Download citation
Download citation
link to html
The mol­ecules of the title compound, C15H13FN4O, display the characteristic features of 1,2,4-triazole derivatives. The triazole ring is planar and the two benzene rings are nearly parallel, with a dihedral angle of 8.5 (1)°. The crystal structure is stabilized by N—H...O and N—H...N intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010109/cv6190sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010109/cv6190Isup2.hkl
Contains datablock I

CCDC reference: 214827

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.043
  • wR factor = 0.089
  • Data-to-parameter ratio = 15.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.749 REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.07 From the CIF: _reflns_number_total 2992 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3289 Completeness (_total/calc) 90.97% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

1,2,4-Triazole and its derivatives are starting materials for the synthesis of many heterocycles (Desenko, 1995). Apart from its extensive chemical significance, the 1,2,4-triazole nucleus is also found to be associated with diverse medicinal properties, such as analgesic, anti-asthmatic, diuretic and antifungal activities (Mohamed et al., 1993). The title compound, (I), is shown in Fig. 1. Its bond lengths and angles are normal (Table 1) and correspond to those from the known structures (Puviarasan et al., 1999; Liu et al., 1999; Zhu et al., 2000).

In (I), two benzyl rings are planar within experimental error. Two phenyl rings, C1–C6 and C10–C15, are nearly parallel with the dihedral angle of 171.5 (1)°. Atom F1 is 0.051 (1) Å out from the C10–C15 fluorobenzyl ring. Also 1,2,4-triazole ring is planar. The maximum deviation from the planarity is 0.009 (1) Å for atom N1. The dihedral angles between the triazole ring and the C1–C6 and C10–C15 rings are 34.55 (1) and 42.91 (1)°, respectively.

In the crystal structure, the molecules are linked by intermolecular N—H···O and N—H···N contacts (Table 2) resulting in an infinite network structure (Fig. 2).

Experimental top

The corresponding Schiff base (2.82 g, 0.01 mol) was dissolved in 40 ml of dry dilyme with gentle heating and a solution of NaBH4 (0.003 mol) in 30 ml of dry diglyme was slowly added to the solution with constant stirring. Then the mixture was allowed to cool. In order to precipitate the product, 300 ml of water was added to the solution and the mixture was allowed to stand overnight at 273–278 K. The precipitate was filtered off and washed with cold water. After drying in vacuo, the solid product was recrystallized from ethanol to afford the desired compound (1.46 g, 51%). Calculated: C 63.37, H 4.61, N 19.71%; found: C 63.31, H 5.00, N 19.64%. IR data (KBr/ cm−1): 3290, 3090 (N—H), 1710 (CO), 1510 (CN), 830, 740, 670 (aromatic). 1H NMR (CDCl3, δ/p.p.m.): 4.18 (d, CH2), 5.22 (t, NNH), 10.78 (s, NH), 6.80–7.30 (m, 3H), 7.40 (m, 2H), 7.86 (m, 2H).

Refinement top

Only H atoms for N atoms were located from difference Fourier map and refined isotropically. Other H atoms were located geometrically and refined using a riding model, fixing the aromatic CH C—H distance at 0.93 Å and the CH2 C—H distance at 0.97 Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of (I), illustrating the hydrogen-bonding network.
4-(p-Fluorobenzylamino)-3-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-one top
Crystal data top
C15H13FN4OF(000) = 592
Mr = 284.29Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.4560 (19) ÅCell parameters from 7012 reflections
b = 6.2183 (7) Åθ = 2.8–18.9°
c = 14.8165 (18) ŵ = 0.10 mm1
β = 108.347 (2)°T = 293 K
V = 1351.6 (3) Å3Prismatic, colourless
Z = 40.42 × 0.17 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1141 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.1°, θmin = 2.8°
ϕ and ω scansh = 2015
7084 measured reflectionsk = 87
2992 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.75 w = 1/[σ2(Fo2) + (0.0243P)2]
where P = (Fo2 + 2Fc2)/3
2992 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H13FN4OV = 1351.6 (3) Å3
Mr = 284.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4560 (19) ŵ = 0.10 mm1
b = 6.2183 (7) ÅT = 293 K
c = 14.8165 (18) Å0.42 × 0.17 × 0.16 mm
β = 108.347 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1141 reflections with I > 2σ(I)
7084 measured reflectionsRint = 0.052
2992 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.75Δρmax = 0.17 e Å3
2992 reflectionsΔρmin = 0.15 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.22194 (14)0.1194 (4)0.93979 (14)0.0345 (6)
N30.16826 (11)0.2995 (3)0.92399 (12)0.0366 (5)
O10.01909 (10)0.3726 (2)0.82906 (10)0.0541 (5)
C10.31638 (14)0.1081 (4)1.00402 (14)0.0372 (6)
N20.09344 (13)0.0412 (3)0.84005 (13)0.0460 (6)
N10.17907 (12)0.0415 (3)0.88840 (12)0.0436 (5)
C80.08448 (15)0.2495 (4)0.85903 (14)0.0396 (6)
C60.37524 (15)0.2802 (4)1.01647 (15)0.0477 (6)
H60.35520.40780.98390.057*
F10.29645 (12)0.1225 (3)1.31769 (10)0.0970 (6)
N40.18831 (13)0.4923 (3)0.97466 (15)0.0459 (6)
C150.26535 (17)0.3686 (4)1.18395 (16)0.0572 (7)
H150.29850.49131.18040.069*
C130.2563 (2)0.0345 (5)1.25393 (18)0.0651 (8)
C20.34768 (15)0.0820 (4)1.05251 (16)0.0528 (7)
H20.30920.20051.04380.063*
C50.46374 (16)0.2650 (4)1.07686 (17)0.0590 (7)
H50.50320.38131.08420.071*
C90.13946 (17)0.5077 (4)1.04533 (18)0.0651 (8)
H9A0.07500.48051.01490.078*
H9B0.14610.65141.07210.078*
C100.17765 (17)0.3461 (4)1.12290 (17)0.0526 (7)
C120.1686 (2)0.0044 (5)1.1979 (2)0.0723 (9)
H120.13580.11731.20390.087*
C30.43588 (17)0.0950 (4)1.11364 (17)0.0665 (8)
H30.45640.22181.14670.080*
C40.49315 (17)0.0780 (4)1.12581 (18)0.0677 (8)
H40.55230.06861.16750.081*
C140.30474 (18)0.2121 (4)1.25028 (17)0.0635 (8)
H140.36370.22921.29170.076*
C110.12997 (18)0.1627 (5)1.1315 (2)0.0687 (9)
H110.07040.14521.09160.082*
H4N0.1767 (15)0.605 (4)0.9312 (15)0.073 (9)*
H2N0.0557 (14)0.036 (3)0.7922 (14)0.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0332 (14)0.0336 (14)0.0323 (13)0.0038 (12)0.0041 (11)0.0014 (11)
N30.0328 (12)0.0332 (12)0.0356 (10)0.0001 (9)0.0011 (9)0.0020 (9)
O10.0422 (10)0.0549 (11)0.0515 (10)0.0134 (9)0.0049 (8)0.0053 (9)
C10.0318 (13)0.0373 (14)0.0386 (13)0.0038 (12)0.0056 (11)0.0003 (12)
N20.0403 (14)0.0422 (14)0.0418 (12)0.0042 (11)0.0069 (11)0.0086 (11)
N10.0344 (12)0.0433 (13)0.0430 (11)0.0033 (10)0.0022 (10)0.0065 (10)
C80.0358 (15)0.0424 (16)0.0340 (13)0.0008 (13)0.0015 (12)0.0016 (13)
C60.0372 (15)0.0455 (16)0.0540 (15)0.0027 (12)0.0050 (13)0.0061 (13)
F10.1351 (16)0.0824 (13)0.0735 (11)0.0195 (11)0.0329 (11)0.0105 (10)
N40.0462 (13)0.0344 (13)0.0472 (13)0.0027 (11)0.0005 (11)0.0046 (12)
C150.0537 (18)0.0592 (18)0.0543 (16)0.0166 (15)0.0110 (15)0.0046 (15)
C130.083 (2)0.069 (2)0.0455 (18)0.0149 (19)0.0242 (17)0.0048 (16)
C20.0419 (16)0.0431 (16)0.0623 (16)0.0010 (13)0.0005 (14)0.0005 (13)
C50.0357 (16)0.0535 (18)0.0786 (19)0.0041 (13)0.0049 (15)0.0043 (16)
C90.0481 (17)0.070 (2)0.0690 (18)0.0136 (15)0.0071 (16)0.0269 (17)
C100.0422 (17)0.0638 (19)0.0528 (17)0.0024 (15)0.0162 (14)0.0187 (15)
C120.084 (2)0.082 (2)0.065 (2)0.036 (2)0.0438 (19)0.0231 (19)
C30.0490 (17)0.0516 (18)0.0791 (19)0.0120 (14)0.0085 (16)0.0107 (15)
C40.0406 (17)0.064 (2)0.078 (2)0.0055 (15)0.0105 (15)0.0028 (16)
C140.067 (2)0.070 (2)0.0470 (16)0.0236 (17)0.0094 (15)0.0043 (15)
C110.0495 (18)0.098 (3)0.063 (2)0.0199 (19)0.0242 (16)0.0335 (19)
Geometric parameters (Å, º) top
C7—N11.305 (2)C15—H150.9300
C7—N31.369 (2)C13—C141.345 (3)
C7—C11.472 (3)C13—C121.362 (3)
N3—C81.384 (2)C2—C31.381 (3)
N3—N41.397 (2)C2—H20.9300
O1—C81.234 (2)C5—C41.370 (3)
C1—C61.379 (3)C5—H50.9300
C1—C21.389 (3)C9—C101.501 (3)
N2—C81.342 (3)C9—H9A0.9700
N2—N11.390 (2)C9—H9B0.9700
N2—H2N0.901 (19)C10—C111.385 (3)
C6—C51.382 (3)C12—C111.386 (3)
C6—H60.9300C12—H120.9300
F1—C131.364 (3)C3—C41.368 (3)
N4—C91.474 (3)C3—H30.9300
N4—H4N0.93 (2)C4—H40.9300
C15—C101.380 (3)C14—H140.9300
C15—C141.381 (3)C11—H110.9300
N1—C7—N3111.00 (18)C3—C2—H2120.0
N1—C7—C1124.0 (2)C1—C2—H2120.0
N3—C7—C1125.0 (2)C4—C5—C6119.8 (2)
C7—N3—C8108.61 (18)C4—C5—H5120.1
C7—N3—N4126.17 (18)C6—C5—H5120.1
C8—N3—N4124.57 (18)N4—C9—C10109.5 (2)
C6—C1—C2118.9 (2)N4—C9—H9A109.8
C6—C1—C7121.9 (2)C10—C9—H9A109.8
C2—C1—C7119.2 (2)N4—C9—H9B109.8
C8—N2—N1113.18 (18)C10—C9—H9B109.8
C8—N2—H2N126.4 (13)H9A—C9—H9B108.2
N1—N2—H2N119.0 (13)C15—C10—C11117.7 (3)
C7—N1—N2104.07 (17)C15—C10—C9120.2 (3)
O1—C8—N2130.6 (2)C11—C10—C9122.0 (3)
O1—C8—N3126.3 (2)C13—C12—C11117.3 (3)
N2—C8—N3103.1 (2)C13—C12—H12121.3
C1—C6—C5120.7 (2)C11—C12—H12121.3
C1—C6—H6119.6C4—C3—C2120.3 (2)
C5—C6—H6119.6C4—C3—H3119.9
N3—N4—C9111.17 (19)C2—C3—H3119.9
N3—N4—H4N108.3 (14)C3—C4—C5120.3 (2)
C9—N4—H4N114.3 (14)C3—C4—H4119.9
C10—C15—C14121.1 (3)C5—C4—H4119.9
C10—C15—H15119.4C13—C14—C15118.8 (3)
C14—C15—H15119.4C13—C14—H14120.6
C14—C13—C12123.2 (3)C15—C14—H14120.6
C14—C13—F1118.6 (3)C10—C11—C12121.8 (3)
C12—C13—F1118.2 (3)C10—C11—H11119.1
C3—C2—C1120.0 (2)C12—C11—H11119.1
N1—C7—N3—C81.1 (2)C8—N3—N4—C969.2 (3)
C1—C7—N3—C8179.51 (19)C6—C1—C2—C31.4 (3)
N1—C7—N3—N4172.1 (2)C7—C1—C2—C3179.5 (2)
C1—C7—N3—N49.4 (3)C1—C6—C5—C40.8 (4)
N1—C7—C1—C6144.1 (2)N3—N4—C9—C1068.9 (2)
N3—C7—C1—C634.1 (3)C14—C15—C10—C111.0 (4)
N1—C7—C1—C234.9 (3)C14—C15—C10—C9174.1 (2)
N3—C7—C1—C2146.8 (2)N4—C9—C10—C1567.4 (3)
N3—C7—N1—N21.6 (2)N4—C9—C10—C11107.5 (3)
C1—C7—N1—N2179.90 (18)C14—C13—C12—C112.8 (4)
C8—N2—N1—C71.7 (2)F1—C13—C12—C11178.0 (2)
N1—N2—C8—O1179.8 (2)C1—C2—C3—C40.8 (4)
N1—N2—C8—N31.1 (2)C2—C3—C4—C50.6 (4)
C7—N3—C8—O1179.2 (2)C6—C5—C4—C31.4 (4)
N4—N3—C8—O18.0 (3)C12—C13—C14—C152.7 (4)
C7—N3—C8—N20.0 (2)F1—C13—C14—C15178.1 (2)
N4—N3—C8—N2171.2 (2)C10—C15—C14—C130.7 (4)
C2—C1—C6—C50.6 (3)C15—C10—C11—C120.9 (4)
C7—C1—C6—C5179.7 (2)C9—C10—C11—C12174.2 (2)
C7—N3—N4—C9100.5 (2)C13—C12—C11—C100.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.90 (2)1.89 (2)2.768 (2)164 (2)
N4—H4N···N1ii0.94 (2)2.28 (2)3.153 (3)154 (2)
C6—H6···N40.93 (1)2.59 (1)3.056 (3)111 (1)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13FN4O
Mr284.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.4560 (19), 6.2183 (7), 14.8165 (18)
β (°) 108.347 (2)
V3)1351.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7084, 2992, 1141
Rint0.052
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.089, 0.75
No. of reflections2992
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
C7—N11.305 (2)N2—C81.342 (3)
C7—N31.369 (2)N2—N11.390 (2)
N3—C81.384 (2)F1—C131.364 (3)
N3—N41.397 (2)N4—C91.474 (3)
O1—C81.234 (2)
N3—C7—C1125.0 (2)N3—N4—C9111.17 (19)
C8—N3—N4124.57 (18)N4—C9—C10109.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.90 (2)1.89 (2)2.768 (2)164 (2)
N4—H4N···N1ii0.94 (2)2.28 (2)3.153 (3)154 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds