Download citation
Download citation
link to html
In the title compound, C22H21NO5, the pyrrolidine ring and the five-membered ring in the indene group have envelope conformations, while the furan ring adopts a twist conformation. Weak inter­molecular C—H...O inter­actions link the mol­ecules into centrosymmetric dimers. The crystal packing is further stabilized by van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029570/cv6572sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029570/cv6572Isup2.hkl
Contains datablock I

CCDC reference: 287539

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.131
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Highly substituted pyrrolidines have attracted much interest in the past few years, since they constitute the main structural element of many alkaloids and pharmacologically active compounds (Subramaniyan & Raghunathan, 2001). Pyrrolidine derivatives inhibit α-mannosidase activity and growth of human glioblastoma and melanoma cells (Fiaux et al., 2005). These derivatives also exhibit anti-influenza virus activity (Stylianakis et al., 2003). Furan derivatives can promote immune activity, inhibit immune activity and blood platelet aggregation (Li et al., 2005). In view of its medicinal importance, the crystal structure determination of the title compound, (I), was carried out by X-ray diffraction.

A displacement ellipsoid plot of (I) is shown in Fig. 1. It consists of four fused rings, viz. pyrrolidine (A), furan (B), indene (rings C and D) and phenyl (E), and a methoxycarbonyl group. The bond lengths in the pyrrolidine ring are comparable with those observed in related structures (Abdul Ajees et al., 2002; Selvanayagam et al., 2004). The sum of the angles around atom N1 [344.3 (2)°] is in accordance with sp3-hybridization.

The methoxy carbonyl group (C15/O4/O5/C16) is planar, with a maximum deviation of 0.006 (1) Å for atom O5. The C—O bond of the ester group is in a syn orientation. The torsion angle C16—O5—C15—O4 is 2.8 (2)°. The methoxy carbonyl group and phenyl ring E make a dihedral angle of 76.8 (1)°.

Ring A adopts an envelope conformation, with puckering parameters q2 = 0.362 (2) Å and ϕ = −59.6 (2)° (Cremer & Pople, 1975). Atom C3 deviates by −0.521 (1) Å from the least-squares plane N1/C1/C2/C4. Ring B adopts a twist conformation, with puckering parameters q2 = 0.517 (2) Å and ϕ = −121.2 (2)°, and displacement asymmetry parameters ΔS(C13) = 0.086 (1) and Δ2(C14) = 0.032 (1) (Nardelli, 1983).

The five-membered ring of the indene moiety adopts an envelope conformation, with puckering parameters q2 = 0.196 (2) Å and ϕ = 170.0 (3)°. Atom C6 deviates by −0.118 (1) Å from the least-squares plane C1/C7/C12/C14. The dihedral angle between the fused six- and five-membered rings (C and D) of the indene moiety is 4.6 (1)°.

An intramolecular O—H···N hydrogen bond is observed in (I) (Table 2). Weak intermolecular C—H···O interactions (Table 2) link the molecules into centrosymmetric dimers. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental top

To a refluxing solution of ninhydrin (1 mmol) and sarcosine (1 mmol) in methanol was added methyl 3-hydroxy-α-methylene-3-phenylpropanate (1 mmol). The completion of the reaction was monitored by thin-layer chromatography and the solvent was evaporated under reduced pressure. The crude products were purified by column chromatography and eluted with a hexane–ethyl acetate (9:1) mixture to afford the title compound. The compound was recrystallized from a hexane–ethyl acetate (1:1) mixture as diffraction quality crystals.

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H = 0.93–0.98 Å, O—H = 0.82 Å and Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C or O) for the other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of (I), viewed approximately down the a axis. Dashed lines denote O—H···N and C—H···O hydrogen bonds.
Methyl 11,2,3,3a-5a-hydroxy-1-methyl-10-oxo-4-phenyl 10H-indeno[1,2-b]furo[3,4-b]pyrrole-3a-carboxylate top
Crystal data top
C22H21NO5Z = 2
Mr = 379.40F(000) = 400
Triclinic, P1Dx = 1.324 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6216 (5) ÅCell parameters from 5288 reflections
b = 10.3055 (6) Åθ = 2.5–26.5°
c = 11.7758 (6) ŵ = 0.09 mm1
α = 79.462 (1)°T = 293 K
β = 79.377 (1)°Block, colourless
γ = 68.876 (1)°0.24 × 0.22 × 0.19 mm
V = 951.48 (9) Å3
Data collection top
CCD Area Detector
diffractometer
3820 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scansh = 1111
10895 measured reflectionsk = 1313
4331 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.077P)2 + 0.1473P]
where P = (Fo2 + 2Fc2)/3
4331 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H21NO5γ = 68.876 (1)°
Mr = 379.40V = 951.48 (9) Å3
Triclinic, P1Z = 2
a = 8.6216 (5) ÅMo Kα radiation
b = 10.3055 (6) ŵ = 0.09 mm1
c = 11.7758 (6) ÅT = 293 K
α = 79.462 (1)°0.24 × 0.22 × 0.19 mm
β = 79.377 (1)°
Data collection top
CCD Area Detector
diffractometer
3820 reflections with I > 2σ(I)
10895 measured reflectionsRint = 0.015
4331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4331 reflectionsΔρmin = 0.19 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.33283 (14)0.84122 (12)0.44108 (9)0.0475 (3)
O10.01217 (10)0.93957 (8)0.31743 (7)0.0426 (2)
O20.02620 (12)0.83333 (10)0.50233 (8)0.0505 (2)
H20.08180.87090.52530.076*
O30.50446 (12)0.58998 (10)0.30407 (10)0.0593 (3)
O40.53542 (14)0.89342 (14)0.13066 (11)0.0728 (3)
O50.37918 (12)0.78388 (10)0.08512 (8)0.0528 (2)
C10.27034 (14)0.80094 (12)0.35086 (10)0.0378 (2)
C20.26760 (13)0.91560 (11)0.24361 (9)0.0354 (2)
C30.28825 (16)1.03305 (13)0.29631 (11)0.0446 (3)
H3A0.34371.08750.23850.054*
H3B0.18031.09520.32740.054*
C40.39500 (19)0.95659 (16)0.39218 (13)0.0559 (3)
H4A0.51280.92190.36130.067*
H4B0.38021.01710.45030.067*
C50.4357 (2)0.73189 (18)0.52009 (13)0.0632 (4)
H5A0.38080.66460.55190.095*
H5B0.45120.77300.58210.095*
H5C0.54280.68610.47830.095*
C60.35457 (15)0.64900 (12)0.32243 (11)0.0433 (3)
C70.22171 (16)0.59118 (12)0.32277 (11)0.0448 (3)
C80.2363 (2)0.46259 (14)0.29157 (13)0.0579 (4)
H80.34070.39930.26770.070*
C90.0926 (2)0.43207 (16)0.29708 (16)0.0685 (4)
H90.09960.34700.27650.082*
C100.0630 (2)0.52626 (18)0.33287 (16)0.0679 (4)
H100.15870.50300.33660.081*
C110.07835 (19)0.65410 (16)0.36308 (13)0.0555 (3)
H110.18310.71750.38610.067*
C120.06611 (15)0.68548 (12)0.35822 (10)0.0423 (3)
C130.08061 (14)0.81680 (12)0.38647 (10)0.0392 (3)
C140.09009 (13)0.95232 (11)0.20878 (10)0.0364 (2)
H140.09180.88260.16160.044*
C150.41024 (15)0.86508 (13)0.14744 (11)0.0426 (3)
C160.5120 (2)0.7237 (2)0.00405 (17)0.0811 (5)
H16A0.47750.66740.04390.122*
H16B0.61060.66630.03110.122*
H16C0.53630.79750.05870.122*
C170.02073 (14)1.09719 (12)0.14414 (10)0.0393 (3)
C180.11627 (18)1.19970 (14)0.19292 (12)0.0524 (3)
H180.16901.17940.26690.063*
C190.1755 (2)1.33300 (16)0.13187 (15)0.0648 (4)
H190.26781.40150.16500.078*
C200.0979 (2)1.36381 (16)0.02252 (15)0.0645 (4)
H200.13721.45320.01800.077*
C210.0376 (2)1.26252 (17)0.02670 (14)0.0643 (4)
H210.09011.28340.10060.077*
C220.09664 (18)1.12907 (15)0.03351 (12)0.0531 (3)
H220.18781.06060.00070.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0484 (6)0.0509 (6)0.0427 (5)0.0151 (5)0.0139 (4)0.0001 (4)
O10.0324 (4)0.0374 (4)0.0490 (5)0.0078 (3)0.0007 (3)0.0022 (3)
O20.0524 (5)0.0540 (5)0.0412 (5)0.0189 (4)0.0075 (4)0.0077 (4)
O30.0404 (5)0.0477 (5)0.0735 (7)0.0013 (4)0.0008 (4)0.0022 (5)
O40.0491 (6)0.0902 (8)0.0844 (8)0.0360 (6)0.0190 (5)0.0261 (6)
O50.0493 (5)0.0563 (6)0.0494 (5)0.0144 (4)0.0053 (4)0.0172 (4)
C10.0345 (5)0.0359 (5)0.0385 (5)0.0098 (4)0.0029 (4)0.0001 (4)
C20.0329 (5)0.0339 (5)0.0372 (5)0.0110 (4)0.0027 (4)0.0010 (4)
C30.0474 (6)0.0411 (6)0.0486 (6)0.0191 (5)0.0073 (5)0.0041 (5)
C40.0586 (8)0.0582 (8)0.0599 (8)0.0264 (7)0.0200 (6)0.0038 (6)
C50.0577 (8)0.0726 (10)0.0520 (8)0.0145 (7)0.0198 (6)0.0078 (7)
C60.0415 (6)0.0366 (6)0.0418 (6)0.0060 (5)0.0020 (5)0.0017 (4)
C70.0510 (7)0.0344 (6)0.0437 (6)0.0117 (5)0.0055 (5)0.0021 (5)
C80.0692 (9)0.0370 (6)0.0614 (8)0.0111 (6)0.0115 (7)0.0020 (6)
C90.0902 (12)0.0430 (7)0.0800 (11)0.0299 (8)0.0222 (9)0.0002 (7)
C100.0745 (10)0.0596 (9)0.0819 (11)0.0411 (8)0.0164 (9)0.0054 (8)
C110.0511 (7)0.0535 (8)0.0622 (8)0.0248 (6)0.0023 (6)0.0018 (6)
C120.0452 (6)0.0376 (6)0.0409 (6)0.0160 (5)0.0026 (5)0.0040 (4)
C130.0362 (5)0.0361 (5)0.0399 (6)0.0106 (4)0.0006 (4)0.0004 (4)
C140.0329 (5)0.0350 (5)0.0401 (6)0.0112 (4)0.0040 (4)0.0028 (4)
C150.0366 (6)0.0426 (6)0.0432 (6)0.0120 (5)0.0005 (5)0.0011 (5)
C160.0754 (11)0.0878 (13)0.0702 (11)0.0177 (10)0.0216 (9)0.0375 (10)
C170.0386 (6)0.0370 (6)0.0430 (6)0.0121 (4)0.0119 (4)0.0014 (4)
C180.0515 (7)0.0455 (7)0.0490 (7)0.0035 (5)0.0094 (6)0.0022 (5)
C190.0657 (9)0.0436 (7)0.0721 (10)0.0013 (6)0.0198 (8)0.0052 (7)
C200.0737 (10)0.0431 (7)0.0726 (10)0.0148 (7)0.0293 (8)0.0128 (7)
C210.0702 (10)0.0620 (9)0.0556 (8)0.0253 (8)0.0133 (7)0.0162 (7)
C220.0519 (7)0.0499 (7)0.0493 (7)0.0129 (6)0.0050 (6)0.0033 (6)
Geometric parameters (Å, º) top
N1—C51.457 (2)C7—C81.3956 (19)
N1—C11.458 (2)C8—C91.372 (2)
N1—C41.459 (2)C8—H80.9300
O1—C131.4268 (13)C9—C101.386 (3)
O1—C141.4275 (13)C9—H90.9300
O2—C131.3791 (14)C10—C111.381 (2)
O2—H20.8200C10—H100.9300
O3—C61.2105 (15)C11—C121.3843 (19)
O4—C151.1902 (16)C11—H110.9300
O5—C151.3300 (16)C12—C131.5032 (17)
O5—C161.4428 (17)C14—C171.5081 (15)
C1—C61.5407 (16)C14—H140.9800
C1—C21.561 (2)C16—H16A0.9600
C1—C131.5678 (16)C16—H16B0.9600
C2—C151.5188 (16)C16—H16C0.9600
C2—C31.534 (2)C17—C181.3833 (18)
C2—C141.5528 (15)C17—C221.3847 (18)
C3—C41.509 (2)C18—C191.3904 (19)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C19—C201.376 (2)
C4—H4A0.9700C19—H190.9300
C4—H4B0.9700C20—C211.372 (3)
C5—H5A0.9600C20—H200.9300
C5—H5B0.9600C21—C221.3874 (19)
C5—H5C0.9600C21—H210.9300
C6—C71.4685 (19)C22—H220.9300
C7—C121.3859 (18)
C5—N1—C1119.0 (1)C11—C10—C9121.10 (15)
C5—N1—C4115.6 (1)C11—C10—H10119.4
C1—N1—C4109.7 (1)C9—C10—H10119.4
C13—O1—C14107.32 (8)C10—C11—C12118.33 (14)
C13—O2—H2109.5C10—C11—H11120.8
C15—O5—C16115.89 (12)C12—C11—H11120.8
N1—C1—C6117.31 (10)C11—C12—C7120.58 (12)
N1—C1—C2106.19 (9)C11—C12—C13127.85 (12)
C6—C1—C2114.57 (9)C7—C12—C13111.56 (11)
N1—C1—C13110.39 (9)O2—C13—O1108.43 (9)
C6—C1—C13104.17 (9)O2—C13—C12111.36 (9)
C2—C1—C13103.32 (8)O1—C13—C12112.38 (10)
C15—C2—C3110.54 (9)O2—C13—C1113.02 (10)
C15—C2—C14114.35 (9)O1—C13—C1106.56 (8)
C3—C2—C14113.47 (9)C12—C13—C1105.03 (9)
C15—C2—C1112.53 (9)O1—C14—C17110.06 (9)
C3—C2—C1102.50 (9)O1—C14—C2103.86 (8)
C14—C2—C1102.59 (8)C17—C14—C2114.81 (9)
C4—C3—C2104.12 (10)O1—C14—H14109.3
C4—C3—H3A110.9C17—C14—H14109.3
C2—C3—H3A110.9C2—C14—H14109.3
C4—C3—H3B110.9O4—C15—O5124.09 (12)
C2—C3—H3B110.9O4—C15—C2124.12 (12)
H3A—C3—H3B109.0O5—C15—C2111.78 (10)
N1—C4—C3103.37 (10)O5—C16—H16A109.5
N1—C4—H4A111.1O5—C16—H16B109.5
C3—C4—H4A111.1H16A—C16—H16B109.5
N1—C4—H4B111.1O5—C16—H16C109.5
C3—C4—H4B111.1H16A—C16—H16C109.5
H4A—C4—H4B109.1H16B—C16—H16C109.5
N1—C5—H5A109.5C18—C17—C22119.02 (12)
N1—C5—H5B109.5C18—C17—C14121.67 (11)
H5A—C5—H5B109.5C22—C17—C14119.31 (11)
N1—C5—H5C109.5C17—C18—C19120.30 (14)
H5A—C5—H5C109.5C17—C18—H18119.8
H5B—C5—H5C109.5C19—C18—H18119.8
O3—C6—C7127.23 (12)C20—C19—C18120.13 (15)
O3—C6—C1124.83 (12)C20—C19—H19119.9
C7—C6—C1107.94 (10)C18—C19—H19119.9
C12—C7—C8120.84 (13)C21—C20—C19119.93 (13)
C12—C7—C6110.49 (11)C21—C20—H20120.0
C8—C7—C6128.66 (13)C19—C20—H20120.0
C9—C8—C7118.20 (15)C20—C21—C22120.19 (14)
C9—C8—H8120.9C20—C21—H21119.9
C7—C8—H8120.9C22—C21—H21119.9
C8—C9—C10120.94 (14)C17—C22—C21120.43 (14)
C8—C9—H9119.5C17—C22—H22119.8
C10—C9—H9119.5C21—C22—H22119.8
C5—N1—C1—C616.33 (16)C14—O1—C13—C131.46 (11)
C4—N1—C1—C6120.05 (12)C11—C12—C13—O264.01 (16)
C5—N1—C1—C2145.93 (11)C7—C12—C13—O2116.71 (11)
C4—N1—C1—C29.54 (13)C11—C12—C13—O157.86 (16)
C5—N1—C1—C13102.74 (13)C7—C12—C13—O1121.41 (11)
C4—N1—C1—C13120.88 (11)C11—C12—C13—C1173.31 (12)
N1—C1—C2—C15104.64 (11)C7—C12—C13—C15.96 (13)
C6—C1—C2—C1526.52 (14)N1—C1—C13—O213.78 (13)
C13—C1—C2—C15139.16 (10)C6—C1—C13—O2113.00 (10)
N1—C1—C2—C314.12 (11)C2—C1—C13—O2126.96 (10)
C6—C1—C2—C3145.27 (10)N1—C1—C13—O1105.21 (10)
C13—C1—C2—C3102.08 (10)C6—C1—C13—O1128.01 (9)
N1—C1—C2—C14131.99 (9)C2—C1—C13—O17.97 (11)
C6—C1—C2—C1496.85 (11)N1—C1—C13—C12135.37 (10)
C13—C1—C2—C1415.79 (11)C6—C1—C13—C128.59 (11)
C15—C2—C3—C488.43 (12)C2—C1—C13—C12111.45 (10)
C14—C2—C3—C4141.57 (11)C13—O1—C14—C17165.37 (9)
C1—C2—C3—C431.71 (12)C13—O1—C14—C241.98 (11)
C5—N1—C4—C3167.76 (12)C15—C2—C14—O1156.91 (9)
C1—N1—C4—C329.75 (14)C3—C2—C14—O175.04 (11)
C2—C3—C4—N138.00 (13)C1—C2—C14—O134.76 (10)
N1—C1—C6—O348.73 (17)C15—C2—C14—C1782.87 (12)
C2—C1—C6—O376.80 (15)C3—C2—C14—C1745.19 (13)
C13—C1—C6—O3171.07 (12)C1—C2—C14—C17154.99 (9)
N1—C1—C6—C7130.88 (11)C16—O5—C15—O42.8 (2)
C2—C1—C6—C7103.59 (11)C16—O5—C15—C2176.40 (13)
C13—C1—C6—C78.55 (12)C3—C2—C15—O413.12 (18)
O3—C6—C7—C12174.30 (13)C14—C2—C15—O4142.65 (13)
C1—C6—C7—C125.30 (14)C1—C2—C15—O4100.81 (15)
O3—C6—C7—C86.8 (2)C3—C2—C15—O5167.65 (10)
C1—C6—C7—C8173.60 (13)C14—C2—C15—O538.12 (13)
C12—C7—C8—C90.1 (2)C1—C2—C15—O578.42 (12)
C6—C7—C8—C9178.86 (13)O1—C14—C17—C183.95 (16)
C7—C8—C9—C100.1 (2)C2—C14—C17—C18112.79 (13)
C8—C9—C10—C110.6 (3)O1—C14—C17—C22176.57 (11)
C9—C10—C11—C120.8 (2)C2—C14—C17—C2266.69 (14)
C10—C11—C12—C70.6 (2)C22—C17—C18—C190.6 (2)
C10—C11—C12—C13179.86 (13)C14—C17—C18—C19178.91 (13)
C8—C7—C12—C110.2 (2)C17—C18—C19—C200.1 (2)
C6—C7—C12—C11178.80 (11)C18—C19—C20—C210.4 (3)
C8—C7—C12—C13179.53 (12)C19—C20—C21—C220.0 (3)
C6—C7—C12—C130.54 (14)C18—C17—C22—C211.0 (2)
C14—O1—C13—O2153.40 (9)C14—C17—C22—C21178.51 (13)
C14—O1—C13—C1283.06 (11)C20—C21—C22—C170.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.453.317 (2)148
O2—H2···N10.822.152.636 (2)118
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H21NO5
Mr379.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6216 (5), 10.3055 (6), 11.7758 (6)
α, β, γ (°)79.462 (1), 79.377 (1), 68.876 (1)
V3)951.48 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerCCD Area Detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10895, 4331, 3820
Rint0.015
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.04
No. of reflections4331
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
N1—C51.457 (2)C1—C21.561 (2)
N1—C11.458 (2)C2—C31.534 (2)
N1—C41.459 (2)C3—C41.509 (2)
C5—N1—C1119.0 (1)C1—N1—C4109.7 (1)
C5—N1—C4115.6 (1)
C16—O5—C15—O42.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O2i0.972.453.317 (2)148
O2—H2···N10.822.152.636 (2)118
Symmetry code: (i) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds