Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C21H19N5O9, the dihedral angle between the mean planes of the triazole and pyrazole rings is 82.4 (1)°. In the solid state, symmetry-related mol­ecules are linked by weak inter­molecular C—H...O and C—H...N hydrogen bonds, having a graph-set motif of R22(10), to form chains running parallel to the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030448/cv6582sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030448/cv6582Isup2.hkl
Contains datablock I

CCDC reference: 287546

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.030
  • wR factor = 0.072
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.90
Author Response: ...`see _publ_section_exptl_refinement'

Alert level B REFLT03_ALERT_3_B Reflection count < 90% complete (theta max?) From the CIF: _diffrn_reflns_theta_max 25.56 From the CIF: _diffrn_reflns_theta_full 25.00 From the CIF: _reflns_number_total 3706 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4134 Completeness (_total/calc) 89.65% PLAT022_ALERT_3_B Ratio Unique / Expected Reflections too Low .... 0.90 PLAT432_ALERT_2_B Short Inter X...Y Contact O13 .. C29 .. 2.87 Ang.
Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H11 .. O29 .. 2.90 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H10 .. O26 .. 2.86 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C11 .. O29 .. 3.82 Ang.
1 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Azole derivatives, such as derivatives of pyrazole and triazole have been reported to show analgesic and anti-inflammatory activities (Thamotharan et al., 2003). The title compound, (I), is very useful in organic synthesis and compounds such as (I) are usually regarded as key synthons of oligomeric carboxamides, which are known to bind to DNA by lodging in the groove (Lee et al., 1989; Chambers et al., 1985). The present X-ray crystal structure analysis has been undertaken in order to study the stereochemistry and crystal packing of (I) (Fig. 1).

In (I), the bond lengths and angles of the phenyl-1H-pyrazole-3,4-dicarboxylate moiety are comparable to those found in two related structures – dimethyl 1-(3-chloro-4-methylphenyl)pyrazole-3,4-dicarboxylate (Thamotharan et al., 2003), (II), and dimethyl 1-(7-acetoxy-4-methyl-2-oxo-2H-chromen- 8-ylmethyl)-1H-pyrazole-3,4-dicarboxylate (Thamotharan et al., 2004), (III). In all these three structures the following relations for the bond angles are fulfilled: C5—N1—N2 > C3—N2—N1 and N2—C3—C4 > N1—C5—C4. However, conformational differences are observed in the pyrazole-3,4-dicarboxylate groups of (I), (II) and (III). The least-squares fits between the pyrazol-3,4-dicarboxylate groups of (I) and (II) (Fig. 2a) and (I) and (III) (Fig. 2b) show deviations of 1.336 and 1.108 Å, respectively. The bond lengths and angles of the 1,2,3-triazole-4,5-dicarboxylate group are comparable to those found in two related structures − 5-amino-4-(2,6-dichlorophenyl)-1-(2-nitrophenyl)-1H-1,2,3- triazole (Sen & Venkatesan, 1984), (IV), and diethyl 1-(8-dimethylamino-1-naphthyl)-1H-1,2,3-triazole-4,5- dicarboxylate (Nagawa et al., 1990), (V).

The triazole and pyrazole rings are nearly orthogonal, the dihedral angle between the mean planes of the rings being 82.4 (1)°. The dihedral angle between the mean planes of the pyrazole and phenyl rings is 14.0 (1)°. The exocyclic angle C6—N1—C5 [128.41 (14)°] deviates significantly from the normal value (Lapasset & Falgueirettes, 1972). A similar deviation, 128.28 (12)°, is observed in (II). This deviation may be due to the steric repulsion between the atoms H5 of the pyrazole ring and atom H11 of the phenyl ring (H···H = 2.36 Å). The widening of the exocyclic angles C13—C3—C4 [129.98 (14)°] and C3—C4—C16 [129.31 (15)°] from 120° may be due to the steric interaction between atoms O14 and O17 [O14···O17 = 2.96 (s.u.?) Å]. The dihedral angles between the pyrazole ring and the two 3,4-methoxycarbonyl groups are 53.9 (1) and 22.8 (1)°.

The dihedral angle between the mean planes of triazole and phenyl rings is 68.3 (0)°. The torsion angles C25—C24—C29—O30 [166.06 (15)°] and C24—C25—C26—O27 [151.53 (14)° this is N21—C25—C26—O27] show that the two carbonyl groups are twisted from the mean plane of the triazole ring on opposite sides. A similar observation has been made for structure (V). The dihedral angles between the mean planes of the triazole ring and 4,5-methoxycarbonyl groups are 19.6 (1) and 25.8 (1)°.

In (I), atom C19 acts as a donor for a weak intermolecular C—H···N interaction with atom N23 of the triazole moiety of an adjacent molecule. Atom C8 is involved in a weak intermolecular C—H···O interaction with carboxyl atom O30 of an adjacent molecule. The symmetry-related molecules are linked by intermolecular C—H···O and C—H···N hydrogen bonds (Table 2), having a graph-set motif of R22(10) (Bernstein et al., 1995) (Fig. 3), to form a continuous chain, which runs parallel to the a axis.

Experimental top

A solution of 1-[4-(2-azido-acetyl)-phenyl-1H-pyrazole-3,4-dicarboxylic acid dimethylester (0.005 mol) in dry xylene (4 ml) was treated with dimethyl acetylene dicarboxylate (0.005 mol), and the reaction mixture was heated at 373 K till the evolution of carbon dioxide ceased (approximately 1 h). The solvent was removed under reduced pressure to obtain an yellow solid, which was recrystallized from dry benzene.

Refinement top

All H atoms were treated as riding [C—H = 0.93–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2 Ueq(C) for others]. A short intermolecular contact, with a distance of 2.87 Å, is observed between the atoms O13 and C29iv [symmetry code: (iv) −1 + x, 1 + y, z]. The TWIN law 1 0 0 0 1 0 0 0 − 1 2 was applied and the structure was refined with one BASF parameter (0.48575) for unequal components, as the monoclinic cell setting with β approximately 90° emulated orthorhombic. 15 systematic violations were indicated by the SHELXS97 (Sheldrick, 1997) program. These violations may be due to the twinning of the crystal. The reflection 109 was a strong reflection, which should have been systematically absent. However, the crystal structure was refined in the space group P21/c only, rejecting all the reflections that showed systematic absent violations. Two reflections, 029 and 669, were omitted.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown by circles of arbitrary radii.
[Figure 2] Fig. 2. Superimposed fit between the pyrazol-3,4-dicarboxylate moieties of (a) (I) in blue and (II) in red, and (b) (I) in blue and (III) in green.
[Figure 3] Fig. 3. The crystal packing, with the intermolecular hydrogen bonds shown as dashed lines.
Dimethyl 1-{4-[4,5-bis(methoxycarbonyl)-1,2,3-triazol-1- ylmethylcarbonyl]phenyl}-1H-pyrazole-3,4-dicarboxylate top
Crystal data top
C21H19N5O9F(000) = 1008
Mr = 485.41Dx = 1.457 Mg m3
Monoclinic, P21/cMelting point: 415 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.0798 (12) ÅCell parameters from 10027 reflections
b = 8.5500 (6) Åθ = 3.7–25.8°
c = 21.424 (2) ŵ = 0.12 mm1
β = 90.070 (9)°T = 173 K
V = 2212.7 (4) Å3Block, yellow
Z = 40.32 × 0.30 × 0.28 mm
Data collection top
Stoe IPDS-II
diffractometer
3534 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.6°, θmin = 3.7°
ω scansh = 1414
10027 measured reflectionsk = 1010
3706 independent reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1748P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H19N5O9V = 2212.7 (4) Å3
Mr = 485.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0798 (12) ŵ = 0.12 mm1
b = 8.5500 (6) ÅT = 173 K
c = 21.424 (2) Å0.32 × 0.30 × 0.28 mm
β = 90.070 (9)°
Data collection top
Stoe IPDS-II
diffractometer
3534 reflections with I > 2σ(I)
10027 measured reflectionsRint = 0.028
3706 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
3706 reflectionsΔρmin = 0.20 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.46999 (11)0.72996 (16)0.49269 (6)0.0198 (3)
N20.54067 (11)0.79221 (16)0.44890 (6)0.0220 (3)
C30.61878 (13)0.86164 (18)0.48238 (8)0.0196 (3)
C40.60023 (12)0.84420 (19)0.54751 (7)0.0201 (3)
C50.50350 (12)0.75874 (19)0.55206 (7)0.0206 (3)
H50.46760.72650.58930.025*
C60.37712 (13)0.64068 (18)0.47204 (8)0.0193 (3)
C70.37412 (14)0.5938 (2)0.40975 (8)0.0244 (3)
H70.43310.61970.38240.029*
C80.28422 (14)0.5092 (2)0.38829 (7)0.0234 (3)
H80.28130.47800.34580.028*
C90.19732 (13)0.46891 (17)0.42851 (7)0.0191 (3)
C100.20222 (14)0.5148 (2)0.49125 (8)0.0260 (4)
H100.14420.48650.51900.031*
C110.29127 (15)0.6012 (2)0.51307 (8)0.0275 (4)
H110.29410.63350.55550.033*
C120.09988 (12)0.37863 (18)0.40549 (7)0.0197 (3)
O120.02937 (10)0.32344 (15)0.43959 (6)0.0284 (3)
C130.71423 (13)0.93490 (18)0.44834 (8)0.0211 (3)
O130.70515 (11)1.02966 (16)0.40713 (6)0.0336 (3)
O140.80897 (10)0.87519 (15)0.46867 (6)0.0284 (3)
C150.90910 (14)0.9326 (3)0.43840 (9)0.0342 (4)
H15A0.90650.90730.39380.051*
H15B0.97400.88290.45740.051*
H15C0.91411.04630.44370.051*
C160.66536 (13)0.90504 (19)0.60044 (8)0.0220 (3)
O160.66421 (11)0.85034 (17)0.65262 (6)0.0333 (3)
O170.72686 (11)1.02877 (14)0.58326 (6)0.0304 (3)
C180.79753 (18)1.0934 (2)0.63138 (11)0.0416 (5)
H18A0.75241.12320.66750.062*
H18B0.83591.18580.61510.062*
H18C0.85211.01480.64410.062*
C190.09411 (13)0.3567 (2)0.33415 (7)0.0229 (3)
H19A0.10160.45970.31350.028*
H19B0.15650.29000.32040.028*
N210.01013 (10)0.28467 (16)0.31543 (6)0.0199 (3)
N220.01109 (11)0.13186 (16)0.29979 (7)0.0228 (3)
N230.11404 (11)0.09241 (16)0.28825 (6)0.0220 (3)
C240.17963 (12)0.21995 (17)0.29617 (7)0.0178 (3)
C250.11377 (13)0.34573 (19)0.31326 (7)0.0188 (3)
C260.13518 (14)0.51480 (19)0.32502 (7)0.0214 (3)
O260.07727 (12)0.59593 (16)0.35712 (7)0.0374 (3)
O270.22462 (10)0.56020 (13)0.29418 (6)0.0258 (3)
C280.26107 (16)0.7200 (2)0.30470 (10)0.0324 (4)
H28A0.29590.72770.34590.049*
H28B0.31470.74950.27240.049*
H28C0.19720.79050.30290.049*
C290.30246 (13)0.20803 (18)0.29351 (7)0.0188 (3)
O290.36549 (9)0.29934 (14)0.31797 (6)0.0258 (3)
O300.33306 (9)0.08029 (15)0.26162 (6)0.0267 (3)
C310.45088 (14)0.0455 (3)0.26312 (12)0.0406 (5)
H31A0.47220.01510.30550.061*
H31B0.46700.04050.23430.061*
H31C0.49280.13850.25060.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0197 (6)0.0196 (6)0.0203 (7)0.0016 (5)0.0005 (5)0.0008 (5)
N20.0230 (6)0.0224 (7)0.0206 (6)0.0032 (5)0.0004 (5)0.0020 (5)
C30.0195 (7)0.0191 (7)0.0201 (7)0.0007 (6)0.0017 (6)0.0007 (6)
C40.0206 (7)0.0211 (8)0.0186 (8)0.0029 (6)0.0035 (6)0.0007 (6)
C50.0210 (7)0.0229 (8)0.0178 (7)0.0015 (6)0.0010 (6)0.0002 (6)
C60.0186 (7)0.0179 (7)0.0215 (7)0.0005 (6)0.0036 (6)0.0006 (6)
C70.0232 (8)0.0289 (8)0.0210 (8)0.0035 (7)0.0020 (6)0.0007 (7)
C80.0248 (8)0.0282 (9)0.0172 (8)0.0044 (7)0.0010 (6)0.0010 (6)
C90.0188 (7)0.0167 (7)0.0217 (7)0.0003 (6)0.0035 (6)0.0025 (6)
C100.0236 (8)0.0330 (9)0.0214 (8)0.0078 (7)0.0025 (7)0.0001 (7)
C110.0283 (8)0.0357 (9)0.0185 (8)0.0081 (7)0.0032 (7)0.0045 (7)
C120.0196 (7)0.0173 (8)0.0221 (8)0.0001 (6)0.0026 (6)0.0037 (6)
O120.0257 (6)0.0362 (7)0.0233 (6)0.0112 (5)0.0000 (5)0.0050 (5)
C130.0257 (8)0.0194 (7)0.0184 (7)0.0031 (6)0.0011 (6)0.0008 (6)
O130.0333 (7)0.0365 (7)0.0310 (7)0.0008 (6)0.0011 (6)0.0144 (6)
O140.0194 (5)0.0362 (7)0.0295 (6)0.0040 (5)0.0013 (5)0.0098 (5)
C150.0228 (8)0.0472 (12)0.0326 (10)0.0105 (8)0.0005 (7)0.0031 (8)
C160.0190 (7)0.0247 (8)0.0224 (7)0.0035 (6)0.0027 (6)0.0049 (6)
O160.0326 (6)0.0466 (8)0.0206 (6)0.0029 (6)0.0059 (5)0.0006 (5)
O170.0334 (6)0.0240 (6)0.0337 (7)0.0059 (5)0.0096 (6)0.0035 (5)
C180.0404 (11)0.0314 (9)0.0531 (12)0.0052 (9)0.0231 (10)0.0061 (9)
C190.0195 (7)0.0286 (9)0.0207 (8)0.0063 (6)0.0028 (6)0.0018 (6)
N210.0191 (6)0.0228 (7)0.0179 (6)0.0019 (5)0.0022 (5)0.0006 (5)
N220.0228 (6)0.0218 (7)0.0239 (6)0.0003 (5)0.0000 (6)0.0036 (5)
N230.0225 (6)0.0206 (7)0.0228 (7)0.0008 (5)0.0013 (6)0.0049 (5)
C240.0204 (7)0.0179 (7)0.0149 (7)0.0013 (6)0.0007 (6)0.0004 (6)
C250.0220 (7)0.0203 (8)0.0142 (7)0.0004 (6)0.0027 (6)0.0002 (6)
C260.0272 (7)0.0191 (8)0.0179 (7)0.0027 (6)0.0014 (6)0.0003 (6)
O260.0473 (8)0.0244 (6)0.0405 (8)0.0002 (6)0.0198 (7)0.0081 (6)
O270.0286 (6)0.0154 (5)0.0333 (7)0.0025 (5)0.0077 (5)0.0027 (5)
C280.0367 (9)0.0201 (8)0.0405 (10)0.0052 (7)0.0029 (8)0.0037 (7)
C290.0215 (7)0.0199 (7)0.0149 (7)0.0007 (6)0.0004 (6)0.0017 (6)
O290.0244 (5)0.0228 (6)0.0302 (6)0.0036 (5)0.0035 (5)0.0020 (5)
O300.0207 (6)0.0302 (6)0.0292 (6)0.0058 (5)0.0018 (5)0.0086 (5)
C310.0212 (8)0.0423 (11)0.0583 (13)0.0090 (8)0.0041 (9)0.0120 (10)
Geometric parameters (Å, º) top
N1—C51.357 (2)C16—O161.212 (2)
N1—N21.3764 (19)C16—O171.344 (2)
N1—C61.427 (2)O17—C181.447 (2)
N2—C31.325 (2)C18—H18A0.9800
C3—C41.421 (2)C18—H18B0.9800
C3—C131.502 (2)C18—H18C0.9800
C4—C51.382 (2)C19—N211.4575 (19)
C4—C161.474 (2)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.394 (2)N21—N221.349 (2)
C6—C111.402 (2)N21—C251.357 (2)
C7—C81.383 (2)N22—N231.3117 (19)
C7—H70.9500N23—C241.359 (2)
C8—C91.402 (2)C24—C251.387 (2)
C8—H80.9500C24—C291.488 (2)
C9—C101.401 (2)C25—C261.490 (2)
C9—C121.491 (2)C26—O261.201 (2)
C10—C111.386 (2)C26—O271.324 (2)
C10—H100.9500O27—C281.453 (2)
C11—H110.9500C28—H28A0.9800
C12—O121.218 (2)C28—H28B0.9800
C12—C191.541 (2)C28—H28C0.9800
C13—O131.203 (2)C29—O291.210 (2)
C13—O141.326 (2)C29—O301.340 (2)
O14—C151.458 (2)O30—C311.454 (2)
C15—H15A0.9800C31—H31A0.9800
C15—H15B0.9800C31—H31B0.9800
C15—H15C0.9800C31—H31C0.9800
C5—N1—N2112.60 (12)O17—C16—C4111.21 (14)
C5—N1—C6128.41 (14)C16—O17—C18115.53 (15)
N2—N1—C6118.92 (13)O17—C18—H18A109.5
C3—N2—N1104.25 (13)O17—C18—H18B109.5
N2—C3—C4111.80 (14)H18A—C18—H18B109.5
N2—C3—C13118.08 (14)O17—C18—H18C109.5
C4—C3—C13129.98 (14)H18A—C18—H18C109.5
C5—C4—C3105.02 (14)H18B—C18—H18C109.5
C5—C4—C16125.65 (15)N21—C19—C12111.24 (13)
C3—C4—C16129.31 (15)N21—C19—H19A109.4
N1—C5—C4106.32 (14)C12—C19—H19A109.4
N1—C5—H5126.8N21—C19—H19B109.4
C4—C5—H5126.8C12—C19—H19B109.4
C7—C6—C11120.86 (15)H19A—C19—H19B108.0
C7—C6—N1118.05 (15)N22—N21—C25110.87 (13)
C11—C6—N1121.09 (15)N22—N21—C19119.00 (13)
C8—C7—C6119.22 (16)C25—N21—C19130.06 (14)
C8—C7—H7120.4N23—N22—N21107.68 (13)
C6—C7—H7120.4N22—N23—C24108.85 (13)
C7—C8—C9120.82 (15)N23—C24—C25108.72 (13)
C7—C8—H8119.6N23—C24—C29121.46 (13)
C9—C8—H8119.6C25—C24—C29129.41 (14)
C10—C9—C8119.34 (14)N21—C25—C24103.87 (13)
C10—C9—C12119.64 (15)N21—C25—C26121.84 (14)
C8—C9—C12121.02 (14)C24—C25—C26134.23 (14)
C11—C10—C9120.31 (15)O26—C26—O27126.22 (16)
C11—C10—H10119.8O26—C26—C25123.79 (15)
C9—C10—H10119.8O27—C26—C25109.98 (13)
C10—C11—C6119.44 (15)C26—O27—C28116.46 (13)
C10—C11—H11120.3O27—C28—H28A109.5
C6—C11—H11120.3O27—C28—H28B109.5
O12—C12—C9123.68 (14)H28A—C28—H28B109.5
O12—C12—C19121.12 (14)O27—C28—H28C109.5
C9—C12—C19115.19 (13)H28A—C28—H28C109.5
O13—C13—O14125.32 (15)H28B—C28—H28C109.5
O13—C13—C3124.60 (15)O29—C29—O30124.97 (14)
O14—C13—C3110.04 (13)O29—C29—C24124.54 (14)
C13—O14—C15116.11 (13)O30—C29—C24110.47 (13)
O14—C15—H15A109.5C29—O30—C31115.14 (14)
O14—C15—H15B109.5O30—C31—H31A109.5
H15A—C15—H15B109.5O30—C31—H31B109.5
O14—C15—H15C109.5H31A—C31—H31B109.5
H15A—C15—H15C109.5O30—C31—H31C109.5
H15B—C15—H15C109.5H31A—C31—H31C109.5
O16—C16—O17124.27 (15)H31B—C31—H31C109.5
O16—C16—C4124.52 (15)
C5—N1—N2—C30.45 (17)C5—C4—C16—O1624.3 (3)
C6—N1—N2—C3177.71 (13)C3—C4—C16—O16157.52 (17)
N1—N2—C3—C40.48 (17)C5—C4—C16—O17156.06 (15)
N1—N2—C3—C13176.55 (13)C3—C4—C16—O1722.1 (2)
N2—C3—C4—C50.35 (18)O16—C16—O17—C182.1 (2)
C13—C3—C4—C5175.83 (15)C4—C16—O17—C18177.56 (15)
N2—C3—C4—C16178.81 (15)O12—C12—C19—N217.9 (2)
C13—C3—C4—C165.7 (3)C9—C12—C19—N21172.90 (13)
N2—N1—C5—C40.24 (18)C12—C19—N21—N22103.40 (16)
C6—N1—C5—C4177.19 (14)C12—C19—N21—C2573.3 (2)
C3—C4—C5—N10.05 (17)C25—N21—N22—N230.76 (18)
C16—C4—C5—N1178.59 (15)C19—N21—N22—N23176.51 (14)
C5—N1—C6—C7164.06 (16)N21—N22—N23—C240.26 (18)
N2—N1—C6—C712.7 (2)N22—N23—C24—C250.32 (18)
C5—N1—C6—C1116.0 (3)N22—N23—C24—C29172.92 (14)
N2—N1—C6—C11167.21 (14)N22—N21—C25—C240.92 (17)
C11—C6—C7—C80.9 (2)C19—N21—C25—C24175.97 (14)
N1—C6—C7—C8179.03 (15)N22—N21—C25—C26176.54 (14)
C6—C7—C8—C90.7 (2)C19—N21—C25—C266.6 (3)
C7—C8—C9—C100.2 (2)N23—C24—C25—N210.74 (17)
C7—C8—C9—C12179.58 (15)C29—C24—C25—N21171.78 (15)
C8—C9—C10—C111.0 (3)N23—C24—C25—C26176.24 (17)
C12—C9—C10—C11178.80 (16)C29—C24—C25—C2611.2 (3)
C9—C10—C11—C60.8 (3)N21—C25—C26—O2627.3 (3)
C7—C6—C11—C100.1 (3)C24—C25—C26—O26156.19 (18)
N1—C6—C11—C10179.80 (16)N21—C25—C26—O27151.53 (14)
C10—C9—C12—O129.9 (2)C24—C25—C26—O2725.0 (2)
C8—C9—C12—O12170.26 (16)O26—C26—O27—C285.7 (2)
C10—C9—C12—C19170.84 (15)C25—C26—O27—C28175.54 (15)
C8—C9—C12—C199.0 (2)N23—C24—C29—O29156.25 (15)
N2—C3—C13—O1354.0 (2)C25—C24—C29—O2915.4 (3)
C4—C3—C13—O13130.77 (19)N23—C24—C29—O3022.2 (2)
N2—C3—C13—O14123.52 (15)C25—C24—C29—O30166.06 (15)
C4—C3—C13—O1451.7 (2)O29—C29—O30—C316.3 (2)
O13—C13—O14—C150.9 (2)C24—C29—O30—C31172.15 (15)
C3—C13—O14—C15178.36 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···N23i0.992.463.316 (2)144
C8—H8···O30i0.952.543.322 (2)140
C18—H18C···N22ii0.982.593.540 (3)164
C19—H19B···O16ii0.992.543.426 (2)149
C5—H5···O29iii0.952.353.285 (2)168
C11—H11···O29iii0.952.903.824 (2)164
C10—H10···O26iii0.952.863.707 (2)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H19N5O9
Mr485.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0798 (12), 8.5500 (6), 21.424 (2)
β (°) 90.070 (9)
V3)2212.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10027, 3706, 3534
Rint0.028
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.06
No. of reflections3706
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···N23i0.992.463.316 (2)144
C8—H8···O30i0.952.543.322 (2)140
C18—H18C···N22ii0.982.593.540 (3)164
C19—H19B···O16ii0.992.543.426 (2)149
C5—H5···O29iii0.952.353.285 (2)168
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds