.0222 (6)0.0011 (5)0.0028 (5)0.0004 (5)
C20.0208 (6)0.0280 (6)0.0206 (6)0.0002 (5)0.0031 (4)0.0004 (5)
C30.0244 (6)0.0400 (9)0.0244 (7)0.0014 (6)0.0051 (5)0.0032 (6)
C40.0308 (8)0.0416 (9)0.0335 (8)0.0026 (7)0.0055 (6)0.0124 (7)
C50.0355 (8)0.0288 (8)0.0441 (10)0.0005 (6)0.0051 (7)0.0105 (7)
C60.0289 (7)0.0246 (7)0.0359 (8)0.0008 (5)0.0054 (6)0.0002 (6)
C70.0415 (9)0.0418 (9)0.0173 (6)0.0121 (7)0.0043 (6)0.0010 (6)
C80.0246 (6)0.0279 (6)0.0150 (5)0.0000 (5)0.0033 (4)0.0002 (4)
C90.0289 (6)0.0241 (6)0.0190 (6)0.0033 (5)0.0031 (5)0.0014 (5)
C100.0234 (6)0.0211 (6)0.0196 (5)0.0018 (4)0.0050 (4)0.0001 (4)
C110.0362 (8)0.0233 (6)0.0235 (6)0.0057 (5)0.0062 (6)0.0001 (5)
F10.0486 (7)0.0923 (12)0.0307 (6)0.0061 (8)0.0002 (5)0.0242 (7)
F20.0399 (6)0.1173 (14)0.0261 (5)0.0084 (8)0.0168 (5)0.0055 (7)
F30.1465 (18)0.0624 (10)0.0236 (6)0.0450 (11)0.0106 (8)0.0130 (6)
F40.0638 (8)0.0290 (5)0.0301 (5)0.0193 (5)0.0044 (5)0.0031 (4)
F50.0528 (7)0.0343 (6)0.0456 (7)0.0020 (5)0.0052 (6)0.0163 (5)
F60.0586 (7)0.0393 (6)0.0443 (6)0.0122 (5)0.0318 (6)0.0005 (5)
Geometric parameters (Å, º) top
Co1—O22.0433 (11)C3—H30.93 (2)
Co1—O2i2.0433 (11)C4—C51.386 (3)
Co1—O12.0562 (11)C4—H40.92 (3)
Co1—O1i2.0562 (11)C5—C61.394 (3)
Co1—N1i2.2243 (13)C5—H50.96 (3)
Co1—N12.2243 (13)C6—H60.96 (3)
N1—C11.4426 (19)C7—F21.311 (2)
N1—H1N10.86 (3)C7—F31.320 (2)
N1—H2N10.94 (3)C7—F11.349 (3)
N2—C21.415 (2)C7—C81.538 (2)
N2—H1N20.91 (3)C8—C91.404 (2)
N2—H2N20.88 (3)C9—C101.389 (2)
O1—C81.2500 (19)C9—H90.97 (2)
O2—C101.2630 (17)C10—C111.530 (2)
C1—C61.388 (2)C11—F41.3297 (19)
C1—C21.405 (2)C11—F61.333 (2)
C2—C31.395 (2)C11—F51.338 (2)
C3—C41.385 (3)
O2—Co1—O2i180.0C4—C3—H3120.9 (15)
O2—Co1—O188.55 (4)C2—C3—H3117.9 (15)
O2i—Co1—O191.45 (4)C3—C4—C5119.91 (16)
O2—Co1—O1i91.45 (4)C3—C4—H4121.3 (17)
O2i—Co1—O1i88.55 (4)C5—C4—H4118.7 (17)
O1—Co1—O1i180.0C4—C5—C6119.60 (17)
O2—Co1—N1i87.34 (5)C4—C5—H5118.9 (19)
O2i—Co1—N1i92.66 (5)C6—C5—H5121.4 (19)
O1—Co1—N1i92.28 (5)C1—C6—C5120.82 (17)
O1i—Co1—N1i87.72 (5)C1—C6—H6118.7 (17)
O2—Co1—N192.66 (5)C5—C6—H6120.3 (17)
O2i—Co1—N187.34 (5)F2—C7—F3111.41 (18)
O1—Co1—N187.72 (5)F2—C7—F1105.48 (16)
O1i—Co1—N192.28 (5)F3—C7—F1104.73 (18)
N1i—Co1—N1180.0F2—C7—C8111.28 (14)
C1—N1—Co1120.13 (9)F3—C7—C8113.84 (15)
C1—N1—H1N1107.6 (17)F1—C7—C8109.53 (15)
Co1—N1—H1N1113.6 (17)O1—C8—C9128.70 (13)
C1—N1—H2N1105.6 (15)O1—C8—C7113.09 (13)
Co1—N1—H2N1101.5 (15)C9—C8—C7118.19 (13)
H1N1—N1—H2N1107 (2)C10—C9—C8121.86 (14)
C2—N2—H1N2110.4 (17)C10—C9—H9120.3 (15)
C2—N2—H2N2113.8 (16)C8—C9—H9117.8 (15)
H1N2—N2—H2N2110 (2)O2—C10—C9128.71 (14)
C8—O1—Co1125.64 (9)O2—C10—C11112.48 (12)
C10—O2—Co1125.73 (9)C9—C10—C11118.81 (13)
C6—C1—C2119.66 (14)F4—C11—F6107.24 (14)
C6—C1—N1121.09 (14)F4—C11—F5107.44 (14)
C2—C1—N1119.22 (13)F6—C11—F5107.08 (14)
C3—C2—C1118.85 (15)F4—C11—C10114.14 (13)
C3—C2—N2121.10 (14)F6—C11—C10110.87 (13)
C1—C2—N2119.95 (14)F5—C11—C10109.77 (13)
C4—C3—C2121.16 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.86 (3)2.33 (3)3.142 (2)159 (2)
N1—H2N1···F3iii0.94 (3)2.54 (3)3.388 (2)151 (2)
N2—H2N2···O20.88 (3)2.21 (3)3.087 (2)176 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
(III) trans-bis(1,2-Diaminobenzene-N)bis(1,1,1,5,5,5- hexafluoropentane-2,4-dionato-O,O')nickel(II) top
Crystal data top
[Ni(C5HF6O2)2(C6H8N2)2]F(000) = 692
Mr = 689.11Dx = 1.774 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7597 (1) ÅCell parameters from 5479 reflections
b = 10.9286 (1) Åθ = 2.3–28.3°
c = 15.3948 (3) ŵ = 0.88 mm1
β = 98.813 (1)°T = 173 K
V = 1290.11 (3) Å3Block, green
Z = 20.46 × 0.40 × 0.35 mm
Data collection top
Bruker SMART area-detector
diffractometer
3079 independent reflections
Radiation source: normal-focus sealed tube2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 109
Tmin = 0.672, Tmax = 0.797k = 1314
13585 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.112All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 1.58P]
where P = (Fo2 + 2Fc2)/3
3079 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Ni(C5HF6O2)2(C6H8N2)2]V = 1290.11 (3) Å3
Mr = 689.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.7597 (1) ŵ = 0.88 mm1
b = 10.9286 (1) ÅT = 173 K
c = 15.3948 (3) Å0.46 × 0.40 × 0.35 mm
β = 98.813 (1)°
Data collection top
Bruker SMART area-detector
diffractometer
3079 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2784 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.797Rint = 0.019
13585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112All H-atom parameters refined
S = 1.01Δρmax = 1.10 e Å3
3079 reflectionsΔρmin = 0.72 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02376 (13)
O10.0629 (2)0.03364 (15)0.13077 (9)0.0275 (3)
O20.1138 (2)0.15916 (14)0.02703 (9)0.0281 (3)
N10.2426 (3)0.10040 (18)0.00980 (12)0.0278 (4)
N20.3898 (3)0.0294 (2)0.11852 (14)0.0320 (4)
C10.2871 (3)0.1637 (2)0.06637 (14)0.0268 (4)
C20.3522 (3)0.0962 (2)0.13178 (14)0.0265 (4)
C30.3871 (3)0.1571 (2)0.20675 (15)0.0326 (5)
C40.3616 (3)0.2821 (3)0.21636 (18)0.0396 (6)
C50.2980 (4)0.3482 (2)0.15183 (19)0.0408 (6)
C60.2608 (3)0.2889 (2)0.07708 (17)0.0345 (5)
C70.1593 (3)0.1297 (2)0.26401 (14)0.0362 (5)
C80.1318 (3)0.1299 (2)0.16289 (13)0.0251 (4)
C90.1864 (3)0.2327 (2)0.12027 (13)0.0262 (4)
C100.1725 (3)0.23846 (19)0.02946 (13)0.0242 (4)
C110.2320 (3)0.3552 (2)0.01277 (14)0.0307 (5)
F10.2757 (2)0.0425 (2)0.29458 (11)0.0621 (5)
F20.0164 (2)0.1008 (2)0.29463 (10)0.0610 (5)
F30.2279 (4)0.2319 (2)0.29978 (11)0.0818 (8)
F40.3064 (2)0.43744 (14)0.04424 (10)0.0464 (4)
F50.0952 (2)0.40892 (15)0.06143 (12)0.0517 (4)
F60.3452 (2)0.32849 (15)0.06666 (11)0.0504 (4)
H1N10.329 (4)0.060 (3)0.034 (2)0.040 (8)*
H2N10.226 (4)0.157 (3)0.048 (2)0.035 (7)*
H2N20.310 (4)0.070 (3)0.092 (2)0.037 (8)*
H1N20.402 (4)0.062 (3)0.169 (2)0.045 (8)*
H30.429 (4)0.112 (3)0.250 (2)0.037 (7)*
H40.393 (4)0.323 (3)0.267 (2)0.049 (9)*
H50.281 (4)0.438 (3)0.162 (2)0.055 (9)*
H60.219 (4)0.333 (3)0.029 (2)0.053 (9)*
H90.235 (4)0.299 (3)0.153 (2)0.040 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0318 (2)0.0237 (2)0.01666 (19)0.00587 (14)0.00664 (14)0.00103 (13)
O10.0368 (8)0.0282 (7)0.0181 (6)0.0051 (6)0.0064 (6)0.0004 (6)
O20.0388 (8)0.0264 (7)0.0200 (7)0.0088 (6)0.0073 (6)0.0018 (5)
N10.0324 (9)0.0301 (9)0.0215 (8)0.0047 (8)0.0054 (7)0.0014 (7)
N20.0378 (10)0.0321 (10)0.0277 (10)0.0055 (8)0.0096 (8)0.0029 (8)
C10.0261 (10)0.0300 (10)0.0242 (9)0.0002 (8)0.0039 (7)0.0009 (8)
C20.0229 (9)0.0329 (11)0.0235 (9)0.0011 (8)0.0028 (7)0.0006 (8)
C30.0275 (10)0.0453 (13)0.0254 (10)0.0013 (9)0.0056 (8)0.0019 (9)
C40.0344 (12)0.0464 (14)0.0384 (13)0.0038 (10)0.0068 (10)0.0135 (11)
C50.0408 (13)0.0323 (12)0.0499 (15)0.0011 (10)0.0087 (11)0.0090 (11)
C60.0341 (11)0.0299 (11)0.0404 (13)0.0010 (9)0.0082 (10)0.0020 (10)
C70.0450 (13)0.0447 (13)0.0189 (10)0.0126 (11)0.0047 (9)0.0008 (9)
C80.0289 (10)0.0303 (10)0.0165 (8)0.0000 (8)0.0051 (7)0.0007 (7)
C90.0309 (10)0.0272 (10)0.0207 (9)0.0044 (8)0.0043 (8)0.0030 (8)
C100.0276 (9)0.0244 (9)0.0216 (9)0.0027 (7)0.0066 (7)0.0004 (7)
C110.0423 (12)0.0262 (10)0.0242 (10)0.0064 (9)0.0073 (9)0.0004 (8)
F10.0522 (10)0.0960 (15)0.0361 (9)0.0062 (10)0.0000 (7)0.0258 (10)
F20.0453 (9)0.1152 (17)0.0263 (7)0.0099 (10)0.0175 (6)0.0042 (9)
F30.155 (2)0.0652 (13)0.0240 (8)0.0458 (14)0.0094 (11)0.0123 (8)
F40.0747 (11)0.0313 (8)0.0326 (7)0.0227 (7)0.0060 (7)0.0037 (6)
F50.0590 (10)0.0410 (9)0.0513 (9)0.0026 (8)0.0037 (8)0.0188 (7)
F60.0689 (11)0.0426 (9)0.0482 (9)0.0169 (8)0.0367 (8)0.0021 (7)
Geometric parameters (Å, º) top
Ni1—O22.0225 (15)C3—H30.93 (3)
Ni1—O2i2.0225 (15)C4—C51.380 (4)
Ni1—O1i2.0311 (14)C4—H40.96 (3)
Ni1—O12.0311 (14)C5—C61.390 (4)
Ni1—N12.164 (2)C5—H50.99 (4)
Ni1—N1i2.164 (2)C6—H60.98 (3)
O1—C81.248 (3)C7—F21.308 (3)
O2—C101.263 (2)C7—F31.321 (3)
N1—C11.448 (3)C7—F11.347 (3)
N1—H1N10.84 (3)C7—C81.539 (3)
N1—H2N10.88 (3)C8—C91.399 (3)
N2—C21.411 (3)C9—C101.387 (3)
N2—H2N20.90 (3)C9—H90.92 (3)
N2—H1N20.87 (3)C10—C111.535 (3)
C1—C61.389 (3)C11—F41.325 (3)
C1—C21.404 (3)C11—F61.330 (3)
C2—C31.395 (3)C11—F51.338 (3)
C3—C41.384 (4)
O2—Ni1—O2i180.0C4—C3—H3120.5 (18)
O2—Ni1—O1i89.88 (6)C2—C3—H3118.3 (18)
O2i—Ni1—O1i90.12 (6)C5—C4—C3120.1 (2)
O2—Ni1—O190.12 (6)C5—C4—H4120 (2)
O2i—Ni1—O189.88 (6)C3—C4—H4120 (2)
O1i—Ni1—O1180.0C4—C5—C6119.6 (2)
O2—Ni1—N192.75 (7)C4—C5—H5117 (2)
O2i—Ni1—N187.25 (7)C6—C5—H5123 (2)
O1i—Ni1—N192.97 (7)C1—C6—C5120.9 (2)
O1—Ni1—N187.03 (7)C1—C6—H6117 (2)
O2—Ni1—N1i87.25 (7)C5—C6—H6122 (2)
O2i—Ni1—N1i92.75 (7)F2—C7—F3111.3 (2)
O1i—Ni1—N1i87.03 (7)F2—C7—F1105.2 (2)
O1—Ni1—N1i92.97 (7)F3—C7—F1104.3 (2)
N1—Ni1—N1i180.0F2—C7—C8111.76 (19)
C8—O1—Ni1124.67 (13)F3—C7—C8113.9 (2)
C10—O2—Ni1124.86 (13)F1—C7—C8109.7 (2)
C1—N1—Ni1119.91 (14)O1—C8—C9129.31 (18)
C1—N1—H1N1110 (2)O1—C8—C7112.60 (18)
Ni1—N1—H1N1113 (2)C9—C8—C7118.09 (19)
C1—N1—H2N1106.9 (19)C10—C9—C8121.79 (19)
Ni1—N1—H2N1100.6 (19)C10—C9—H9118.3 (19)
H1N1—N1—H2N1105 (3)C8—C9—H9119.9 (19)
C2—N2—H2N2113.4 (19)O2—C10—C9128.86 (19)
C2—N2—H1N2108 (2)O2—C10—C11112.28 (17)
H2N2—N2—H1N2112 (3)C9—C10—C11118.86 (18)
C6—C1—C2119.7 (2)F4—C11—F6107.4 (2)
C6—C1—N1121.2 (2)F4—C11—F5107.5 (2)
C2—C1—N1119.1 (2)F6—C11—F5106.89 (19)
C3—C2—C1118.6 (2)F4—C11—C10114.34 (18)
C3—C2—N2121.5 (2)F6—C11—C10110.61 (18)
C1—C2—N2119.8 (2)F5—C11—C10109.74 (18)
C4—C3—C2121.1 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.84 (3)2.38 (3)3.175 (3)156 (3)
N1—H2N1···F3iii0.88 (3)2.61 (3)3.435 (3)156 (2)
N2—H2N2···O20.90 (3)2.18 (3)3.083 (3)177 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Fe(C5HF6O2)2(C6H8N2)2][Co(C5HF6O2)2(C6H8N2)2][Ni(C5HF6O2)2(C6H8N2)2]
Mr686.25689.33689.11
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)173158173
a, b, c (Å)7.8148 (1), 10.9332 (2), 15.4893 (3)7.769, 10.9013 (1), 15.4431 (1)7.7597 (1), 10.9286 (1), 15.3948 (3)
β (°) 99.002 (1) 99.288 (1) 98.813 (1)
V3)1307.12 (4)1290.73 (1)1290.11 (3)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.700.790.88
Crystal size (mm)0.40 × 0.37 × 0.160.36 × 0.32 × 0.300.46 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Bruker SMART area-detector
diffractometer
Bruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.620, 0.7350.672, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
13875, 3129, 2818 20859, 5646, 4392 13585, 3079, 2784
Rint0.0220.0370.019
(sin θ/λ)max1)0.6660.8170.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.00 0.045, 0.137, 1.01 0.040, 0.112, 1.01
No. of reflections312956463079
No. of parameters233233232
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.06, 0.801.31, 1.001.10, 0.72

Computer programs: SMART (Bruker, 1998), SMART, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Fe1—O22.0468 (13)C1—C21.407 (3)
Fe1—O12.0593 (13)C2—C31.397 (3)
Fe1—N12.2803 (17)C3—C41.387 (3)
N1—C11.443 (2)C4—C51.378 (4)
N2—C21.415 (3)C5—C61.398 (3)
C1—C61.390 (3)
O2—Fe1—O186.59 (5)O1i—Fe1—N192.12 (6)
O2i—Fe1—O193.41 (5)O1—Fe1—N187.88 (6)
O2—Fe1—N193.04 (6)C1—N1—Fe1119.06 (12)
O2i—Fe1—N186.96 (6)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.88 (3)2.30 (3)3.137 (3)158 (2)
N1—H2N1···F3iii0.87 (3)2.59 (3)3.382 (2)151 (2)
N2—H2N2···O20.86 (3)2.26 (3)3.125 (2)177 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Co1—O22.0433 (11)C1—C21.405 (2)
Co1—O12.0562 (11)C2—C31.395 (2)
Co1—N12.2243 (13)C3—C41.385 (3)
N1—C11.4426 (19)C4—C51.386 (3)
N2—C21.415 (2)C5—C61.394 (3)
C1—C61.388 (2)
O2—Co1—O188.55 (4)O1—Co1—N187.72 (5)
O2i—Co1—O191.45 (4)O1i—Co1—N192.28 (5)
O2—Co1—N192.66 (5)C1—N1—Co1120.13 (9)
O2i—Co1—N187.34 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.86 (3)2.33 (3)3.142 (2)159 (2)
N1—H2N1···F3iii0.94 (3)2.54 (3)3.388 (2)151 (2)
N2—H2N2···O20.88 (3)2.21 (3)3.087 (2)176 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (III) top
Ni1—O22.0225 (15)C1—C21.404 (3)
Ni1—O12.0311 (14)C2—C31.395 (3)
Ni1—N12.164 (2)C3—C41.384 (4)
N1—C11.448 (3)C4—C51.380 (4)
N2—C21.411 (3)C5—C61.390 (4)
C1—C61.389 (3)
O2—Ni1—O190.12 (6)O1i—Ni1—N192.97 (7)
O2i—Ni1—O189.88 (6)O1—Ni1—N187.03 (7)
O2—Ni1—N192.75 (7)C1—N1—Ni1119.91 (14)
O2i—Ni1—N187.25 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.84 (3)2.38 (3)3.175 (3)156 (3)
N1—H2N1···F3iii0.88 (3)2.61 (3)3.435 (3)156 (2)
N2—H2N2···O20.90 (3)2.18 (3)3.083 (3)177 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds