Download citation
Download citation
link to html
In the title compound, C26H20F2N2O2, the di­methyl­amino group is nearly coplanar with the male­imide, and the N-phenyl ring forms a dihedral angle of 51.0 (2)° with the male­imide. The crystal structure is stabilized by weak intermolecular C—H...O and C—H...F interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014769/cv6137sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014769/cv6137Isup2.hkl
Contains datablock I

CCDC reference: 197483

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.062
  • wR factor = 0.181
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.107
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The photoinduced reactions of 1-phenyl-3,4-dichloromaleimide with diphenylethylene give the cyclobutane product, namely 1,5-dichloro-3,6,6-triphenyl-3-azabicyclo[3.2.0]hepta-2,4-dione, (II), whose crystal structure has been reported previously (Usman et al., 2001). This compound undergoes thermal cyclobutane ring opening reaction in N,N-dimethylacetamide to give the title compound, (I) (Zhao & Xu, 2002). In order to establish the conformation of (I), we have undertaken X-ray crystal structure analysis and the results are presented here.

The bond lengths and angles in (I) listed in Table 1 are within normal ranges (Allen et al., 1987), except for the values within the maleimide moiety (N1/C7—C10). The C8—C9 bond length lengthens, whereas the N1—C8 bond length shortens, compared with typical Csp2—Csp2 and Csp2—Nsp2 distances, respectively, due to interactions between the bulky substituents attached at the maleimide moiety. This also affects the N2—C9—C10 bond angle, which is about 11.5° larger than N2—C9—C8. The dimethylamino group (N2/C15/C26) attached at C9 is nearly coplanar with the maleimide. This substituent is twisted out about the N2—C9 bond by 13.7 (2)° with respect to the maleimide. Atoms O1 and O2 are displaced on opposite sides of the maleimide plane, by 0.090 (2) and 0.075 (2) Å, respectively.

The C1—C6 phenyl ring attached at atom N1 forms a dihedral angle of 51.0 (2)° with the maleimide, which is much smaller compared with that in (II) [74.8 (1)°; Usman et al., 2001].

The C11/C12/C13/C19 plane containing the ethylene double bond is planar and makes dihedral angles of 50.1 (2), 52.3 (2) and 35.0 (2)° with the maleimide and C13—C18 and C19—C24 phenyl rings, respectively (Fig. 1). The dihedral angle between the two phenyl rings is 74.5 (2)°, which is comparable with that of the 2,2-diphenylethenyl moiety in another structure [75.5 (1)°; Usman et al., 2002]. Atoms F1 and F2 also lie in the planes of their attached phenyl rings, with deviations of 0.015 (3) and 0.023 (3) Å, respectively.

In the packing, two adjacent molecules form dimers (Fig. 2) through C—H···O intermolecular contacts (Table 1). The molecular dimers are further interconnected by C—H···F interactions (Table 1) to form a three-dimensional network (Fig. 3).

Experimental top

The title compound was prepared by thermolysis of 1,5-dichloro-3,6,6-triphenyl-3-azabicyclo[3.2.0]hepta-2,4-dione in N,N-dimethylacetamide (Zhao & Xu, 2002). Single crystals suitable for X-ray diffraction were obtained from slow evaporation of a petroleum ether–acetone solution.

Refinement top

The H atoms were fixed geometrically and treated as riding atoms on the parent C atoms, with C—H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C). Due to a large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the molecular dimers linked by C—H···O interactions (dashed lines).
[Figure 3] Fig. 3. Packing diagram of the title compound, showing the three dimensional network. The dashed lines denote C—H···F interactions.
3-(N,N-Dimethylamino)-4-[2,2-di(4-fluorophenyl)ehtenyl]-N-phenylmaleimide top
Crystal data top
C26H20F2N2O2Dx = 1.325 Mg m3
Mr = 430.44Melting point: 430(1)K K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.4125 (7) ÅCell parameters from 2961 reflections
b = 7.4776 (4) Åθ = 2.9–28.3°
c = 20.3189 (7) ŵ = 0.10 mm1
β = 99.787 (2)°T = 213 K
V = 2157.9 (2) Å3Needle, yellow
Z = 40.34 × 0.20 × 0.14 mm
F(000) = 896
Data collection top
Siemens SMART CCD area-detector
diffractometer
3743 independent reflections
Radiation source: fine-focus sealed tube1914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1617
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 88
Tmin = 0.968, Tmax = 0.987l = 2417
9770 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.0818P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
3743 reflectionsΔρmax = 0.37 e Å3
292 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
C26H20F2N2O2V = 2157.9 (2) Å3
Mr = 430.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4125 (7) ŵ = 0.10 mm1
b = 7.4776 (4) ÅT = 213 K
c = 20.3189 (7) Å0.34 × 0.20 × 0.14 mm
β = 99.787 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3743 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1914 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.107
9770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 0.89Δρmax = 0.37 e Å3
3743 reflectionsΔρmin = 0.41 e Å3
292 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44129 (17)0.8544 (3)0.57000 (12)0.0282 (7)
O20.72378 (17)0.5711 (3)0.58317 (12)0.0309 (7)
F10.98744 (17)1.0583 (4)0.59089 (13)0.0716 (9)
F20.89085 (19)0.1524 (4)0.24394 (13)0.0680 (9)
N10.58615 (19)0.7150 (4)0.59470 (13)0.0240 (8)
C10.6913 (3)0.8310 (5)0.6927 (2)0.0345 (10)
H1A0.73540.85980.66580.041*
C20.7087 (3)0.8688 (5)0.7604 (2)0.0442 (12)
H2A0.76450.92510.77900.053*
C30.6449 (3)0.8245 (6)0.7999 (2)0.0476 (13)
H3B0.65690.85240.84520.057*
C40.5631 (3)0.7389 (6)0.7732 (2)0.0451 (12)
H4B0.52100.70500.80090.054*
C50.5422 (3)0.7022 (5)0.70527 (18)0.0311 (10)
H5A0.48590.64700.68700.037*
C60.6068 (2)0.7494 (5)0.66545 (17)0.0257 (9)
C70.6505 (3)0.6384 (5)0.55653 (18)0.0219 (8)
C80.5068 (2)0.7751 (5)0.55264 (17)0.0230 (9)
C90.5211 (2)0.7270 (5)0.48267 (17)0.0207 (8)
C100.6087 (2)0.6532 (4)0.48595 (17)0.0195 (8)
C110.6550 (2)0.5737 (5)0.43462 (17)0.0221 (9)
H11A0.61680.50870.40150.027*
C120.7471 (2)0.5837 (5)0.42970 (17)0.0224 (9)
C130.8121 (2)0.7095 (5)0.47195 (18)0.0243 (9)
C140.7890 (3)0.8895 (5)0.4752 (2)0.0319 (10)
H14A0.73330.93170.45010.038*
C150.8478 (3)1.0069 (6)0.5154 (2)0.0434 (12)
H15A0.83251.12740.51730.052*
C160.9282 (3)0.9411 (7)0.5518 (2)0.0422 (12)
C170.9555 (3)0.7669 (7)0.5496 (2)0.0462 (12)
H17A1.01210.72800.57440.055*
C180.8965 (3)0.6492 (6)0.50932 (19)0.0326 (10)
H18A0.91340.52960.50730.039*
C190.7862 (2)0.4691 (5)0.38081 (17)0.0243 (9)
C200.7526 (3)0.2990 (6)0.36610 (19)0.0351 (11)
H20A0.70500.25580.38750.042*
C210.7871 (3)0.1887 (6)0.3204 (2)0.0421 (12)
H21A0.76510.07270.31190.051*
C220.8549 (3)0.2599 (7)0.2889 (2)0.0432 (12)
C230.8914 (3)0.4257 (6)0.3010 (2)0.0421 (11)
H23A0.93850.46750.27880.050*
C240.8567 (3)0.5321 (6)0.34767 (19)0.0346 (10)
H24A0.88090.64640.35680.042*
N20.45456 (18)0.7695 (4)0.43011 (14)0.0235 (7)
C260.4758 (3)0.7706 (5)0.36173 (18)0.0345 (10)
H26A0.44200.86620.33680.052*
H26B0.45720.65860.34040.052*
H26C0.54220.78770.36340.052*
C250.3584 (2)0.8236 (5)0.43560 (19)0.0298 (10)
H25A0.31740.80060.39410.045*
H25B0.35750.94890.44570.045*
H25C0.33750.75660.47060.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0272 (14)0.0314 (16)0.0273 (15)0.0047 (12)0.0084 (12)0.0030 (12)
O20.0258 (14)0.0382 (17)0.0282 (15)0.0066 (13)0.0027 (12)0.0065 (13)
F10.0546 (16)0.097 (2)0.0643 (19)0.0334 (17)0.0144 (15)0.0476 (17)
F20.080 (2)0.077 (2)0.0574 (18)0.0012 (16)0.0414 (16)0.0298 (15)
N10.0207 (16)0.034 (2)0.0155 (16)0.0017 (15)0.0015 (13)0.0002 (14)
C10.037 (2)0.026 (2)0.037 (3)0.002 (2)0.002 (2)0.0030 (19)
C20.048 (3)0.035 (3)0.041 (3)0.001 (2)0.018 (2)0.009 (2)
C30.056 (3)0.057 (3)0.026 (2)0.015 (3)0.005 (2)0.009 (2)
C40.050 (3)0.059 (3)0.026 (2)0.009 (3)0.008 (2)0.006 (2)
C50.034 (2)0.035 (3)0.024 (2)0.0034 (19)0.0039 (19)0.0026 (18)
C60.029 (2)0.029 (2)0.018 (2)0.0004 (18)0.0016 (17)0.0004 (17)
C70.021 (2)0.018 (2)0.027 (2)0.0017 (17)0.0044 (17)0.0035 (17)
C80.023 (2)0.025 (2)0.023 (2)0.0087 (18)0.0085 (17)0.0006 (17)
C90.0197 (18)0.022 (2)0.020 (2)0.0078 (17)0.0031 (16)0.0012 (16)
C100.0186 (19)0.0162 (19)0.024 (2)0.0003 (16)0.0053 (16)0.0014 (16)
C110.0217 (19)0.024 (2)0.020 (2)0.0000 (17)0.0009 (16)0.0018 (17)
C120.024 (2)0.021 (2)0.024 (2)0.0015 (17)0.0060 (17)0.0045 (16)
C130.0185 (19)0.035 (2)0.022 (2)0.0017 (18)0.0107 (16)0.0002 (17)
C140.026 (2)0.030 (3)0.041 (3)0.0022 (19)0.0109 (19)0.0017 (19)
C150.036 (2)0.041 (3)0.059 (3)0.007 (2)0.026 (2)0.019 (2)
C160.032 (2)0.059 (3)0.039 (3)0.019 (2)0.015 (2)0.024 (2)
C170.031 (2)0.074 (4)0.032 (3)0.006 (3)0.001 (2)0.008 (2)
C180.027 (2)0.035 (2)0.036 (2)0.002 (2)0.0075 (19)0.003 (2)
C190.0191 (19)0.033 (2)0.021 (2)0.0010 (18)0.0033 (16)0.0021 (17)
C200.031 (2)0.040 (3)0.036 (2)0.003 (2)0.013 (2)0.002 (2)
C210.044 (3)0.042 (3)0.044 (3)0.003 (2)0.017 (2)0.016 (2)
C220.045 (3)0.060 (3)0.027 (2)0.005 (3)0.013 (2)0.017 (2)
C230.040 (2)0.052 (3)0.039 (3)0.005 (2)0.022 (2)0.005 (2)
C240.029 (2)0.040 (3)0.038 (3)0.004 (2)0.012 (2)0.004 (2)
N20.0170 (15)0.0327 (19)0.0213 (17)0.0019 (14)0.0048 (14)0.0028 (14)
C260.035 (2)0.044 (3)0.023 (2)0.011 (2)0.0034 (18)0.0035 (19)
C250.021 (2)0.031 (2)0.035 (2)0.0006 (18)0.0011 (18)0.0019 (18)
Geometric parameters (Å, º) top
O1—C81.217 (4)C13—C181.395 (5)
O2—C71.211 (4)C14—C151.385 (5)
F1—C161.377 (4)C14—H14A0.9300
F2—C221.382 (4)C15—C161.357 (6)
N1—C81.381 (4)C15—H15A0.9300
N1—C71.427 (4)C16—C171.364 (6)
N1—C61.441 (4)C17—C181.389 (5)
C1—C21.385 (6)C17—H17A0.9300
C1—C61.390 (5)C18—H18A0.9300
C1—H1A0.9300C19—C201.375 (5)
C2—C31.361 (6)C19—C241.393 (5)
C2—H2A0.9300C20—C211.396 (5)
C3—C41.370 (6)C20—H20A0.9300
C3—H3B0.9300C21—C221.363 (6)
C4—C51.389 (5)C21—H21A0.9300
C4—H4B0.9300C22—C231.353 (6)
C5—C61.379 (5)C23—C241.394 (5)
C5—H5A0.9300C23—H23A0.9300
C7—C101.462 (5)C24—H24A0.9300
C8—C91.514 (5)N2—C251.465 (4)
C9—N21.346 (4)N2—C261.473 (4)
C9—C101.370 (5)C26—H26A0.9600
C10—C111.457 (5)C26—H26B0.9600
C11—C121.351 (4)C26—H26C0.9600
C11—H11A0.9300C25—H25A0.9600
C12—C131.492 (5)C25—H25B0.9600
C12—C191.493 (5)C25—H25C0.9600
C13—C141.391 (5)
C8—N1—C7109.9 (3)C16—C15—C14118.2 (4)
C8—N1—C6124.6 (3)C16—C15—H15A120.9
C7—N1—C6124.8 (3)C14—C15—H15A120.9
C2—C1—C6118.9 (4)C15—C16—C17123.5 (4)
C2—C1—H1A120.6C15—C16—F1118.2 (4)
C6—C1—H1A120.6C17—C16—F1118.2 (4)
C3—C2—C1120.7 (4)C16—C17—C18118.3 (4)
C3—C2—H2A119.6C16—C17—H17A120.9
C1—C2—H2A119.6C18—C17—H17A120.9
C2—C3—C4120.1 (4)C17—C18—C13120.4 (4)
C2—C3—H3B120.0C17—C18—H18A119.8
C4—C3—H3B120.0C13—C18—H18A119.8
C3—C4—C5120.8 (4)C20—C19—C24117.8 (4)
C3—C4—H4B119.6C20—C19—C12121.1 (3)
C5—C4—H4B119.6C24—C19—C12121.1 (3)
C6—C5—C4118.6 (4)C19—C20—C21122.6 (4)
C6—C5—H5A120.7C19—C20—H20A118.7
C4—C5—H5A120.7C21—C20—H20A118.7
C5—C6—C1120.8 (3)C22—C21—C20116.5 (4)
C5—C6—N1119.6 (3)C22—C21—H21A121.7
C1—C6—N1119.6 (3)C20—C21—H21A121.7
O2—C7—N1121.5 (3)C23—C22—C21124.0 (4)
O2—C7—C10130.7 (3)C23—C22—F2118.4 (4)
N1—C7—C10107.8 (3)C21—C22—F2117.5 (4)
O1—C8—N1125.5 (3)C22—C23—C24118.3 (4)
O1—C8—C9128.6 (3)C22—C23—H23A120.9
N1—C8—C9105.9 (3)C24—C23—H23A120.9
N2—C9—C10131.3 (3)C19—C24—C23120.8 (4)
N2—C9—C8119.8 (3)C19—C24—H24A119.6
C10—C9—C8108.8 (3)C23—C24—H24A119.6
C9—C10—C11131.3 (3)C9—N2—C25124.0 (3)
C9—C10—C7107.5 (3)C9—N2—C26121.0 (3)
C11—C10—C7120.6 (3)C25—N2—C26114.9 (3)
C12—C11—C10127.3 (3)N2—C26—H26A109.5
C12—C11—H11A116.4N2—C26—H26B109.5
C10—C11—H11A116.4H26A—C26—H26B109.5
C11—C12—C13121.4 (3)N2—C26—H26C109.5
C11—C12—C19120.3 (3)H26A—C26—H26C109.5
C13—C12—C19118.3 (3)H26B—C26—H26C109.5
C14—C13—C18118.7 (4)N2—C25—H25A109.5
C14—C13—C12120.4 (3)N2—C25—H25B109.5
C18—C13—C12120.9 (3)H25A—C25—H25B109.5
C15—C14—C13120.9 (4)N2—C25—H25C109.5
C15—C14—H14A119.5H25A—C25—H25C109.5
C13—C14—H14A119.5H25B—C25—H25C109.5
C6—C1—C2—C31.0 (6)C10—C11—C12—C1311.1 (6)
C1—C2—C3—C41.1 (7)C10—C11—C12—C19169.5 (3)
C2—C3—C4—C52.5 (7)C11—C12—C13—C1451.4 (5)
C3—C4—C5—C61.7 (6)C19—C12—C13—C14128.0 (4)
C4—C5—C6—C10.4 (6)C11—C12—C13—C18128.1 (4)
C4—C5—C6—N1179.1 (3)C19—C12—C13—C1852.5 (5)
C2—C1—C6—C51.7 (6)C18—C13—C14—C150.9 (5)
C2—C1—C6—N1177.8 (4)C12—C13—C14—C15178.6 (3)
C8—N1—C6—C555.5 (5)C13—C14—C15—C160.5 (6)
C7—N1—C6—C5134.5 (4)C14—C15—C16—C171.9 (6)
C8—N1—C6—C1124.0 (4)C14—C15—C16—F1178.9 (3)
C7—N1—C6—C146.0 (5)C15—C16—C17—C181.9 (6)
C8—N1—C7—O2177.3 (3)F1—C16—C17—C18178.9 (3)
C6—N1—C7—O211.4 (5)C16—C17—C18—C130.5 (6)
C8—N1—C7—C100.5 (4)C14—C13—C18—C170.8 (5)
C6—N1—C7—C10170.7 (3)C12—C13—C18—C17178.6 (3)
C7—N1—C8—O1176.3 (3)C11—C12—C19—C2034.4 (5)
C6—N1—C8—O15.0 (6)C13—C12—C19—C20146.2 (3)
C7—N1—C8—C91.9 (4)C11—C12—C19—C24144.4 (4)
C6—N1—C8—C9173.2 (3)C13—C12—C19—C2435.0 (5)
O1—C8—C9—N21.7 (5)C24—C19—C20—C210.7 (6)
N1—C8—C9—N2179.9 (3)C12—C19—C20—C21179.6 (4)
O1—C8—C9—C10174.3 (4)C19—C20—C21—C221.9 (6)
N1—C8—C9—C103.9 (4)C20—C21—C22—C232.2 (7)
N2—C9—C10—C119.5 (7)C20—C21—C22—F2179.3 (4)
C8—C9—C10—C11175.2 (3)C21—C22—C23—C241.3 (7)
N2—C9—C10—C7179.5 (3)F2—C22—C23—C24178.3 (4)
C8—C9—C10—C74.2 (4)C20—C19—C24—C230.3 (5)
O2—C7—C10—C9174.6 (4)C12—C19—C24—C23178.6 (4)
N1—C7—C10—C93.0 (4)C22—C23—C24—C190.1 (6)
O2—C7—C10—C112.4 (6)C10—C9—N2—C25170.5 (4)
N1—C7—C10—C11175.2 (3)C8—C9—N2—C2514.6 (5)
C9—C10—C11—C12144.1 (4)C10—C9—N2—C2611.8 (6)
C7—C10—C11—C1245.8 (5)C8—C9—N2—C26163.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.932.483.266 (5)142
C20—H20A···O1ii0.932.553.470 (5)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H20F2N2O2
Mr430.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)213
a, b, c (Å)14.4125 (7), 7.4776 (4), 20.3189 (7)
β (°) 99.787 (2)
V3)2157.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.20 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9770, 3743, 1914
Rint0.107
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.181, 0.89
No. of reflections3743
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···F1i0.932.483.266 (5)142
C20—H20A···O1ii0.932.553.470 (5)172
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds