Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu(CN3O2)2(C5H8N2)3], is the first example of a pentacoordinated 3d-central atom involving the cyan­amido­nitrate ligand. The crystal structure is formed by neutral molecues stabilized by a three-dimensional network consisting of one intramolecular and three intermolecular hydrogen bonds. The Cu atom is pentacoordinated by three N-donor atoms from 3,5-di­methyl­pyrazole neutral ligands and two N-donor atoms from cyan­amido­nitrate anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007761/cv6175sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007761/cv6175Isup2.hkl
Contains datablock I

CCDC reference: 214562

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.121
  • Data-to-parameter ratio = 25.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 69 CU1 -N41 -C41 -N42 132.00 1.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 70 N43 -N42 -C41 -N41 168.00 2.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 71 CU1 -N51 -C51 -N52 133.00 2.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 72 N53 -N52 -C51 -N51 176.00 2.00 1.555 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

Non-linear pseudohalides such as dicyanamide, (N(CN)2), tricyanomethanide, (C(CN)3), nitrosodicyanomethanide, (ONC(CN)2) and cyanamidonitrate (can), [O2NN(CN)], exhibit a rich variety of bonding modes for coordination in 3 d-complexes (Kohout et al., 2000; Hvastijová et al., 1998; Potočňák at al., 2001, 2002). Redistribution of electron density due to coordination in some circumstances leads to activation for the nucleophilic addition reactions (Kožíšek at al. 2002). The bond distances for central atom—N(nitrile) donor atom in cyanamidonitrate complexes of 3 d-transition metals for octahedral coordination in equatorial plane are in the range 2.027–2.167 Å {2.0273 (5) Å in [Cu(imidazole)2(cyanamidonitrate)2] (Kožíšek at al., 2002), 2.076 (3) and 2.096 (3) Å in [Ni(pyrazole)4(can)2] (Hvastijová at al. 2001), 2.100 (3) Å in [Ni(1-methylimidazole)4(can)2] (Hvastijová at al. 2000), 2.167 (2) and 2.164 (2) Å in [Co(imidazole)4(can)2] (Hvastijová at al. 2000), and 2.146 (1) and 2.136 (1) Å in [Co(pyrazole)4(can)2] (Hvastijová at al. 2003)} contrary to the higher value in the axial position {2.600 (3) Å in [Cu(1-methylimidazole)4(can)2] (Kohout at al. 1999) and 2.683 (3) Å in [Cu(5-methylimidazole)4(can)2] (Kohout at al. 1999)}. In the title complex, the Cu atom is pentacoordinated with a CuN5 chromophore. The coordination polyhedron is a quasi-tetragonal pyramid. The equatorial plane is formed by three N-donor atoms from 3,5-dimethylpyrazole and one N-donor atom from canamidonitrate anion (Table 1). In the apical position, there is the other N-donor atom from cyanamidonitrate anion [Cu1—N51 2.244 (2) Å]. As the oxidation state of CuII is d9, the coordination bonds in the equatorial plane for both octahedral as well as for quasi-tetragonal pyramidal coordination are considered as an overlap between non-fully populated dx2–y2 orbital and lone electron pairs of N-donor atoms. On the other hand, two axial and one apical position should be explaned as an interaction between non-fully populated dz2 orbital and lone electron pairs of N-donor atom.

Thus, the bond distance for apical position in the case of pentacoordinated compound [2.442 (2) Å] is in between the two border limits for hexacoordinated equatorial and axial bonds [2.027–2.167 and 2.683 (3) Å, respectively]. The Cu atom is 0.196 (1) Å above the plane defined by atoms N11, N21, N31 and N41. Comparison of the interatomic distances for (can) bonded in the equatorial position [Cu1—N41 2.008 (2) Å and N41—C41 1.154 (2) Å] with hexacoordinated ones in [Ni(1-methylimidazole)4(can)2] (Hvastijová at al. 2000) [Ni—N 2.100 (3) Å and N—C 1.107 (4) Å] and in [Cu(imidazole)2(can)2] (Kožíšek at al. 2002) [Cu—N 2.0273 (5) Å and N—C 1.1607 (6) Å] is in a good agreement with the hypothesis of weakening the triple bond in the nitrile group by formation of strong coordination bond [Cu1—N41 2.008 (2) Å and N41—C41 1.154 (2) Å]. On the other hand, comparison of the interatomic distances for apically bonded (can) [Cu1—N51 2.244 (2) Å and N51—C51 1.164 (2) Å] with axially ones in the octahedral complexes [Cu(1-methylimidazole)4(can)2] [Cu–N 2.600 (3) Å and N—C 1.133 (4) Å] and [Cu(5-methylimidazole)4(can)2] [Cu—N 2.683 (3) Å and N—C 1.148 (4) Å] (Kohout at al. 1999) does not follow this trend. It is caused by the fact that the dz2 orbital in pentacoordinated Cu2+ cation could not be considered identical to the hexacoordinated one due to different local symmetry. The electronic structure of the title complex, (I), could be elucidate only by the charge–density studies.

The crystal structure of (I) is stabilized by a three-dimensional network of hydrogen bonds consisting of one intramolecular and three intermolecular hydrogen bonds (Table 2). The hydrogen-bonding pattern based on the methodology of Bernstein et al. (1995) and Grell et al. (1999) can be described as follows: N12–H12···O51 is intramolecular bond, S1,1(9); N22–H22···O52 forms on the first-level graph set a ring R2,2(18), as does the N32–H32···O41 one, again R2,2(18). On the second-level graph set, the N22–H22···O52 and N42–H42···O42 hydrogen bonds form a chain C2,2(18). The fourth, C24–H2···O42, forms a weak intermolecular interaction.

Experimental top

A solution of 2.0 mmol of Cu(NO3)2 in 3 ml of water was mixed with a solution of 4.0 mmol of KNO2NCN in 10 ml of water and with a solution of 4.0 mmol of 3,5-dimethylpyrazazole in 10 ml of methanol. From this system, after a few days of standing, blue crystals were isolated. Single crystals of [Cu(NCNNO2)2(3,5-dmpz)3] suitable for X-ray diffraction measurements were synthesized at the Department of Inorganic Chemistry of Slovak University of Technology, Bratislava by Professor Mária Hvastijová.

Refinement top

Data were collected at 183 K using a Siemens SMART CCD diffractometer equipped witha Siemens LT-2 A low temperature device. A sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal-to-detector distance of 3.97 cm. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). Exposure time was 20 sec per frame. The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 8192 reflections with I > 10σ(I) after integration of all the frames data using SAINT (Siemens, 1995). The data were empirically corrected for absorption and other effects using SADABS (Sheldrick, 2002) based on the multi-scan method of Blessing (1995). The structure was solved by direct methods (Bruker, 1997) and refined by full-matrix least squares on all F2 data using SHELXL97 (Sheldrick, 1997). H atoms were constrained to the ideal geometry using an appropriate riding model. Methyl C—H distances were set at 0.98 Å, and aromatic C—H distances were set at 0.95 Å and N—H distances were set at 0.88 Å. H-atom displacement parameters were fixed at 1.2 times the Ueq value of the host C, or N atom.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme for (I), with displacement ellipsoids shown at the 30% probability level.
(I) top
Crystal data top
[Cu(CN3O2)2(C5H8N2)3]F(000) = 1084
Mr = 524.02Dx = 1.462 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1516 (1) ÅCell parameters from 8192 reflections
b = 21.2660 (1) Åθ = 2.4–33.0°
c = 12.9498 (1) ŵ = 0.97 mm1
β = 109.154 (2)°T = 183 K
V = 2380.74 (3) Å3Prism, blue
Z = 40.40 × 0.28 × 0.14 mm
Data collection top
Siemens SMART CCD
diffractometer
8955 independent reflections
Radiation source: fine-focus sealed tube6968 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.040
ω scansθmax = 33.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.698, Tmax = 0.877k = 3131
36079 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0661P)2 + 1.0978P]
where P = (Fo2 + 2Fc2)/3
8460 reflections(Δ/σ)max = 0.002
337 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Cu(CN3O2)2(C5H8N2)3]V = 2380.74 (3) Å3
Mr = 524.02Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1516 (1) ŵ = 0.97 mm1
b = 21.2660 (1) ÅT = 183 K
c = 12.9498 (1) Å0.40 × 0.28 × 0.14 mm
β = 109.154 (2)°
Data collection top
Siemens SMART CCD
diffractometer
8955 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
6968 reflections with F2 > 2σ(F2)
Tmin = 0.698, Tmax = 0.877Rint = 0.040
36079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 1.16 e Å3
8460 reflectionsΔρmin = 1.13 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36131 (2)0.874746 (8)0.222215 (15)0.02078 (6)
N110.57294 (16)0.84752 (6)0.32000 (11)0.0264 (3)
N120.67327 (17)0.88988 (7)0.38419 (12)0.0296 (3)
H120.64910.92910.39330.034 (6)*
N210.26537 (16)0.80331 (6)0.27503 (10)0.0237 (2)
N220.27717 (16)0.79758 (6)0.38197 (11)0.0250 (3)
H220.32680.82430.43350.028 (5)*
N310.15629 (16)0.89818 (7)0.11401 (11)0.0246 (3)
N320.13873 (16)0.90604 (6)0.00602 (11)0.0252 (3)
H320.21460.90330.02150.031 (6)*
N410.46905 (18)0.92579 (7)0.13838 (13)0.0315 (3)
N420.64007 (18)1.01303 (7)0.12294 (13)0.0302 (3)
N430.57976 (18)1.07076 (7)0.13085 (12)0.0287 (3)
N510.35426 (18)0.94960 (7)0.34258 (12)0.0322 (3)
N520.4302 (2)1.06122 (8)0.39052 (13)0.0353 (3)
N530.58143 (19)1.07163 (7)0.40485 (12)0.0319 (3)
O410.6559 (2)1.11688 (7)0.11782 (14)0.0426 (3)
O420.45657 (17)1.07616 (7)0.14968 (14)0.0408 (3)
O510.66872 (18)1.02873 (7)0.39680 (14)0.0435 (4)
O520.6280 (2)1.12669 (6)0.42644 (13)0.0433 (4)
C130.8145 (2)0.86459 (10)0.43234 (15)0.0327 (4)
C140.8055 (2)0.80300 (9)0.39637 (16)0.0350 (4)
H140.88630.77270.41520.048 (7)*
C150.6539 (2)0.79419 (8)0.32678 (14)0.0283 (3)
C160.9424 (3)0.90217 (14)0.5089 (2)0.0522 (6)
H16A0.92770.94670.48890.115 (16)*
H16B1.04180.88790.50410.098 (13)*
H16C0.94160.89660.58380.134 (18)*
C170.5828 (3)0.73539 (9)0.2675 (2)0.0445 (5)
H17A0.52320.71420.30780.071 (10)*
H17B0.66470.70730.26180.088 (12)*
H17C0.51410.74620.19400.059 (8)*
C230.2029 (2)0.74559 (8)0.39923 (14)0.0280 (3)
C240.1421 (2)0.71627 (8)0.29876 (16)0.0325 (4)
H240.08410.67830.28380.042 (6)*
C250.1832 (2)0.75364 (7)0.22346 (14)0.0271 (3)
C260.1991 (3)0.72862 (10)0.51026 (16)0.0384 (4)
H26A0.29770.70920.55270.073 (10)*
H26B0.11460.69890.50320.058 (8)*
H26C0.18260.76660.54770.064 (9)*
C270.1498 (3)0.74345 (10)0.10364 (16)0.0389 (4)
H27A0.05730.76730.06260.067 (9)*
H27B0.13220.69860.08690.088 (12)*
H27C0.23810.75780.08290.053 (8)*
C330.0097 (2)0.91851 (8)0.05328 (14)0.0294 (3)
C340.0919 (2)0.91863 (9)0.01848 (16)0.0333 (4)
H340.19950.92620.00140.047 (7)*
C350.01473 (19)0.90545 (8)0.12217 (14)0.0278 (3)
C360.0591 (3)0.92930 (10)0.17401 (15)0.0400 (4)
H36A0.03260.93320.19680.078 (11)*
H36B0.12020.96800.19220.075 (10)*
H36C0.12200.89370.21210.093 (12)*
C370.0176 (2)0.89982 (11)0.22762 (17)0.0386 (4)
H37A0.03840.85570.24000.069 (9)*
H37B0.10800.92550.22440.064 (9)*
H37C0.07230.91450.28770.087 (11)*
C410.54407 (19)0.96847 (8)0.13301 (13)0.0263 (3)
C510.3955 (2)1.00112 (8)0.36485 (13)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02151 (10)0.01676 (9)0.01928 (9)0.00106 (6)0.00017 (7)0.00261 (6)
N110.0248 (6)0.0212 (6)0.0274 (6)0.0005 (5)0.0009 (5)0.0034 (5)
N120.0250 (7)0.0270 (6)0.0295 (7)0.0001 (5)0.0008 (5)0.0001 (5)
N210.0282 (6)0.0186 (5)0.0198 (6)0.0036 (5)0.0017 (5)0.0002 (4)
N220.0309 (7)0.0199 (6)0.0196 (6)0.0012 (5)0.0021 (5)0.0015 (4)
N310.0241 (6)0.0265 (6)0.0195 (6)0.0004 (5)0.0021 (5)0.0037 (5)
N320.0265 (6)0.0247 (6)0.0201 (6)0.0004 (5)0.0017 (5)0.0034 (4)
N410.0297 (7)0.0301 (7)0.0308 (7)0.0008 (6)0.0046 (6)0.0087 (5)
N420.0293 (7)0.0263 (7)0.0353 (7)0.0011 (5)0.0112 (6)0.0013 (5)
N430.0341 (7)0.0268 (6)0.0243 (6)0.0028 (5)0.0084 (5)0.0036 (5)
N510.0310 (7)0.0308 (7)0.0273 (7)0.0032 (6)0.0006 (6)0.0054 (5)
N520.0421 (9)0.0285 (7)0.0287 (7)0.0047 (6)0.0026 (6)0.0053 (5)
N530.0416 (8)0.0259 (7)0.0211 (6)0.0005 (6)0.0007 (6)0.0038 (5)
O410.0543 (9)0.0274 (6)0.0515 (9)0.0141 (6)0.0248 (8)0.0094 (6)
O420.0355 (7)0.0351 (7)0.0539 (9)0.0023 (6)0.0177 (6)0.0055 (6)
O510.0393 (8)0.0308 (7)0.0543 (9)0.0006 (6)0.0069 (7)0.0071 (6)
O520.0631 (10)0.0257 (6)0.0348 (7)0.0096 (6)0.0073 (7)0.0069 (5)
C130.0230 (7)0.0432 (10)0.0274 (8)0.0018 (6)0.0021 (6)0.0068 (7)
C140.0275 (8)0.0386 (9)0.0363 (9)0.0092 (7)0.0068 (7)0.0117 (7)
C150.0300 (8)0.0245 (7)0.0289 (8)0.0050 (6)0.0077 (6)0.0079 (6)
C160.0305 (10)0.0660 (16)0.0461 (12)0.0047 (10)0.0063 (9)0.0050 (11)
C170.0460 (11)0.0238 (8)0.0599 (13)0.0058 (8)0.0122 (10)0.0011 (8)
C230.0310 (8)0.0210 (7)0.0314 (8)0.0023 (6)0.0092 (6)0.0067 (6)
C240.0359 (9)0.0205 (7)0.0398 (9)0.0070 (6)0.0107 (7)0.0003 (6)
C250.0286 (7)0.0209 (6)0.0287 (7)0.0048 (5)0.0054 (6)0.0039 (5)
C260.0433 (10)0.0388 (10)0.0342 (9)0.0056 (8)0.0142 (8)0.0153 (8)
C270.0447 (11)0.0376 (10)0.0311 (9)0.0113 (8)0.0081 (8)0.0134 (7)
C330.0301 (8)0.0224 (7)0.0262 (7)0.0007 (6)0.0036 (6)0.0037 (5)
C340.0238 (7)0.0318 (8)0.0361 (9)0.0024 (6)0.0012 (6)0.0049 (7)
C350.0250 (7)0.0266 (7)0.0292 (8)0.0004 (6)0.0055 (6)0.0030 (6)
C360.0460 (11)0.0362 (9)0.0253 (8)0.0032 (8)0.0053 (8)0.0068 (7)
C370.0351 (9)0.0453 (11)0.0365 (9)0.0034 (8)0.0134 (8)0.0059 (8)
C410.0252 (7)0.0291 (7)0.0221 (7)0.0033 (6)0.0043 (6)0.0037 (5)
C510.0306 (8)0.0313 (8)0.0181 (6)0.0056 (6)0.0004 (6)0.0033 (5)
Geometric parameters (Å, º) top
Cu1—N211.985 (1)C14—H140.9500
Cu1—N312.002 (1)C15—C171.500 (3)
Cu1—N412.008 (2)C16—H16A0.9800
Cu1—N112.020 (1)C16—H16B0.9800
Cu1—N512.244 (2)C16—H16C0.9800
N11—C151.342 (2)C17—H17A0.9800
N11—N121.358 (2)C17—H17B0.9800
N12—C131.349 (2)C17—H17C0.9800
N12—H120.8800C23—C241.384 (3)
N21—C251.3409 (19)C23—C261.494 (2)
N21—N221.3588 (18)C24—C251.401 (2)
N22—C231.354 (2)C24—H240.9500
N22—H220.8800C25—C271.496 (2)
N31—C351.343 (2)C26—H26A0.9800
N31—N321.3646 (18)C26—H26B0.9800
N32—C331.349 (2)C26—H26C0.9800
N32—H320.8800C27—H27A0.9800
N41—C411.154 (2)C27—H27B0.9800
N42—C411.327 (2)C27—H27C0.9800
N42—N431.364 (2)C33—C341.374 (3)
N43—O421.235 (2)C33—C361.496 (2)
N43—O411.246 (2)C34—C351.405 (2)
N51—C511.164 (2)C34—H340.9500
N52—C511.333 (2)C35—C371.494 (3)
N52—N531.353 (2)C36—H36A0.9800
N53—O511.239 (2)C36—H36B0.9800
N53—O521.246 (2)C36—H36C0.9800
C13—C141.383 (3)C37—H37A0.9800
C13—C161.493 (3)C37—H37B0.9800
C14—C151.397 (3)C37—H37C0.9800
N21—Cu1—N3190.73 (6)H16B—C16—H16C109.5
N21—Cu1—N41162.03 (6)C15—C17—H17A109.5
N31—Cu1—N4190.04 (6)C15—C17—H17B109.5
N21—Cu1—N1190.35 (6)H17A—C17—H17B109.5
N31—Cu1—N11174.79 (6)C15—C17—H17C109.5
N41—Cu1—N1187.36 (6)H17A—C17—H17C109.5
N21—Cu1—N51100.77 (6)H17B—C17—H17C109.5
N31—Cu1—N5194.34 (6)N22—C23—C24106.34 (15)
N41—Cu1—N5197.08 (7)N22—C23—C26121.85 (16)
N11—Cu1—N5190.46 (6)C24—C23—C26131.80 (17)
C15—N11—N12105.82 (14)C23—C24—C25106.36 (15)
C15—N11—Cu1132.73 (12)C23—C24—H24126.8
N12—N11—Cu1120.67 (11)C25—C24—H24126.8
C13—N12—N11111.80 (15)N21—C25—C24109.57 (15)
C13—N12—H12124.1N21—C25—C27121.40 (16)
N11—N12—H12124.1C24—C25—C27129.02 (16)
C25—N21—N22106.31 (13)C23—C26—H26A109.5
C25—N21—Cu1132.11 (12)C23—C26—H26B109.5
N22—N21—Cu1121.58 (10)H26A—C26—H26B109.5
C23—N22—N21111.42 (13)C23—C26—H26C109.5
C23—N22—H22124.3H26A—C26—H26C109.5
N21—N22—H22124.3H26B—C26—H26C109.5
C35—N31—N32105.91 (13)C25—C27—H27A109.5
C35—N31—Cu1132.89 (11)C25—C27—H27B109.5
N32—N31—Cu1121.07 (11)H27A—C27—H27B109.5
C33—N32—N31111.44 (14)C25—C27—H27C109.5
C33—N32—H32124.3H27A—C27—H27C109.5
N31—N32—H32124.3H27B—C27—H27C109.5
C41—N41—Cu1149.9 (2)N32—C33—C34106.71 (15)
C41—N42—N43109.8 (2)N32—C33—C36121.85 (18)
O42—N43—O41122.72 (16)C34—C33—C36131.44 (17)
O42—N43—N42121.14 (15)C33—C34—C35106.47 (16)
O41—N43—N42116.14 (16)C33—C34—H34126.8
C51—N51—Cu1139.4 (2)C35—C34—H34126.8
C51—N52—N53109.9 (2)N31—C35—C34109.46 (16)
O51—N53—O52121.89 (18)N31—C35—C37123.25 (15)
O51—N53—N52121.78 (15)C34—C35—C37127.30 (17)
O52—N53—N52116.34 (16)C33—C36—H36A109.5
N12—C13—C14106.23 (16)C33—C36—H36B109.5
N12—C13—C16121.12 (19)H36A—C36—H36B109.5
C14—C13—C16132.64 (19)C33—C36—H36C109.5
C13—C14—C15106.31 (16)H36A—C36—H36C109.5
C13—C14—H14126.8H36B—C36—H36C109.5
C15—C14—H14126.8C35—C37—H37A109.5
N11—C15—C14109.83 (16)C35—C37—H37B109.5
N11—C15—C17122.27 (16)H37A—C37—H37B109.5
C14—C15—C17127.90 (17)C35—C37—H37C109.5
C13—C16—H16A109.5H37A—C37—H37C109.5
C13—C16—H16B109.5H37B—C37—H37C109.5
H16A—C16—H16B109.5N41—C41—N42173.5 (2)
C13—C16—H16C109.5N51—C51—N52174.9 (2)
H16A—C16—H16C109.5
N21—Cu1—N11—C1559.17 (17)C51—N52—N53—O511.8 (2)
N41—Cu1—N11—C15102.99 (17)C51—N52—N53—O52178.16 (15)
N51—Cu1—N11—C15159.94 (17)N11—N12—C13—C140.8 (2)
N21—Cu1—N11—N12132.42 (13)N11—N12—C13—C16178.45 (19)
N41—Cu1—N11—N1265.41 (14)N12—C13—C14—C150.4 (2)
N51—Cu1—N11—N1231.65 (14)C16—C13—C14—C15178.7 (2)
C15—N11—N12—C130.8 (2)N12—N11—C15—C140.5 (2)
Cu1—N11—N12—C13171.97 (12)Cu1—N11—C15—C14170.16 (13)
N31—Cu1—N21—C2556.92 (16)N12—N11—C15—C17179.47 (18)
N41—Cu1—N21—C2535.5 (3)Cu1—N11—C15—C1710.9 (3)
N11—Cu1—N21—C25117.99 (16)C13—C14—C15—N110.1 (2)
N51—Cu1—N21—C25151.47 (16)C13—C14—C15—C17179.0 (2)
N31—Cu1—N21—N22123.64 (12)N21—N22—C23—C240.68 (19)
N41—Cu1—N21—N22143.98 (17)N21—N22—C23—C26179.87 (16)
N11—Cu1—N21—N2261.45 (13)N22—C23—C24—C250.5 (2)
N51—Cu1—N21—N2229.08 (13)C26—C23—C24—C25179.59 (19)
C25—N21—N22—C230.57 (18)N22—N21—C25—C240.22 (19)
Cu1—N21—N22—C23179.86 (11)Cu1—N21—C25—C24179.73 (13)
N21—Cu1—N31—C3547.52 (16)N22—N21—C25—C27178.58 (16)
N41—Cu1—N31—C35150.44 (16)Cu1—N21—C25—C270.9 (3)
N51—Cu1—N31—C3553.33 (16)C23—C24—C25—N210.2 (2)
N21—Cu1—N31—N32127.69 (12)C23—C24—C25—C27178.87 (19)
N41—Cu1—N31—N3234.36 (12)N31—N32—C33—C340.14 (19)
N51—Cu1—N31—N32131.46 (12)N31—N32—C33—C36179.76 (15)
C35—N31—N32—C330.49 (18)N32—C33—C34—C350.24 (19)
Cu1—N31—N32—C33176.84 (11)C36—C33—C34—C35179.87 (18)
N21—Cu1—N41—C41153.9 (2)N32—N31—C35—C340.63 (19)
N31—Cu1—N41—C41113.6 (3)Cu1—N31—C35—C34176.36 (12)
N11—Cu1—N41—C4170.9 (3)N32—N31—C35—C37179.35 (17)
N51—Cu1—N41—C4119.3 (3)Cu1—N31—C35—C373.6 (3)
C41—N42—N43—O423.0 (2)C33—C34—C35—N310.6 (2)
C41—N42—N43—O41176.90 (16)C33—C34—C35—C37179.42 (18)
N21—Cu1—N51—C51175.3 (2)Cu1—N41—C41—N42132 (1)
N31—Cu1—N51—C5193.1 (2)N43—N42—C41—N41168 (2)
N41—Cu1—N51—C512.5 (2)Cu1—N51—C51—N52133 (2)
N11—Cu1—N51—C5184.9 (2)N53—N52—C51—N51176 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O510.88 (1)2.13 (1)2.959 (2)158 (1)
N22—H22···O52i0.88 (1)2.01 (1)2.844 (2)157 (1)
N32—H32···O41ii0.88 (1)2.03 (1)2.885 (2)164 (1)
C24—H24···O42iii0.95 (1)2.41 (1)3.246 (2)147 (1)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(CN3O2)2(C5H8N2)3]
Mr524.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)183
a, b, c (Å)9.1516 (1), 21.2660 (1), 12.9498 (1)
β (°) 109.154 (2)
V3)2380.74 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.40 × 0.28 × 0.14
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.698, 0.877
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
36079, 8955, 6968
Rint0.040
(sin θ/λ)max1)0.766
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.04
No. of reflections8460
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 1.13

Computer programs: SMART (Siemens, 1995), SMART, SAINT and SADABS (Sheldrick, 2002), SHELXTL (Bruker, 2001), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N211.985 (1)N43—O421.235 (2)
Cu1—N312.002 (1)N43—O411.246 (2)
Cu1—N412.008 (2)N51—C511.164 (2)
Cu1—N112.020 (1)N52—C511.333 (2)
Cu1—N512.244 (2)N52—N531.353 (2)
N41—C411.154 (2)N53—O511.239 (2)
N42—C411.327 (2)N53—O521.246 (2)
N42—N431.364 (2)
N21—Cu1—N3190.73 (6)N41—Cu1—N5197.08 (7)
N21—Cu1—N41162.03 (6)N11—Cu1—N5190.46 (6)
N31—Cu1—N4190.04 (6)C41—N41—Cu1149.9 (2)
N21—Cu1—N1190.35 (6)C41—N42—N43109.8 (2)
N31—Cu1—N11174.79 (6)C51—N51—Cu1139.4 (2)
N41—Cu1—N1187.36 (6)C51—N52—N53109.9 (2)
N21—Cu1—N51100.77 (6)N41—C41—N42173.5 (2)
N31—Cu1—N5194.34 (6)N51—C51—N52174.9 (2)
Cu1—N41—C41—N42132 (1)Cu1—N51—C51—N52133 (2)
N43—N42—C41—N41168 (2)N53—N52—C51—N51176 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O510.880 (2)2.126 (2)2.959 (2)157.5 (1)
N22—H22···O52i0.880 (1)2.014 (2)2.844 (2)156.8 (1)
N32—H32···O41ii0.880 (2)2.029 (3)2.885 (2)163.8 (1)
C24—H24···O42iii0.950 (2)2.411 (2)3.246 (2)146.5 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds