Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compund, C22H19NO2, was synthesized by the reaction of pyridine-2-carbaldehyde with acetophenone and NaOH. The bond lengths and angles show normal values. The crystal packing exhibits no significantly short inter­molecular contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040080/cv6614sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040080/cv6614Isup2.hkl
Contains datablock I

CCDC reference: 280717

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.128
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.72 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Organic syntheses directed towards `green' chemistry have attracted increasing interest in recent years in view of expectations of new enviromentally benign procedures saving resources and energy (Tanaka & Toda, 2000; Dittmer, 1997). The development of solvent-free reactions (DeSimone, 2002; Cave et al., 2001; Tanaka, 2003) is an especially attractive goal in the context of green chemistry (Anastas & Kirchhoff, 2002). 1,5-Diketones are important synthetic intermediates and starting materials in the synthesis of many heterocyclic compounds (Hirsch & Bailey, 1978; Krohnke, 1976). It is also known that pyridine-containing compounds often exhibit strong biological activity (Keys et al., 1987). In continuation of work on the synthesis of 1,5-diketones (Constable et al., 1998; Fuchigami et al., 1986), we present here the title new pyridine-containing compound, (I), synthesized under solvent-free conditions.

In the molecule of (I) (Fig. 1), the bond lengths and angles (Table 1) are normal and correspond to those observed in 1,3,5-triphenylpentane-1,5-diketone (Das et al., 1994). The crystal packing (Fig. 2) demonstrates no significantly short intermolecular contacts.

Experimental top

Pyridine-2-carboxaldehyde was used as obtained with no further purification. Acetophenone (0.75 g, 6.25 mmol), freshly distilled [Please clarify - contradicts first sentence] pyridine-2-carboxaldehyde (0.33 g, 3.125 mmol) and NaOH (0.25 g, 6.25 mmol) were aggregated using a glass paddle in an open flask. The resulting mixture was washed with water several times to remove NaOH, and then recrystallized from ethanol (m.p. 424 K). EI—MS (m/e, %): 329 (1.62), 252 (13.14), 224(45.88), 210(11.1), 105 (100), 77(69.45); 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 8.45–7.01 (m, 14H), 4.24–4.17 (m, J = 6.8 Hz, 1H), 3.63 (dd, J = 6.8 and 16.4 Hz, 2H), 3.42 (dd, J = 6.8 and 16.4 Hz, 2H); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 198.56, 162.91, 149.10, 136.87, 136.37, 133.02, 128.51, 128.07, 124.12, 121.55, 43.54, 38.10; IR (KBr, ν, cm−1): 3003, 2889, 1680, 1589, 1246, 1209, 997, 750, 688, 540. Elemental analysis, calculated for C22H19NO2: C 80.22, H 5.81, N 4.25%; found: C 80.13, H 5.87, N 4.21%.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing of (I), along the c axis.
1,5-Diphenyl-3-(2-pyridyl)pentane-1,5-dione top
Crystal data top
C22H19NO2F(000) = 696
Mr = 329.38Dx = 1.210 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.519 (2) ÅCell parameters from 2451 reflections
b = 18.162 (3) Åθ = 2.6–22.7°
c = 8.640 (3) ŵ = 0.08 mm1
β = 90.213 (2)°T = 298 K
V = 1807.5 (7) Å3Block, colourless
Z = 40.55 × 0.52 × 0.47 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube1889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 138
Tmin = 0.959, Tmax = 0.965k = 2120
9346 measured reflectionsl = 109
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5691P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3189 reflectionsΔρmax = 0.16 e Å3
227 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Bruker, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (3)
Crystal data top
C22H19NO2V = 1807.5 (7) Å3
Mr = 329.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.519 (2) ŵ = 0.08 mm1
b = 18.162 (3) ÅT = 298 K
c = 8.640 (3) Å0.55 × 0.52 × 0.47 mm
β = 90.213 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1889 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.965Rint = 0.052
9346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
3189 reflectionsΔρmin = 0.16 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64986 (16)0.06597 (10)1.0878 (2)0.0607 (5)
O10.71688 (14)0.13498 (9)0.73392 (19)0.0693 (5)
O20.34654 (13)0.21340 (9)0.76615 (19)0.0672 (5)
C10.7208 (2)0.05815 (14)1.2104 (3)0.0749 (8)
H10.75340.01211.22820.090*
C20.7478 (2)0.11372 (16)1.3105 (3)0.0714 (7)
H20.79690.10541.39440.086*
C30.7014 (2)0.18165 (16)1.2847 (3)0.0704 (7)
H30.71890.22081.35010.085*
C40.6288 (2)0.19114 (13)1.1615 (3)0.0611 (6)
H40.59610.23711.14200.073*
C50.60384 (17)0.13239 (11)1.0655 (2)0.0446 (5)
C60.52172 (17)0.14184 (11)0.9310 (2)0.0444 (5)
H60.53820.18950.88270.053*
C70.53681 (18)0.08244 (11)0.8084 (2)0.0520 (6)
H7A0.52070.03490.85470.062*
H7B0.48010.09040.72680.062*
C80.65629 (19)0.08037 (12)0.7376 (2)0.0504 (5)
C90.6982 (2)0.01021 (13)0.6683 (2)0.0590 (6)
C100.6231 (3)0.04686 (14)0.6304 (3)0.0753 (8)
H100.54430.04230.65090.090*
C110.6650 (4)0.11063 (16)0.5621 (3)0.1046 (12)
H110.61420.14860.53660.125*
C120.7808 (5)0.1177 (2)0.5325 (4)0.1209 (16)
H120.80850.16040.48610.145*
C130.8569 (4)0.0623 (2)0.5706 (4)0.1095 (12)
H130.93570.06780.55100.131*
C140.8160 (3)0.00239 (15)0.6386 (3)0.0812 (8)
H140.86740.04010.66380.097*
C150.39591 (17)0.14319 (12)0.9882 (2)0.0508 (6)
H15A0.37130.09311.00890.061*
H15B0.39300.17021.08500.061*
C160.31204 (18)0.17754 (11)0.8762 (2)0.0485 (5)
C170.18484 (18)0.16906 (12)0.9047 (2)0.0511 (6)
C180.1408 (2)0.12207 (15)1.0154 (3)0.0780 (8)
H180.19130.09441.07600.094*
C190.0221 (2)0.1156 (2)1.0373 (4)0.1039 (11)
H190.00640.08391.11270.125*
C200.0520 (2)0.1552 (2)0.9497 (4)0.1022 (11)
H200.13160.15050.96400.123*
C210.0103 (2)0.20237 (19)0.8394 (4)0.0938 (10)
H210.06170.22980.77940.113*
C220.1079 (2)0.20944 (14)0.8170 (3)0.0697 (7)
H220.13560.24170.74210.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0584 (12)0.0489 (11)0.0748 (13)0.0032 (9)0.0136 (10)0.0070 (10)
O10.0600 (10)0.0636 (10)0.0843 (12)0.0048 (9)0.0146 (9)0.0002 (9)
O20.0561 (10)0.0724 (11)0.0731 (11)0.0038 (8)0.0021 (8)0.0237 (9)
C10.0695 (17)0.0632 (16)0.092 (2)0.0010 (13)0.0235 (15)0.0222 (15)
C20.0602 (16)0.095 (2)0.0592 (15)0.0094 (15)0.0136 (13)0.0140 (15)
C30.0640 (17)0.0848 (19)0.0624 (15)0.0010 (14)0.0129 (13)0.0150 (14)
C40.0612 (15)0.0583 (14)0.0636 (15)0.0065 (11)0.0112 (12)0.0103 (12)
C50.0387 (11)0.0469 (12)0.0483 (12)0.0020 (9)0.0015 (9)0.0017 (10)
C60.0423 (12)0.0438 (11)0.0471 (12)0.0007 (9)0.0001 (10)0.0007 (9)
C70.0477 (13)0.0547 (13)0.0535 (13)0.0035 (10)0.0029 (10)0.0037 (10)
C80.0522 (14)0.0548 (14)0.0441 (12)0.0058 (11)0.0010 (10)0.0044 (10)
C90.0774 (18)0.0577 (14)0.0420 (13)0.0191 (13)0.0058 (12)0.0085 (11)
C100.115 (2)0.0593 (16)0.0513 (15)0.0120 (16)0.0015 (14)0.0021 (12)
C110.184 (4)0.0654 (19)0.0644 (19)0.026 (2)0.002 (2)0.0078 (15)
C120.204 (5)0.087 (3)0.072 (2)0.069 (3)0.020 (3)0.0042 (19)
C130.130 (3)0.114 (3)0.085 (2)0.066 (3)0.033 (2)0.018 (2)
C140.091 (2)0.0858 (19)0.0671 (17)0.0346 (16)0.0179 (15)0.0160 (14)
C150.0449 (12)0.0568 (13)0.0507 (13)0.0007 (10)0.0001 (10)0.0015 (10)
C160.0478 (13)0.0451 (12)0.0525 (13)0.0022 (10)0.0011 (10)0.0017 (10)
C170.0445 (13)0.0595 (13)0.0492 (13)0.0043 (10)0.0027 (10)0.0051 (11)
C180.0470 (15)0.109 (2)0.0781 (18)0.0021 (14)0.0036 (13)0.0255 (16)
C190.0511 (17)0.161 (3)0.100 (2)0.0144 (18)0.0012 (16)0.036 (2)
C200.0430 (16)0.169 (3)0.095 (2)0.0013 (19)0.0018 (17)0.007 (2)
C210.0516 (18)0.136 (3)0.093 (2)0.0231 (17)0.0114 (16)0.007 (2)
C220.0552 (16)0.0854 (18)0.0685 (16)0.0133 (13)0.0028 (13)0.0062 (14)
Geometric parameters (Å, º) top
N1—C51.331 (3)C10—H100.9300
N1—C11.343 (3)C11—C121.366 (5)
O1—C81.213 (2)C11—H110.9300
O2—C161.220 (2)C12—C131.374 (5)
C1—C21.364 (3)C12—H120.9300
C1—H10.9300C13—C141.396 (4)
C2—C31.363 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.362 (3)C15—C161.501 (3)
C3—H30.9300C15—H15A0.9700
C4—C51.381 (3)C15—H15B0.9700
C4—H40.9300C16—C171.495 (3)
C5—C61.506 (3)C17—C221.376 (3)
C6—C71.522 (3)C17—C181.380 (3)
C6—C151.533 (3)C18—C191.385 (3)
C6—H60.9800C18—H180.9300
C7—C81.509 (3)C19—C201.347 (4)
C7—H7A0.9700C19—H190.9300
C7—H7B0.9700C20—C211.370 (4)
C8—C91.489 (3)C20—H200.9300
C9—C101.388 (3)C21—C221.381 (4)
C9—C141.390 (3)C21—H210.9300
C10—C111.387 (4)C22—H220.9300
C5—N1—C1116.8 (2)C12—C11—H11120.0
N1—C1—C2123.9 (2)C10—C11—H11120.0
N1—C1—H1118.0C11—C12—C13120.6 (3)
C2—C1—H1118.0C11—C12—H12119.7
C3—C2—C1118.6 (2)C13—C12—H12119.7
C3—C2—H2120.7C12—C13—C14120.1 (4)
C1—C2—H2120.7C12—C13—H13119.9
C4—C3—C2118.8 (2)C14—C13—H13119.9
C4—C3—H3120.6C9—C14—C13119.7 (3)
C2—C3—H3120.6C9—C14—H14120.2
C3—C4—C5119.8 (2)C13—C14—H14120.2
C3—C4—H4120.1C16—C15—C6113.95 (17)
C5—C4—H4120.1C16—C15—H15A108.8
N1—C5—C4122.1 (2)C6—C15—H15A108.8
N1—C5—C6117.61 (18)C16—C15—H15B108.8
C4—C5—C6120.28 (19)C6—C15—H15B108.8
C5—C6—C7112.54 (17)H15A—C15—H15B107.7
C5—C6—C15110.17 (16)O2—C16—C17120.4 (2)
C7—C6—C15110.25 (17)O2—C16—C15120.90 (19)
C5—C6—H6107.9C17—C16—C15118.68 (18)
C7—C6—H6107.9C22—C17—C18118.2 (2)
C15—C6—H6107.9C22—C17—C16119.0 (2)
C8—C7—C6113.99 (17)C18—C17—C16122.8 (2)
C8—C7—H7A108.8C17—C18—C19120.9 (3)
C6—C7—H7A108.8C17—C18—H18119.6
C8—C7—H7B108.8C19—C18—H18119.6
C6—C7—H7B108.8C20—C19—C18120.1 (3)
H7A—C7—H7B107.6C20—C19—H19120.0
O1—C8—C9120.1 (2)C18—C19—H19120.0
O1—C8—C7121.05 (19)C19—C20—C21120.1 (3)
C9—C8—C7118.8 (2)C19—C20—H20119.9
C10—C9—C14119.2 (2)C21—C20—H20119.9
C10—C9—C8122.1 (2)C20—C21—C22120.3 (3)
C14—C9—C8118.7 (2)C20—C21—H21119.9
C11—C10—C9120.5 (3)C22—C21—H21119.9
C11—C10—H10119.8C17—C22—C21120.4 (3)
C9—C10—H10119.8C17—C22—H22119.8
C12—C11—C10120.0 (4)C21—C22—H22119.8

Experimental details

Crystal data
Chemical formulaC22H19NO2
Mr329.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.519 (2), 18.162 (3), 8.640 (3)
β (°) 90.213 (2)
V3)1807.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.55 × 0.52 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9346, 3189, 1889
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.00
No. of reflections3189
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C81.213 (2)C6—C71.522 (3)
O2—C161.220 (2)C6—C151.533 (3)
C5—C6—C7112.54 (17)C7—C6—C15110.25 (17)
C5—C6—C15110.17 (16)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds