Download citation
Download citation
link to html
Crystals of the title double salt, K4[CoII(H2O)6][CoIII(C10H12N2O8)]2[β-Mo8O26]·6H2O, were prepared by the hydro­thermal reaction of K3[CoIIIMo6O18(OH)6nH2O with Na2H2edta and CoCl2 (edta is ethyl­enedi­amine tetra­acetic acid). The compounds contain β-octamolybdate, [β-Mo8O26]4−, and ethyl­enedi­amine­tetraacetato(4−)­cobaltate(III), [CoIII(edta)], complex anions. The counter-cations are [CoII(H2O)6]2+ and K+. The [β-Mo8O26]4− anion and [CoII(H2O)6]2+ cations have inversion centers. The bond-length ranges are as follows: CoIII—O in [Co(edta)] 1.882 (4)–1.917 (4) Å, CoIII—N in [Co(edta)] 1.922 (4)–1.931 (4) Å, CoII—O in [Co(H2O)6]2+ 2.062 (4)–2.141 (4) Å, and Mo—O in [Mo8O26]4− 1.690 (4)–1.716 (4) Å (Ot), 1.742 (3)–2.265 (3) Å (Ob), 1.939 (3)–2.348 (3) Å (Oc), 2.187 (3)–2.472 (3) Å (Of), where Ot are terminal O atoms, Ob bridging O atoms bound to two Mo atoms, Oc central O atoms bound to three Mo atoms and Of central O atoms bound to five Mo atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802017385/cv6148sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802017385/cv6148Isup2.hkl
Contains datablock I

CCDC reference: 198322

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • H-atom completeness 51%
  • R factor = 0.036
  • wR factor = 0.085
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C20 H48 Co3 K4 Mo8 N4 O54 Atom count from the _atom_site data: C20 H24 Co3 K4 Mo8 N4 O54 CELLZ_01 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C20 H48 Co3 K4 Mo8 N4 O54 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 20.00 20.00 0.00 H 48.00 24.00 24.00 Co 3.00 3.00 0.00 K 4.00 4.00 0.00 Mo 8.00 8.00 0.00 N 4.00 4.00 0.00 O 54.00 54.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? CHEMW_03 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_weight 2309.34 TEST: Calculate formula weight from _atom_site_* atom mass num sum Co 58.93 3.00 176.80 Mo 95.94 8.00 767.52 C 12.01 20.00 240.22 N 14.01 4.00 56.03 K 39.10 4.00 156.39 O 16.00 54.00 863.95 H 1.01 24.00 24.19 Calculated formula weight 2285.10 The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01

Comment top

Almost all the polyoxometalate species are synthesized as self-assembled by pH control. The separation attempt of the new polyoxometalate species by the degradation of complicated heteropolyoxometalate species is meaningful. The title double salt compound, (I), was obtained by the reaction of K2[CoIIIMo6O18(OH)6].nH2O with Na2edta and CoCl2 solutions.

The octamolybdate [Mo8O26]4− shows the most structural variety among isopolymolybdates; the α- (Fuchs & Hartl, 1976; Hsieh et al., 1987; Day et al., 1977), β- (Lindqvist, 1952; William et al., 1983; Xu et al., 1994; Fun et al., 1996; Zheng et al., 2001; Wu et al., 2001), and γ- (Niven et al., 1991; Xi et al., 1994; Inoue & Yamase, 1995; Hagrman & Zubieta, 1999) isomers have been reported.

Fig. 1 shows a view of the β-[Mo8O26]4− anion. The structural characteristics of the β-[Mo8O26]4− anion are normal. The Mo—O bonds can be classified into four types, Ot, Ob, Oc and Of, according to their coordinating modes; Ot is a terminal O atom, Ob represents a bridging O atom bound to two Mo atoms, Oc represents a central O atom coordinated to three Mo atoms and Of represents a central O atom coordinated to five Mo atoms. The ranges of Mo—O distances are 1.690 (4)–1.716 (4), 1.905 (4)–1.929 (4), 1.939 (4)–2.348 (4), and 2.187 (4)–2.473 (4) Å for Ot, Ob, Oc and Of, respectively.

Ethylenediamine tetraacetic acid (edta) is a well known chelating agent (Ogino et al., 1986), with six potential sites of four carboxyl and two amino groups available for binding with metal cations composed. edta form a chelating complex with all cations, and most of these complexes are sufficiently stable. Therefore, edta can extract Co3+ from [CoIIIMo6O18(OH)6]3− and form [Mo8O26]4− and [CoIIIedta]+ complexes. The following chemical reaction is expected.

8[CoIIIMo6O18(OH)6]3− + 8EDTA2− + 24H+ 6[Mo8O26]4− + 8[CoIIIedta]+ + 36H2O

The crystal structures of CoIII–edta (Weakliem & Hoard, 1958; Okazaki et al., 1983; Zubkowski et al., 1995) and CoII–edta (Niven et al., 1991; Inoue et al., 1995; Hagrman et al., 1999; McCandlish et al., 1978; Gomez-Romero et al., 1986; Solans et al., 1987) complexes have been reported. Fig. 2 shows the [CoIII–edta] structure. As is expected, the Co—O and Co—N bond distances are shorter than those in [CoII–edta]2−. The apical bond lengths, such as Co1—O15 [1.882 (4) Å] and Co1—O14 [1.894 (4) Å], are shorter than the equatorial bond lengths Co1—O16 [1.917 (4) Å], Co1—O17 [1.915 (4) Å], Co1—N1 [1.922 (4) Å], and Co1—N2 [1.931 (4) Å]. On the other hand, the apical bond lengths, Co2—OW2 [2.141 (4) Å], are longer than the equatorial bond lengths, such as Co2—OW1 [2.062 (4) Å] and Co2—OW1 [2.082 (4) Å] in the [Co(H2O)6]2+ complex ion.

All water molecules are involved in strong hydrogen bonds with carbonyl O atoms of edta and β-[Mo8O26]4− (Table 2 and Fig. 3).

Experimental top

The title compound was synthesized by mixing stoichiometric quantities of K3[CoMo6O18(OH)6].nH2O (Lee et al., 2001), Na2edta and CoCl2 solution. The resulting solution was concentrated in a water bath. After one day, stable violet-coloured crystals were obtained at room temperature.

Refinement top

H atoms were located in difference Fourier maps, then positioned geometrically and allowed to ride on their respective parent atoms. [Added text OK?]

Computing details top

Data collection: STADI4 (STOE, 1996); cell refinement: STADI4 (STOE, 1996); data reduction: X-RED (STOE, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP III v1.07 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Figures top
[Figure 1] Fig. 1. Perspective view of [γ-Mo8O26]4−. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of [CoIII—edta].
[Figure 3] Fig. 3. Packing diagram of unit cell showing the hydrogen bonds.
(I) top
Crystal data top
K4[Co(H2O)6][Co(C10H12N2O8)]2[Mo8O26]·6H2OZ = 1
Mr = 2309.34F(000) = 1121
Triclinic, P1Dx = 2.597 Mg m3
a = 8.3607 (8) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.685 (2) ÅCell parameters from 30 reflections
c = 16.922 (1) Åθ = 9.6–10.5°
α = 90.32 (1)°µ = 2.87 mm1
β = 95.86 (2)°T = 298 K
γ = 100.79 (1)°Tetragonal prism, violet
V = 1476.8 (3) Å30.60 × 0.40 × 0.30 mm
Data collection top
STOE STADI4
diffractometer
5391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω/2–θ scansh = 1010
Absorption correction: ψ scan
X-SHAPE (STOE, 1996)
k = 1313
Tmin = 0.273, Tmax = 0.425l = 021
6733 measured reflections3 standard reflections every 60 min
6733 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0288P)2 + 3.9688P]
where P = (Fo2 + 2Fc2)/3
6733 reflections(Δ/σ)max = 0.001
421 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
K4[Co(H2O)6][Co(C10H12N2O8)]2[Mo8O26]·6H2Oγ = 100.79 (1)°
Mr = 2309.34V = 1476.8 (3) Å3
Triclinic, P1Z = 1
a = 8.3607 (8) ÅMo Kα radiation
b = 10.685 (2) ŵ = 2.87 mm1
c = 16.922 (1) ÅT = 298 K
α = 90.32 (1)°0.60 × 0.40 × 0.30 mm
β = 95.86 (2)°
Data collection top
STOE STADI4
diffractometer
5391 reflections with I > 2σ(I)
Absorption correction: ψ scan
X-SHAPE (STOE, 1996)
Rint = 0.000
Tmin = 0.273, Tmax = 0.4253 standard reflections every 60 min
6733 measured reflections intensity decay: 3.2%
6733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.15Δρmax = 0.72 e Å3
6733 reflectionsΔρmin = 0.91 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.09770 (5)0.38571 (4)0.34579 (2)0.01765 (10)
Mo20.19776 (5)0.47095 (4)0.48433 (2)0.01480 (9)
Mo30.00696 (5)0.29620 (4)0.60799 (2)0.01653 (10)
Mo40.31080 (5)0.79095 (4)0.52893 (3)0.01824 (10)
Co10.54332 (8)0.16447 (6)0.83476 (4)0.01701 (14)
Co20.00000.00000.00000.0238 (2)
K10.86572 (16)0.91456 (12)0.57504 (8)0.0317 (3)
K20.13553 (19)0.60755 (13)0.90842 (8)0.0398 (3)
Of10.0567 (4)0.6279 (3)0.51790 (19)0.0153 (7)
Oc20.1014 (4)0.5168 (3)0.38044 (19)0.0161 (7)
Oc30.1804 (4)0.4399 (3)0.5962 (2)0.0165 (7)
Ob40.3626 (4)0.5986 (3)0.4942 (2)0.0204 (7)
Ob50.2325 (4)0.7764 (3)0.4174 (2)0.0201 (7)
Ob60.3046 (4)0.7056 (3)0.6289 (2)0.0213 (7)
Ot70.0003 (5)0.2630 (4)0.3290 (2)0.0268 (8)
Ot80.1511 (5)0.4393 (4)0.2548 (2)0.0288 (9)
Ot90.2730 (4)0.3433 (3)0.4557 (2)0.0236 (8)
Ot100.0185 (5)0.2876 (4)0.7080 (2)0.0271 (8)
Ot110.0768 (4)0.1755 (3)0.5726 (2)0.0237 (8)
Ot120.2123 (5)0.9108 (3)0.5531 (2)0.0263 (8)
Ot130.5107 (5)0.8610 (4)0.5296 (3)0.0315 (9)
O140.3492 (4)0.1912 (3)0.8754 (2)0.0233 (8)
O150.7410 (4)0.1361 (3)0.8004 (2)0.0237 (8)
O160.5160 (5)0.0022 (3)0.8845 (2)0.0250 (8)
O170.6736 (5)0.2731 (3)0.9169 (2)0.0240 (8)
O180.2209 (6)0.3475 (4)0.9048 (3)0.0379 (10)
O190.8394 (5)0.0105 (4)0.7203 (3)0.0347 (10)
O200.3557 (6)0.1897 (4)0.8720 (3)0.0476 (12)
O210.8553 (5)0.4537 (4)0.9285 (3)0.0365 (10)
OW10.2503 (5)0.0599 (4)0.0063 (2)0.0356 (10)
Ow20.0265 (5)0.1929 (4)0.0208 (3)0.0343 (10)
Ow30.0053 (5)0.0299 (5)0.1220 (3)0.0401 (11)
Ow40.1390 (9)0.2713 (5)0.1652 (3)0.0721 (18)
Ow50.3950 (7)0.3452 (7)0.2980 (3)0.0696 (18)
Ow60.4253 (10)0.3555 (6)0.0751 (4)0.087 (2)
N10.4317 (5)0.0676 (4)0.7427 (3)0.0212 (9)
N20.5407 (5)0.3211 (4)0.7787 (2)0.0189 (8)
C10.5558 (7)0.0106 (5)0.7029 (3)0.0267 (12)
H1A0.52750.08160.70420.032*
H1B0.55210.03470.64760.032*
C20.7257 (7)0.0539 (5)0.7425 (3)0.0249 (11)
C30.3111 (7)0.0343 (5)0.7747 (3)0.0272 (12)
H3A0.27470.10350.73590.033*
H3B0.21650.00090.78770.033*
C40.3973 (7)0.0812 (5)0.8489 (4)0.0291 (12)
C50.7514 (6)0.3768 (5)0.8887 (3)0.0239 (11)
C60.7065 (6)0.3980 (5)0.8007 (3)0.0225 (11)
H6A0.70640.48760.79170.027*
H6B0.78490.37100.76910.027*
C70.3182 (6)0.3056 (5)0.8683 (3)0.0237 (11)
C80.4144 (7)0.3867 (5)0.8099 (3)0.0241 (11)
H8A0.33970.40540.76580.029*
H8B0.46850.46680.83580.029*
C90.4961 (7)0.2826 (5)0.6930 (3)0.0242 (11)
H9A0.59120.26610.66940.029*
H9B0.45410.34960.66400.029*
C100.3660 (7)0.1628 (5)0.6905 (3)0.0272 (12)
H10A0.26710.18170.70930.033*
H10B0.33960.12910.63640.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0212 (2)0.0160 (2)0.0150 (2)0.00349 (16)0.00187 (16)0.00282 (15)
Mo20.01376 (19)0.01423 (19)0.0168 (2)0.00440 (15)0.00020 (15)0.00107 (15)
Mo30.0187 (2)0.0142 (2)0.0166 (2)0.00416 (16)0.00066 (16)0.00145 (15)
Mo40.0182 (2)0.0144 (2)0.0211 (2)0.00265 (16)0.00147 (17)0.00133 (16)
Co10.0187 (3)0.0160 (3)0.0151 (3)0.0014 (3)0.0009 (3)0.0005 (2)
Co20.0204 (5)0.0250 (5)0.0262 (5)0.0058 (4)0.0002 (4)0.0075 (4)
K10.0376 (7)0.0268 (6)0.0316 (7)0.0084 (5)0.0046 (5)0.0027 (5)
K20.0463 (8)0.0353 (7)0.0326 (7)0.0086 (6)0.0099 (6)0.0017 (6)
Of10.0164 (16)0.0143 (16)0.0157 (16)0.0043 (13)0.0011 (13)0.0014 (13)
Oc20.0171 (17)0.0166 (16)0.0148 (16)0.0029 (13)0.0026 (13)0.0006 (13)
Oc30.0138 (16)0.0173 (16)0.0175 (17)0.0019 (13)0.0009 (13)0.0006 (13)
Ob40.0178 (17)0.0156 (17)0.0267 (19)0.0014 (13)0.0009 (14)0.0006 (14)
Ob50.0207 (18)0.0197 (17)0.0192 (18)0.0026 (14)0.0013 (14)0.0014 (14)
Ob60.0190 (18)0.0197 (18)0.0230 (19)0.0018 (14)0.0046 (14)0.0036 (14)
Ot70.029 (2)0.0248 (19)0.027 (2)0.0092 (16)0.0007 (16)0.0059 (16)
Ot80.037 (2)0.029 (2)0.0193 (19)0.0079 (17)0.0047 (16)0.0001 (16)
Ot90.0222 (19)0.0184 (18)0.031 (2)0.0076 (15)0.0014 (16)0.0040 (15)
Ot100.037 (2)0.027 (2)0.0163 (18)0.0041 (17)0.0013 (16)0.0012 (15)
Ot110.0252 (19)0.0197 (18)0.027 (2)0.0091 (15)0.0030 (15)0.0006 (15)
Ot120.030 (2)0.0221 (19)0.028 (2)0.0088 (16)0.0030 (16)0.0036 (15)
Ot130.028 (2)0.025 (2)0.040 (2)0.0034 (16)0.0006 (18)0.0004 (17)
O140.0222 (19)0.0240 (19)0.0237 (19)0.0026 (15)0.0055 (15)0.0030 (15)
O150.0242 (19)0.0239 (19)0.0230 (19)0.0055 (15)0.0012 (15)0.0010 (15)
O160.028 (2)0.0184 (18)0.026 (2)0.0002 (15)0.0012 (16)0.0045 (15)
O170.028 (2)0.0234 (19)0.0163 (18)0.0027 (15)0.0047 (15)0.0015 (14)
O180.044 (3)0.034 (2)0.042 (3)0.014 (2)0.024 (2)0.0023 (19)
O190.031 (2)0.039 (2)0.039 (2)0.0182 (19)0.0066 (19)0.0009 (19)
O200.053 (3)0.023 (2)0.061 (3)0.007 (2)0.005 (2)0.012 (2)
O210.037 (2)0.030 (2)0.033 (2)0.0099 (18)0.0098 (18)0.0016 (18)
OW10.021 (2)0.052 (3)0.033 (2)0.0063 (19)0.0029 (17)0.018 (2)
Ow20.033 (2)0.025 (2)0.045 (3)0.0079 (17)0.0002 (19)0.0087 (18)
Ow30.036 (2)0.053 (3)0.029 (2)0.005 (2)0.0003 (19)0.008 (2)
Ow40.116 (5)0.046 (3)0.046 (3)0.007 (3)0.016 (3)0.007 (3)
Ow50.056 (4)0.118 (5)0.043 (3)0.040 (4)0.001 (3)0.014 (3)
Ow60.124 (6)0.064 (4)0.067 (4)0.032 (4)0.035 (4)0.026 (3)
N10.019 (2)0.024 (2)0.019 (2)0.0061 (17)0.0043 (17)0.0009 (17)
N20.024 (2)0.019 (2)0.014 (2)0.0052 (17)0.0026 (17)0.0011 (16)
C10.026 (3)0.025 (3)0.028 (3)0.004 (2)0.001 (2)0.006 (2)
C20.026 (3)0.023 (3)0.029 (3)0.010 (2)0.005 (2)0.008 (2)
C30.020 (3)0.024 (3)0.033 (3)0.004 (2)0.001 (2)0.005 (2)
C40.028 (3)0.020 (3)0.037 (3)0.000 (2)0.005 (2)0.003 (2)
C50.022 (3)0.022 (3)0.026 (3)0.001 (2)0.003 (2)0.004 (2)
C60.025 (3)0.019 (2)0.023 (3)0.001 (2)0.003 (2)0.003 (2)
C70.022 (3)0.026 (3)0.022 (3)0.003 (2)0.002 (2)0.001 (2)
C80.030 (3)0.023 (3)0.023 (3)0.013 (2)0.005 (2)0.000 (2)
C90.036 (3)0.030 (3)0.010 (2)0.015 (2)0.001 (2)0.003 (2)
C100.032 (3)0.034 (3)0.017 (3)0.017 (2)0.008 (2)0.005 (2)
Geometric parameters (Å, º) top
Mo1—Mo23.2217 (9)Co2—Ow32.082 (4)
Mo1—Mo4i3.2846 (8)Co2—Ow2iv2.141 (4)
Mo1—Mo3i3.4126 (9)Co2—Ow22.141 (4)
Mo1—Mo2i3.4972 (7)K1—O19v2.704 (4)
Mo2—Mo33.2207 (8)K1—Ot11vi2.792 (4)
Mo2—Mo43.4307 (9)K1—Ot9vi2.806 (4)
Mo1—Ot81.692 (4)K1—Ot7vi2.819 (4)
Mo1—Ot71.708 (4)K1—Ot132.936 (4)
Mo1—Ob6i1.911 (4)K1—Ot12vii2.966 (4)
Mo1—Oc21.999 (3)K1—Ot12iii2.970 (4)
Mo1—Of1i2.307 (3)K1—Ot11viii3.011 (4)
Mo1—Oc3i2.348 (3)K1—K1ix3.809 (3)
Mo2—Ot91.693 (3)K2—O21x2.652 (4)
Mo2—Ob41.742 (3)K2—O20v2.686 (5)
Mo2—Oc31.939 (3)K2—Ot8i2.825 (4)
Mo2—Oc21.962 (3)K2—O21xi2.837 (4)
Mo2—Of1i2.187 (3)K2—O182.997 (4)
Mo2—Of12.323 (3)K2—Ow4i3.008 (7)
Mo3—Ot101.690 (4)K2—Ow2xii3.167 (5)
Mo3—Ot111.711 (4)K2—O17xi3.338 (4)
Mo3—Ob5i1.904 (4)K2—C5xi3.462 (6)
Mo3—Oc32.004 (3)K2—K2xiii4.426 (3)
Mo3—Oc2i2.296 (3)O14—C71.300 (6)
Mo3—Of1i2.309 (3)O15—C21.292 (7)
Mo3—Mo4i3.2522 (9)O16—C41.298 (7)
Mo3—K1ii4.0375 (15)O17—C51.295 (6)
Mo4—Ot131.698 (4)O18—C71.216 (7)
Mo4—Ot121.716 (4)O19—C21.222 (6)
Mo4—Ob61.926 (4)O20—C41.224 (7)
Mo4—Ob51.929 (3)O21—C51.221 (6)
Mo4—Ob42.265 (3)N1—C31.484 (7)
Mo4—Of12.472 (3)N1—C101.495 (6)
Mo4—K1iii4.0553 (15)N1—C11.509 (7)
Co1—O151.882 (4)N2—C61.483 (6)
Co1—O141.894 (4)N2—C91.495 (6)
Co1—O171.915 (4)N2—C81.507 (6)
Co1—O161.917 (4)C1—C21.496 (8)
Co1—N11.922 (4)C3—C41.518 (8)
Co1—N21.931 (4)C5—C61.526 (7)
Co2—OW1iv2.062 (4)C5—K2xi3.462 (6)
Co2—OW12.062 (4)C7—C81.512 (7)
Co2—Ow3iv2.082 (4)C9—C101.514 (8)
Mo3—Mo2—Mo190.155 (17)Ot13—Mo4—Of1161.47 (15)
Mo3—Mo2—Mo4117.482 (19)Ot12—Mo4—Of193.21 (15)
Mo1—Mo2—Mo4116.957 (19)Ob6—Mo4—Of173.11 (13)
Mo2—Mo1—Mo2i63.980 (17)Ob5—Mo4—Of174.21 (13)
Mo4i—Mo1—Mo2i60.681 (17)Ob4—Mo4—Of169.45 (11)
Mo3i—Mo1—Mo2i55.547 (15)O15—Co1—O14176.73 (16)
Mo2—Mo3—Mo4i90.967 (17)O15—Co1—O1787.18 (17)
Ot8—Mo1—Ot7105.50 (19)O14—Co1—O1790.62 (17)
Ot8—Mo1—Ob6i100.78 (18)O15—Co1—O1689.68 (16)
Ot7—Mo1—Ob6i100.91 (17)O14—Co1—O1688.40 (16)
Ot8—Mo1—Oc2100.33 (17)O17—Co1—O16101.64 (15)
Ot7—Mo1—Oc297.42 (16)O15—Co1—N187.66 (17)
Ob6i—Mo1—Oc2147.08 (14)O14—Co1—N194.77 (18)
Ot8—Mo1—Of1i160.84 (16)O17—Co1—N1172.28 (18)
Ot7—Mo1—Of1i93.51 (15)O16—Co1—N184.07 (17)
Ob6i—Mo1—Of1i77.44 (13)O15—Co1—N295.47 (17)
Oc2—Mo1—Of1i74.34 (12)O14—Co1—N286.71 (17)
Ot8—Mo1—Oc3i89.37 (16)O17—Co1—N284.32 (17)
Ot7—Mo1—Oc3i163.04 (15)O16—Co1—N2172.33 (17)
Ob6i—Mo1—Oc3i83.87 (13)N1—Co1—N290.46 (18)
Oc2—Mo1—Oc3i71.40 (12)OW1iv—Co2—OW1180.0
Of1i—Mo1—Oc3i71.47 (11)OW1iv—Co2—Ow3iv90.81 (17)
Ot9—Mo2—Ob4106.12 (17)OW1—Co2—Ow3iv89.19 (17)
Ot9—Mo2—Oc3101.76 (16)OW1iv—Co2—Ow389.19 (17)
Ob4—Mo2—Oc398.38 (15)OW1—Co2—Ow390.81 (17)
Ot9—Mo2—Oc299.12 (16)Ow3iv—Co2—Ow3180.0
Ob4—Mo2—Oc296.42 (15)OW1iv—Co2—Ow2iv91.48 (17)
Oc3—Mo2—Oc2149.85 (14)OW1—Co2—Ow2iv88.52 (17)
Ot9—Mo2—Of1i96.26 (15)Ow3iv—Co2—Ow2iv89.27 (18)
Ob4—Mo2—Of1i157.54 (14)Ow3—Co2—Ow2iv90.73 (18)
Oc3—Mo2—Of1i78.46 (13)OW1iv—Co2—Ow288.52 (17)
Oc2—Mo2—Of1i77.85 (13)C3—N1—C10117.4 (4)
Ot9—Mo2—Of1171.54 (15)C3—N1—C1110.4 (4)
Ob4—Mo2—Of182.08 (14)C10—N1—C1110.8 (4)
Oc3—Mo2—Of178.71 (13)C3—N1—Co1104.6 (3)
Oc2—Mo2—Of177.51 (12)C10—N1—Co1104.9 (3)
Of1i—Mo2—Of175.49 (13)C1—N1—Co1108.0 (3)
Ot10—Mo3—Ot11105.61 (18)C6—N2—C9117.0 (4)
Ot10—Mo3—Ob5i102.86 (17)C6—N2—C8109.6 (4)
Ot11—Mo3—Ob5i98.96 (16)C9—N2—C8111.4 (4)
Ot10—Mo3—Oc397.82 (16)C6—N2—Co1104.1 (3)
Ot11—Mo3—Oc397.93 (16)C9—N2—Co1105.7 (3)
Ob5i—Mo3—Oc3148.57 (14)C8—N2—Co1108.5 (3)
Ot10—Mo3—Oc2i90.00 (15)C2—C1—N1111.9 (4)
Ot11—Mo3—Oc2i162.87 (15)O19—C2—O15124.1 (5)
Ob5i—Mo3—Oc2i84.02 (13)O19—C2—C1120.1 (5)
Oc3—Mo3—Oc2i72.48 (13)O15—C2—C1115.8 (5)
Ot10—Mo3—Of1i161.46 (15)N1—C3—C4106.8 (4)
Ot11—Mo3—Of1i92.24 (15)O20—C4—O16123.9 (6)
Ob5i—Mo3—Of1i78.72 (13)O20—C4—C3121.4 (5)
Oc3—Mo3—Of1i74.32 (12)O16—C4—C3114.6 (5)
Oc2i—Mo3—Of1i71.70 (11)O21—C5—O17123.3 (5)
Ot13—Mo4—Ot12105.31 (19)O21—C5—C6120.9 (5)
Ot13—Mo4—Ob6103.30 (17)O17—C5—C6115.8 (4)
Ot12—Mo4—Ob697.42 (17)N2—C6—C5106.9 (4)
Ot13—Mo4—Ob5103.44 (18)O18—C7—O14124.5 (5)
Ot12—Mo4—Ob597.23 (17)O18—C7—C8121.0 (5)
Ob6—Mo4—Ob5144.74 (15)O14—C7—C8114.6 (4)
Ot13—Mo4—Ob492.03 (16)N2—C8—C7111.9 (4)
Ot12—Mo4—Ob4162.65 (16)N2—C9—C10106.7 (4)
Ob6—Mo4—Ob478.77 (14)N1—C10—C9107.9 (4)
Ob5—Mo4—Ob477.72 (14)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+2, z+1; (iv) x, y, z; (v) x, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y+1, z; (ix) x+2, y+2, z+1; (x) x1, y, z; (xi) x+1, y+1, z+2; (xii) x, y+1, z+1; (xiii) x, y+1, z+2.
Hydrogen-bond geometry (Å) top
D—H···AD···A
OW1···O16xiv2.726 (5)
OW1···O14xv2.745 (5)
OW2···O18xvi2.805 (6)
OW2···O17xiv2.899 (5)
OW3···OW42.677 (7)
OW3···O19xiv2.918 (6)
OW4···OW52.935 (8)
OW4···OW62.970 (11)
OW5···OB6vi2.832 (6)
OW6···O20xiv2.862 (8)
OW6···O18xv3.188 (8)
Symmetry codes: (vi) x+1, y+1, z+1; (xiv) x+1, y, z+1; (xv) x, y, z1; (xvi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaK4[Co(H2O)6][Co(C10H12N2O8)]2[Mo8O26]·6H2O
Mr2309.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.3607 (8), 10.685 (2), 16.922 (1)
α, β, γ (°)90.32 (1), 95.86 (2), 100.79 (1)
V3)1476.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.60 × 0.40 × 0.30
Data collection
DiffractometerSTOE STADI4
diffractometer
Absorption correctionψ scan
X-SHAPE (STOE, 1996)
Tmin, Tmax0.273, 0.425
No. of measured, independent and
observed [I > 2σ(I)] reflections
6733, 6733, 5391
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.15
No. of reflections6733
No. of parameters421
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.91

Computer programs: STADI4 (STOE, 1996), X-RED (STOE, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP III v1.07 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Selected bond lengths (Å) top
Mo1—Mo23.2217 (9)Mo3—Ob5i1.904 (4)
Mo1—Mo4i3.2846 (8)Mo3—Oc32.004 (3)
Mo1—Mo3i3.4126 (9)Mo3—Oc2i2.296 (3)
Mo1—Mo2i3.4972 (7)Mo3—Of1i2.309 (3)
Mo2—Mo33.2207 (8)Mo3—Mo4i3.2522 (9)
Mo2—Mo43.4307 (9)Mo4—Ot131.698 (4)
Mo1—Ot81.692 (4)Mo4—Ot121.716 (4)
Mo1—Ot71.708 (4)Mo4—Ob61.926 (4)
Mo1—Ob6i1.911 (4)Mo4—Ob51.929 (3)
Mo1—Oc21.999 (3)Mo4—Ob42.265 (3)
Mo1—Of1i2.307 (3)Mo4—Of12.472 (3)
Mo1—Oc3i2.348 (3)Co1—O151.882 (4)
Mo2—Ot91.693 (3)Co1—O141.894 (4)
Mo2—Ob41.742 (3)Co1—O171.915 (4)
Mo2—Oc31.939 (3)Co1—O161.917 (4)
Mo2—Oc21.962 (3)Co1—N11.922 (4)
Mo2—Of1i2.187 (3)Co1—N21.931 (4)
Mo2—Of12.323 (3)Co2—OW12.062 (4)
Mo3—Ot101.690 (4)Co2—Ow32.082 (4)
Mo3—Ot111.711 (4)Co2—Ow22.141 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD···A
OW1···O16ii2.726 (5)
OW1···O14iii2.745 (5)
OW2···O18iv2.805 (6)
OW2···O17ii2.899 (5)
OW3···OW42.677 (7)
OW3···O19ii2.918 (6)
OW4···OW52.935 (8)
OW4···OW62.970 (11)
OW5···OB6v2.832 (6)
OW6···O20ii2.862 (8)
OW6···O18iii3.188 (8)
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x, y, z+1; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds