Download citation
Download citation
link to html
The title compound, [Mn2Br4(C15H13N3)2], is the first crystallographically characterized metal complex of the N-(8-quinol­yl)-o-phenyl­ene­diamine ligand. The centre of the mol­ecule lies on a crystallographic inversion centre, so the Mn2(μ-Br)2 four-membered ring is planar with Mn—Br bond lengths of 2.6210 (5) and 2.7147 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805027716/cv6571sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805027716/cv6571Isup2.hkl
Contains datablock I

CCDC reference: 287538

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.033
  • wR factor = 0.071
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3C ... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Although the tridentate ligand N-(8-quinolyl)-o-phenylendiamine (8-Q-phen) has been known for a long time (Jensen & Nielsen, 1964), no crystallographic data of any metal complex of this ligand have been published; the title compound, (I) (Fig. 1), represents the first example of this type. The centre of the molecule lies on a crystallographic inversion centre, so that the Mn2Br2 ring is planar. The Mn atom has a slightly distorted octahedral coordination involving the two bromide bridges, a terminal bromide and the three N-atom donors from an 8-Q-phen ligand with each N atom trans to a Br anion. Similar XM2-X)2MX core geometries are known, for example, Cambridge Structural Database (CSD; Allen, 2002) refcodes AZULOW (Wu et al., 2004), QAMBEM (Davies et al., 2004) and QEMREF (Romero et al., 2001).

As in the crystal structure of the free ligand (Seshadri et al., 2004), (II), the mean planes of the quinolyl system (atoms N1/C1–C9) and the benzene ring (atoms C10–C15) are almost perpendicular, with a dihedral angle of 71.57 (8)° between the planes. In the Mn2Br2 four-membered ring, the alternating Mn—Br distances are 2.6210 (5) and 2.7147 (6) Å (Table 1). For the terminal Br atom (Br2), the Mn1—Br2 bond length is, as expected, shorter [2.6096 (6) Å]. In other complexes exhibiting Mn–µ-Br units, the corresponding distances range from 2.581 Å (fourfold Mn coordination in GAYWIM; Pohl et al., 1988) to 2.753 Å (sixfold coordination in XEJFIB; Gillon et al., 2000); the terminal Mn—Br bonds in these compounds are 2.456 and 2.645 Å, respectively. In (I), the Mn—N(amine) bond length [2.340 (2) Å] is considerably longer than the Mn—N(quinolyl) bond [2.245 (2) Å], which is trans to the long Mn—µ-Br bond.

In the ligand, the C—N bond lengths in (I) (Table 1) and (II) are slightly different for atoms N2 [1.448 (4)/1.460 (4) Å in (I) versus 1.384/1.425 Å in (II)] and N3 [1.439 (4) Å in (I) versus 1.381 (3) Å in (II)]. The C—N distances for quinolyl atom N1 are, however, essentially the same in (I) and (II). The crystal packing (Fig. 2) displays an intermolecular N2—H2···Br2ii hydrogen bond [symmetry code: (ii) −x + 1, −y + 1, −z + 2], with H···Br = 2.68 Å and N—H···Br = 152° (values corrected for N—H = 1.03 Å), running along the [010] direction.

Experimental top

The title compound was obtained by the reaction of equimolar amounts of MnBr2 (0.5 mmol) and 8-Q-phen in acetonitrile (15 ml). This solution was stirred for 30 min, refluxed for a further 30 min and then filtered; the Mn complex was crystallized using the vapor pressure equalization method in the presence of diethyl ether. IR (KBr, cm−1): ν strong 1498, 1380, 953, 831, 800, 777, 757; medium 3321, 3257, 3186, 1563, 1458, 1311, 1245, 1198, 1085, 1066, 902, 867, 744, 705, 511, 490.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.92–0.93 Å, C—H = 0.95 Å and Uiso = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom labeling scheme and displacement ellipsoids at the 50% probability level. Unlabelled atoms (and atoms marked by letter A) are related to the labelled atoms by the symmetry operator (1 − x, −y, 2 − z).
[Figure 2] Fig. 2. The crystal packing viewed approximately along the c axis. The intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in bridging have been omitted.
Di-µ-bromo-bis{bromo[N-(8-quinolyl)-o-phenylenediamine- κ3N,N',N'']manganese(II)} top
Crystal data top
[Mn2Br4(C15H13N3)2]Z = 1
Mr = 900.09F(000) = 438
Triclinic, P1Dx = 1.932 Mg m3
a = 8.8833 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8725 (8) ÅCell parameters from 2034 reflections
c = 9.9162 (8) Åθ = 2.5–24.9°
α = 103.055 (2)°µ = 6.01 mm1
β = 110.397 (2)°T = 120 K
γ = 97.351 (2)°Prism, colourless
V = 773.45 (11) Å30.20 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3837 independent reflections
Radiation source: sealed tube3167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.379, Tmax = 0.645k = 1313
10807 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.071H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
3837 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Mn2Br4(C15H13N3)2]γ = 97.351 (2)°
Mr = 900.09V = 773.45 (11) Å3
Triclinic, P1Z = 1
a = 8.8833 (7) ÅMo Kα radiation
b = 9.8725 (8) ŵ = 6.01 mm1
c = 9.9162 (8) ÅT = 120 K
α = 103.055 (2)°0.20 × 0.10 × 0.08 mm
β = 110.397 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3167 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.645Rint = 0.040
10807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
3837 reflectionsΔρmin = 0.47 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28160 (3)0.01963 (3)0.90887 (3)0.01656 (8)
Br20.59253 (4)0.36823 (3)1.17982 (3)0.02113 (9)
Mn10.58697 (5)0.16284 (5)0.95876 (5)0.01370 (11)
N10.8275 (3)0.2578 (3)0.9531 (3)0.0144 (5)
N20.5193 (3)0.2896 (3)0.7812 (3)0.0151 (5)
H20.48250.36820.81830.018*
N30.5192 (3)0.0058 (3)0.7201 (3)0.0171 (5)
H3B0.60890.01160.69380.020*
H3C0.48540.08670.71890.020*
C10.9749 (4)0.2481 (3)1.0410 (4)0.0199 (7)
H1A0.98130.20261.11700.024*
C21.1225 (4)0.3014 (3)1.0284 (4)0.0203 (7)
H2A1.22530.29351.09550.024*
C31.1154 (4)0.3640 (3)0.9190 (4)0.0214 (7)
H3A1.21380.40010.90840.026*
C40.9613 (4)0.3757 (3)0.8202 (3)0.0171 (6)
C50.9439 (4)0.4379 (3)0.7020 (4)0.0229 (7)
H5A1.03850.47310.68530.027*
C60.7920 (4)0.4478 (3)0.6117 (4)0.0242 (7)
H6A0.78130.48820.53140.029*
C70.6505 (4)0.3985 (3)0.6368 (3)0.0206 (7)
H7A0.54560.40690.57390.025*
C80.6631 (4)0.3386 (3)0.7508 (3)0.0162 (6)
C90.8193 (4)0.3236 (3)0.8437 (3)0.0146 (6)
C100.3854 (4)0.1929 (3)0.6496 (3)0.0158 (6)
C110.2542 (4)0.2383 (3)0.5623 (3)0.0197 (7)
H11A0.25210.33660.58610.024*
C120.1252 (4)0.1406 (4)0.4398 (4)0.0241 (7)
H12A0.03560.17210.37950.029*
C130.1283 (4)0.0022 (4)0.4063 (3)0.0232 (7)
H13A0.04120.06910.32200.028*
C140.2580 (4)0.0485 (3)0.4954 (3)0.0205 (7)
H14A0.25830.14720.47270.025*
C150.3876 (4)0.0486 (3)0.6176 (3)0.0153 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01334 (15)0.01613 (16)0.02014 (16)0.00310 (11)0.00482 (12)0.00804 (12)
Br20.01964 (17)0.01877 (17)0.02031 (17)0.00142 (13)0.00809 (13)0.00191 (13)
Mn10.0134 (2)0.0136 (2)0.0130 (2)0.00179 (18)0.00430 (18)0.00386 (18)
N10.0147 (12)0.0114 (12)0.0153 (13)0.0005 (10)0.0051 (10)0.0030 (10)
N20.0152 (12)0.0124 (12)0.0148 (13)0.0018 (10)0.0048 (10)0.0012 (10)
N30.0160 (13)0.0174 (13)0.0189 (13)0.0048 (10)0.0074 (11)0.0060 (11)
C10.0184 (16)0.0185 (16)0.0204 (16)0.0032 (13)0.0056 (13)0.0051 (13)
C20.0124 (15)0.0180 (16)0.0231 (17)0.0019 (12)0.0036 (13)0.0015 (13)
C30.0199 (16)0.0163 (16)0.0287 (18)0.0015 (13)0.0154 (14)0.0003 (14)
C40.0186 (16)0.0126 (15)0.0195 (16)0.0023 (12)0.0095 (13)0.0013 (12)
C50.0301 (19)0.0159 (16)0.0273 (18)0.0017 (14)0.0192 (15)0.0044 (14)
C60.0338 (19)0.0190 (17)0.0231 (18)0.0032 (15)0.0142 (15)0.0092 (14)
C70.0215 (16)0.0200 (16)0.0190 (16)0.0049 (13)0.0048 (13)0.0081 (13)
C80.0183 (15)0.0119 (14)0.0148 (15)0.0014 (12)0.0059 (12)0.0006 (12)
C90.0178 (15)0.0099 (14)0.0146 (15)0.0016 (12)0.0068 (12)0.0010 (12)
C100.0170 (15)0.0162 (15)0.0153 (15)0.0024 (12)0.0074 (12)0.0060 (12)
C110.0231 (17)0.0169 (16)0.0200 (16)0.0046 (13)0.0068 (14)0.0092 (13)
C120.0186 (16)0.0304 (19)0.0203 (17)0.0044 (14)0.0030 (14)0.0100 (15)
C130.0184 (16)0.0297 (19)0.0136 (16)0.0012 (14)0.0028 (13)0.0004 (14)
C140.0233 (17)0.0200 (16)0.0150 (16)0.0010 (13)0.0089 (13)0.0007 (13)
C150.0171 (15)0.0184 (15)0.0117 (14)0.0041 (12)0.0069 (12)0.0045 (12)
Geometric parameters (Å, º) top
Br1—Mn1i2.6210 (5)C3—H3A0.9500
Br1—Mn12.7147 (6)C4—C51.414 (4)
Br2—Mn12.6096 (6)C4—C91.414 (4)
Mn1—N12.245 (2)C5—C61.365 (5)
Mn1—N22.340 (2)C5—H5A0.9500
Mn1—N32.340 (2)C6—C71.413 (4)
Mn1—Br1i2.6211 (5)C6—H6A0.9500
N1—C11.326 (4)C7—C81.368 (4)
N1—C91.372 (4)C7—H7A0.9500
N2—C101.448 (4)C8—C91.421 (4)
N2—C81.460 (4)C10—C111.383 (4)
N2—H20.9300C10—C151.392 (4)
N3—C151.439 (4)C11—C121.391 (4)
N3—H3B0.9200C11—H11A0.9500
N3—H3C0.9200C12—C131.379 (5)
C1—C21.407 (4)C12—H12A0.9500
C1—H1A0.9500C13—C141.387 (4)
C2—C31.352 (5)C13—H13A0.9500
C2—H2A0.9500C14—C151.390 (4)
C3—C41.416 (4)C14—H14A0.9500
Mn1i—Br1—Mn189.813 (17)C2—C3—H3A120.0
N1—Mn1—N274.48 (9)C4—C3—H3A120.0
N1—Mn1—N388.69 (9)C5—C4—C9119.2 (3)
N2—Mn1—N371.32 (9)C5—C4—C3123.2 (3)
N1—Mn1—Br297.31 (6)C9—C4—C3117.6 (3)
N2—Mn1—Br294.96 (6)C6—C5—C4120.4 (3)
N3—Mn1—Br2163.06 (6)C6—C5—H5A119.8
N1—Mn1—Br1i91.66 (6)C4—C5—H5A119.8
N2—Mn1—Br1i158.02 (6)C5—C6—C7120.5 (3)
N3—Mn1—Br1i91.77 (6)C5—C6—H6A119.8
Br2—Mn1—Br1i103.815 (19)C7—C6—H6A119.8
N1—Mn1—Br1168.82 (6)C8—C7—C6120.6 (3)
N2—Mn1—Br1100.28 (6)C8—C7—H7A119.7
N3—Mn1—Br180.22 (6)C6—C7—H7A119.7
Br2—Mn1—Br192.953 (17)C7—C8—C9119.9 (3)
Br1i—Mn1—Br190.187 (17)C7—C8—N2121.7 (3)
C1—N1—C9117.7 (3)C9—C8—N2118.4 (3)
C1—N1—Mn1125.3 (2)N1—C9—C4122.0 (3)
C9—N1—Mn1116.86 (19)N1—C9—C8118.7 (3)
C10—N2—C8113.0 (2)C4—C9—C8119.4 (3)
C10—N2—Mn1105.78 (17)C11—C10—C15120.2 (3)
C8—N2—Mn1110.55 (18)C11—C10—N2122.3 (3)
C10—N2—H2109.1C15—C10—N2117.3 (3)
C8—N2—H2109.1C10—C11—C12120.3 (3)
Mn1—N2—H2109.1C10—C11—H11A119.8
C15—N3—Mn1106.36 (17)C12—C11—H11A119.8
C15—N3—H3B110.5C13—C12—C11119.6 (3)
Mn1—N3—H3B110.5C13—C12—H12A120.2
C15—N3—H3C110.5C11—C12—H12A120.2
Mn1—N3—H3C110.5C12—C13—C14120.3 (3)
H3B—N3—H3C108.6C12—C13—H13A119.9
N1—C1—C2123.8 (3)C14—C13—H13A119.9
N1—C1—H1A118.1C13—C14—C15120.4 (3)
C2—C1—H1A118.1C13—C14—H14A119.8
C3—C2—C1118.9 (3)C15—C14—H14A119.8
C3—C2—H2A120.6C14—C15—C10119.1 (3)
C1—C2—H2A120.6C14—C15—N3122.9 (3)
C2—C3—C4119.9 (3)C10—C15—N3117.8 (3)
Mn1i—Br1—Mn1—N199.6 (3)C4—C5—C6—C71.2 (5)
Mn1i—Br1—Mn1—N2160.57 (6)C5—C6—C7—C80.7 (5)
Mn1i—Br1—Mn1—N391.76 (6)C6—C7—C8—C91.0 (5)
Mn1i—Br1—Mn1—Br2103.843 (19)C6—C7—C8—N2178.7 (3)
Mn1i—Br1—Mn1—Br1i0.0C10—N2—C8—C752.8 (4)
N2—Mn1—N1—C1176.4 (3)Mn1—N2—C8—C7171.1 (2)
N3—Mn1—N1—C1112.6 (2)C10—N2—C8—C9127.5 (3)
Br2—Mn1—N1—C183.3 (2)Mn1—N2—C8—C99.2 (3)
Br1i—Mn1—N1—C120.9 (2)C1—N1—C9—C42.1 (4)
Br1—Mn1—N1—C1120.3 (3)Mn1—N1—C9—C4174.1 (2)
N2—Mn1—N1—C97.71 (19)C1—N1—C9—C8178.3 (3)
N3—Mn1—N1—C963.3 (2)Mn1—N1—C9—C85.5 (3)
Br2—Mn1—N1—C9100.9 (2)C5—C4—C9—N1177.8 (3)
Br1i—Mn1—N1—C9154.99 (19)C3—C4—C9—N13.0 (4)
Br1—Mn1—N1—C955.6 (5)C5—C4—C9—C81.8 (4)
N1—Mn1—N2—C10131.21 (19)C3—C4—C9—C8177.5 (3)
N3—Mn1—N2—C1037.26 (17)C7—C8—C9—N1177.3 (3)
Br2—Mn1—N2—C10132.57 (17)N2—C8—C9—N13.0 (4)
Br1i—Mn1—N2—C1078.6 (2)C7—C8—C9—C42.3 (4)
Br1—Mn1—N2—C1038.65 (18)N2—C8—C9—C4177.4 (2)
N1—Mn1—N2—C88.54 (18)C8—N2—C10—C1197.4 (3)
N3—Mn1—N2—C885.41 (19)Mn1—N2—C10—C11141.5 (3)
Br2—Mn1—N2—C8104.77 (17)C8—N2—C10—C1586.2 (3)
Br1i—Mn1—N2—C844.1 (3)Mn1—N2—C10—C1534.8 (3)
Br1—Mn1—N2—C8161.32 (17)C15—C10—C11—C121.5 (5)
N1—Mn1—N3—C15110.51 (19)N2—C10—C11—C12177.7 (3)
N2—Mn1—N3—C1536.46 (17)C10—C11—C12—C130.5 (5)
Br2—Mn1—N3—C150.7 (4)C11—C12—C13—C140.8 (5)
Br1i—Mn1—N3—C15157.87 (17)C12—C13—C14—C151.1 (5)
Br1—Mn1—N3—C1567.98 (17)C13—C14—C15—C100.1 (4)
C9—N1—C1—C20.1 (5)C13—C14—C15—N3175.4 (3)
Mn1—N1—C1—C2175.9 (2)C11—C10—C15—C141.2 (4)
N1—C1—C2—C31.3 (5)N2—C10—C15—C14177.6 (3)
C1—C2—C3—C40.3 (5)C11—C10—C15—N3174.3 (3)
C2—C3—C4—C5179.1 (3)N2—C10—C15—N32.1 (4)
C2—C3—C4—C91.7 (4)Mn1—N3—C15—C14143.5 (2)
C9—C4—C5—C60.1 (5)Mn1—N3—C15—C1031.9 (3)
C3—C4—C5—C6179.1 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Mn2Br4(C15H13N3)2]
Mr900.09
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.8833 (7), 9.8725 (8), 9.9162 (8)
α, β, γ (°)103.055 (2), 110.397 (2), 97.351 (2)
V3)773.45 (11)
Z1
Radiation typeMo Kα
µ (mm1)6.01
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.379, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
10807, 3837, 3167
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.071, 1.01
No. of reflections3837
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.47

Computer programs: SMART (Bruker, 2002), SMART, SAINT (Bruker, 2002), SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
Br1—Mn1i2.6210 (5)N1—C11.326 (4)
Br1—Mn12.7147 (6)N1—C91.372 (4)
Br2—Mn12.6096 (6)N2—C101.448 (4)
Mn1—N12.245 (2)N2—C81.460 (4)
Mn1—N22.340 (2)N3—C151.439 (4)
Mn1—N32.340 (2)
Mn1i—Br1—Mn189.813 (17)Br1i—Mn1—Br190.187 (17)
N1—Mn1—N274.48 (9)
Symmetry code: (i) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds