Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C14H12N2O4, is a potential antiamnesic agent. The pyrrolidinone ring has an envelope conformation. The dihedral angle between the N-substituted phthal­imide moiety and the pyrrolidinone ring is 77.16 (5)°. In the solid state, symmetry-related mol­ecules are linked by weak intermol­ecular C—H...O interactions, forming a continuous chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013679/cv6202sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013679/cv6202Isup2.hkl
Contains datablock I

CCDC reference: 217601

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.128
  • Data-to-parameter ratio = 13.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The conformations of molecules with anti-amnesic activity have attracted considerable interest (Amato et al., 1991), and the structure determination of the title compound, (I), was carried out to continue the investigation of a new class of anti-amnesic agents (Thamotharan, Parthasarathi, Malik et al., 2003; Thamotharan, Parthasarathi, Gupta et al., 2003).

Fig. 1 shows the asymmetric unit of (I) with the atom-numbering scheme. The geometric parameters of the N-substituted phthalimide moiety in (I) are almost the same as those in 2-(5-chloropyridin-2-yl)-2,3-dihydro-1H-isoindole-1,3-dione (Holband et al., 2001). The angles C5—C4—C9 [117.2 (2)°] and C6—C7—C8 [117.4 (2)°] are significantly smaller than the other angles in the benzene ring. Similar observations have been made in related structures (Christensen & Thom, 1971, and references therein). This angular distortioncan be explained by the strain caused by fusion with the five-membered ring.

In (I), the five-membered pyrrolidinone ring exhibits an envelope conformation, with atom C15 as the flap, a pseudo-rotation angle Δ = 270.3 (2)° and a maximum torsion angle ϕm = 30.7 (1)° for the atom sequence N12—C13—C14—C15—C16 (Rao et al., 1981). The dihedral angle between the N-substituted phthalimide moiety and pyrrolidinone ring is 77.16 (5)°. The planar central moiety, N2—C10—C11—N12, is oriented at angles of 7.62 (11) and 84.67 (10)° with respect to the pyrrolidinone and N-substituted phthalimide moieties, respectively.

In the crystal structure, atom C15 acts as a donor for a weak intermolecular C—H···O interaction with carbonyl atom O1 of an adjacent molecule. This interaction links the molecules into a chain, which runs parallel to the b axis and has a graph-set motif of C(9) (Bernstein et al., 1995). Atom C16 has a weak intermolecular C—H···O interaction with carbonyl atom O13 of a different adjacent molecule. This interaction also links the molecules into a chain, which runs parallel to the b axis and has a graph-set motif of C(5) (Table 1) (Bernstein et al., 1995). A short intermolecular contact is observed, O3···C1i 2.883 (3) Å [symmetry code: (i) −x + 1/2, y + 1/2, z].

Experimental top

A solution of (1,3-dioxo-1,3-dihydroisoindole-2-yl)acetyl chloride (1.0 g) in dichloromethane was stirred with pyrrolidinone. The dichloromethane was removed and crushed ice was added to the contents. The solid residue obtained was filtered and crystallized from methanol to afford crystals of (I) (yield 0.81 g, 66.5%; m.p. 473 K).

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
2-[(2-Oxopyrrolidin-1-yl)carbonylmethyl]-2,3-dihydro-1H-isoindole-1,3-dione top
Crystal data top
C14H12N2O4Dx = 1.448 Mg m3
Mr = 272.26Melting point: 473 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2839 reflections
a = 10.7480 (2) Åθ = 2.0–26.0°
b = 8.3280 (1) ŵ = 0.11 mm1
c = 27.9084 (4) ÅT = 160 K
V = 2498.06 (7) Å3Plate, colourless
Z = 80.18 × 0.18 × 0.05 mm
F(000) = 1136
Data collection top
Nonius KappaCCD
diffractometer
1620 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.067
Horizontally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = 013
ω scans with κ offsetsk = 010
29914 measured reflectionsl = 340
2459 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.4733P]
where P = (Fo2 + 2Fc2)/3
2459 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H12N2O4V = 2498.06 (7) Å3
Mr = 272.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7480 (2) ŵ = 0.11 mm1
b = 8.3280 (1) ÅT = 160 K
c = 27.9084 (4) Å0.18 × 0.18 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1620 reflections with I > 2σ(I)
29914 measured reflectionsRint = 0.067
2459 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2459 reflectionsΔρmin = 0.19 e Å3
181 parameters
Special details top

Experimental. Solvent used: MeOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.538 (1) Frames collected: 793 Seconds exposure per frame: 77 Degrees rotation per frame: 0.7 Crystal-Detector distance (mm): 42.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04618 (14)0.14043 (17)0.59049 (5)0.0458 (4)
O30.27434 (14)0.49855 (18)0.58283 (5)0.0459 (4)
O110.01451 (14)0.48029 (17)0.66903 (5)0.0446 (4)
O130.25931 (14)0.20034 (18)0.73247 (5)0.0481 (4)
N20.11528 (14)0.32121 (18)0.59882 (5)0.0316 (4)
N120.08877 (15)0.37071 (17)0.73097 (5)0.0308 (4)
C10.02859 (18)0.2310 (2)0.57284 (7)0.0332 (5)
C30.18932 (19)0.4147 (2)0.56920 (7)0.0328 (5)
C40.1863 (2)0.4463 (3)0.47650 (7)0.0423 (5)
H40.25150.52310.47520.051*
C50.1286 (2)0.3916 (3)0.43516 (7)0.0488 (6)
H50.15400.43280.40500.059*
C60.0350 (2)0.2784 (3)0.43711 (8)0.0486 (6)
H60.00220.24220.40820.058*
C70.0060 (2)0.2164 (3)0.48057 (7)0.0427 (5)
H70.07030.13820.48190.051*
C80.05035 (19)0.2726 (2)0.52169 (6)0.0329 (5)
C90.14500 (18)0.3841 (2)0.51966 (6)0.0325 (5)
C100.14576 (19)0.2922 (2)0.64844 (6)0.0345 (5)
H1010.23450.31860.65380.041*
H1020.13420.17670.65560.041*
C110.06652 (18)0.3901 (2)0.68244 (7)0.0325 (5)
C130.18439 (19)0.2856 (2)0.75308 (7)0.0369 (5)
C140.1779 (2)0.3192 (3)0.80590 (7)0.0461 (6)
H1410.24110.39960.81540.055*
H1420.19120.21980.82470.055*
C150.0468 (2)0.3842 (3)0.81345 (7)0.0473 (6)
H1510.01230.29630.82070.057*
H1520.04490.46320.83990.057*
C160.0154 (2)0.4634 (2)0.76604 (7)0.0384 (5)
H1610.07470.45570.75910.046*
H1620.04020.57790.76600.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0429 (9)0.0496 (9)0.0450 (9)0.0089 (8)0.0024 (7)0.0101 (7)
O30.0514 (10)0.0470 (9)0.0394 (9)0.0128 (8)0.0014 (7)0.0051 (7)
O110.0486 (9)0.0499 (9)0.0352 (9)0.0154 (8)0.0018 (7)0.0027 (7)
O130.0457 (9)0.0581 (9)0.0405 (9)0.0131 (8)0.0038 (7)0.0012 (7)
N20.0375 (10)0.0346 (9)0.0228 (9)0.0010 (8)0.0002 (7)0.0002 (7)
N120.0390 (9)0.0301 (8)0.0233 (9)0.0015 (8)0.0002 (7)0.0004 (7)
C10.0342 (11)0.0327 (11)0.0327 (11)0.0026 (9)0.0023 (9)0.0009 (9)
C30.0385 (12)0.0297 (10)0.0302 (11)0.0024 (9)0.0018 (9)0.0028 (9)
C40.0486 (13)0.0461 (13)0.0322 (12)0.0052 (11)0.0062 (10)0.0033 (10)
C50.0617 (16)0.0573 (14)0.0275 (12)0.0177 (13)0.0019 (11)0.0030 (10)
C60.0585 (15)0.0562 (14)0.0310 (12)0.0165 (13)0.0097 (11)0.0104 (11)
C70.0475 (13)0.0435 (12)0.0370 (12)0.0064 (10)0.0102 (10)0.0083 (10)
C80.0383 (11)0.0324 (11)0.0280 (11)0.0069 (9)0.0028 (9)0.0029 (8)
C90.0397 (11)0.0318 (10)0.0260 (11)0.0053 (9)0.0007 (9)0.0010 (8)
C100.0391 (11)0.0389 (11)0.0254 (11)0.0029 (9)0.0025 (9)0.0004 (9)
C110.0347 (11)0.0328 (10)0.0302 (11)0.0007 (10)0.0002 (9)0.0020 (9)
C130.0392 (12)0.0351 (11)0.0366 (12)0.0025 (10)0.0007 (10)0.0002 (10)
C140.0574 (14)0.0510 (13)0.0299 (12)0.0032 (12)0.0063 (10)0.0010 (10)
C150.0654 (15)0.0459 (13)0.0305 (12)0.0023 (12)0.0042 (11)0.0025 (10)
C160.0461 (13)0.0344 (11)0.0346 (12)0.0002 (10)0.0070 (10)0.0046 (9)
Geometric parameters (Å, º) top
O1—C11.207 (2)C6—C71.390 (3)
O3—C31.211 (2)C6—H60.9500
O11—C111.209 (2)C7—C81.380 (3)
O13—C131.218 (2)C7—H70.9500
N2—C31.387 (2)C8—C91.379 (3)
N2—C11.399 (2)C10—C111.514 (3)
N2—C101.443 (2)C10—H1010.9900
N12—C111.385 (2)C10—H1020.9900
N12—C131.392 (3)C13—C141.502 (3)
N12—C161.475 (2)C14—C151.524 (3)
C1—C81.488 (3)C14—H1410.9900
C3—C91.484 (3)C14—H1420.9900
C4—C91.384 (3)C15—C161.516 (3)
C4—C51.387 (3)C15—H1510.9900
C4—H40.9500C15—H1520.9900
C5—C61.380 (3)C16—H1610.9900
C5—H50.9500C16—H1620.9900
C3—N2—C1112.00 (16)N2—C10—C11112.54 (16)
C3—N2—C10122.39 (16)N2—C10—H101109.1
C1—N2—C10123.94 (15)C11—C10—H101109.1
C11—N12—C13128.34 (17)N2—C10—H102109.1
C11—N12—C16119.70 (15)C11—C10—H102109.1
C13—N12—C16111.52 (15)H101—C10—H102107.8
O1—C1—N2124.56 (18)O11—C11—N12119.97 (17)
O1—C1—C8129.92 (18)O11—C11—C10123.09 (17)
N2—C1—C8105.52 (16)N12—C11—C10116.93 (16)
O3—C3—N2124.70 (18)O13—C13—N12125.12 (18)
O3—C3—C9129.32 (18)O13—C13—C14127.08 (19)
N2—C3—C9105.94 (16)N12—C13—C14107.80 (17)
C9—C4—C5117.2 (2)C13—C14—C15104.18 (17)
C9—C4—H4121.4C13—C14—H141110.9
C5—C4—H4121.4C15—C14—H141110.9
C6—C5—C4121.2 (2)C13—C14—H142110.9
C6—C5—H5119.4C15—C14—H142110.9
C4—C5—H5119.4H141—C14—H142108.9
C5—C6—C7121.3 (2)C16—C15—C14103.84 (17)
C5—C6—H6119.4C16—C15—H151111.0
C7—C6—H6119.4C14—C15—H151111.0
C8—C7—C6117.4 (2)C16—C15—H152111.0
C8—C7—H7121.3C14—C15—H152111.0
C6—C7—H7121.3H151—C15—H152109.0
C9—C8—C7121.24 (18)N12—C16—C15103.45 (16)
C9—C8—C1108.19 (16)N12—C16—H161111.1
C7—C8—C1130.56 (19)C15—C16—H161111.1
C8—C9—C4121.61 (18)N12—C16—H162111.1
C8—C9—C3108.32 (16)C15—C16—H162111.1
C4—C9—C3130.05 (19)H161—C16—H162109.0
C3—N2—C1—O1179.98 (18)O3—C3—C9—C8176.3 (2)
C10—N2—C1—O114.4 (3)N2—C3—C9—C81.5 (2)
C3—N2—C1—C80.2 (2)O3—C3—C9—C42.1 (4)
C10—N2—C1—C8165.72 (16)N2—C3—C9—C4179.95 (19)
C1—N2—C3—O3176.99 (18)C3—N2—C10—C11104.0 (2)
C10—N2—C3—O311.2 (3)C1—N2—C10—C1191.9 (2)
C1—N2—C3—C91.0 (2)C13—N12—C11—O11173.23 (18)
C10—N2—C3—C9166.82 (16)C16—N12—C11—O111.5 (3)
C9—C4—C5—C60.8 (3)C13—N12—C11—C107.9 (3)
C4—C5—C6—C70.8 (3)C16—N12—C11—C10179.58 (16)
C5—C6—C7—C80.2 (3)N2—C10—C11—O111.2 (3)
C6—C7—C8—C91.0 (3)N2—C10—C11—N12179.98 (15)
C6—C7—C8—C1179.83 (19)C11—N12—C13—O137.2 (3)
O1—C1—C8—C9179.0 (2)C16—N12—C13—O13179.49 (18)
N2—C1—C8—C90.8 (2)C11—N12—C13—C14172.47 (18)
O1—C1—C8—C72.1 (4)C16—N12—C13—C140.2 (2)
N2—C1—C8—C7178.08 (19)O13—C13—C14—C15162.0 (2)
C7—C8—C9—C41.0 (3)N12—C13—C14—C1518.3 (2)
C1—C8—C9—C4179.97 (17)C13—C14—C15—C1629.0 (2)
C7—C8—C9—C3177.60 (17)C11—N12—C16—C15168.35 (16)
C1—C8—C9—C31.4 (2)C13—N12—C16—C1518.6 (2)
C5—C4—C9—C80.0 (3)C14—C15—C16—N1228.8 (2)
C5—C4—C9—C3178.21 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···O1i0.992.443.426 (3)175
C16—H162···O13ii0.992.563.261 (3)128
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12N2O4
Mr272.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)160
a, b, c (Å)10.7480 (2), 8.3280 (1), 27.9084 (4)
V3)2498.06 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.18 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29914, 2459, 1620
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.03
No. of reflections2459
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Version 1.07; Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···O1i0.992.443.426 (3)175
C16—H162···O13ii0.992.563.261 (3)128
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds