Download citation
Download citation
link to html
The crystal structure of the title compound, [Mn(C5H7O2)(C12H8N2)2](ClO4), contains a monomeric [Mn(phen)2(acac)]+ cation and a perchlorate anion [phen is 1,10'-phen­an­throline (C12H8N2) and acac is acetyl­acetonate (C5H7O2)]. The MnII ion is coordinated by four N atoms from the phen ligands [Mn-N 2.253 (4)-2.322 (4) Å] and two O atoms of the acac ligand [Mn-O 2.116 (3) and 2.124 (3) Å] in chelating mode, forming a distorted octahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014484/cv6133sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014484/cv6133Isup2.hkl
Contains datablock I

CCDC reference: 197445

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.064
  • wR factor = 0.191
  • Data-to-parameter ratio = 13.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.593 0.854 Tmin' and Tmax expected: 0.779 0.854 RR' = 0.761 Please check that your absorption correction is appropriate. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C29 H23 Cl1 Mn1 N4 O6 Atom count from _chemical_formula_moiety:C29 H23 Cl1 Mn1 N4 O8
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Considerable attention has been focused on the bioinorganic chemistry of Mn and, in particular, on multinuclear Mn metalloenzymes, such as the tetra-Mn in the oxygen-evolving centre (OEC) of photosystem II (PSII) in green plants (Wieghardt, 1989). It is thought that the coordination environment of the Mn in OEC consists essentially of the ligands with O and N donor atoms, and the binding of water to the Mn site may be important for the oxidation of water for the evolution of dioxygen. In recent years, Mn-phen (phen is 1,10'-phenanthroline) complexes have been extensively studied as model compounds for simulating OEC in PSII (Manchanda et al., 1994). In a reaction system containing phen, Mn(acac)3 (acac is acetylacetonate) and dicarboxylic acid, we isolated the title complex, [Mn(phen)2(acac)]ClO4, (I), which contains three different chelating ligands in the cation. Here, we describe its synthesis and crystal structure.

The crystal structure of the (I) is composed of a monomeric [Mn(phen)2(acac)]+ cation and one perchlorate anion, as illustrated in Fig. 1. It is noted that all three ligands coordinate to the MnII ion in chelating mode, leading to a serious distortion from the octahedron, with chelating angles of 73.85 (14) and 72.66 (14)° for N—Mn—N and 85.13 (13)° for O—Mn—O.

In addition to [Mn(phen)3]2+ complexes having three uniform phen chelating ligands (Drew et al., 1989), only two examples of an Mn-phen complex containing three different chelating ligands were found in the literature, namely [Mn(phen)(acac)2}] (Stephens, 1977) and [Mn(phen)2{CH2(COO)2}] (Wang et al., 2000)

All the atoms in the phen ligands of (I), including the MnII ion, form a perfect plane, with the largest deviation from the least-squares plane being 0.0148 Å, and the phen planes are inclined at 83.4° with respect to each other. The acac ligand is also planar and the MnII atom lies 0.2 Å from the acac plane.

The Mn—N bond lengths in (I) are in the range 2.253 (4)–2.322 (4) Å, and Mn—O bond lengths are in the range 2.116 (3)–2.124 (3) Å. The phenanthroline exhibits its usual acute N···N bite distances [N1—N2 2.723 (3) and N3—N4 2.720 (3) Å], and the N—Mn—N angles are very close to those found in [Mn(phen)2Cl2] (McCann et al., 1998), [Mn(phen)2(NCS)2] (Holleman et al., 1994) and [Mn(phen)2(N3)2] (Shen et al., 1999).

The packing diagram for (I) seems to show weak π···π stacking of pairs of phen planes between neighbouring [Mn(phen)2(acac)]+ cations, with the characteristic interplanar distance of 3.6 Å, slightly larger than the sum of the van der Waals radii of the two C atoms.

Experimental top

A mixture of 2,5'-pyridinedicarboxylic acid (0.32 g, 2.5 mmol) and KOH (0.28 g, 5 mmol) was dissolved in MeOH/H2O (20 ml; 1:1 v/v). To the resulting turbid solution, Mn(acac)3 (0.70 g, 2.0 mmol) was added and the solution stirred for 30 min at room temperature. After addition of phen (0.4 g, 2 mmol) and NaClO4·4H2O (0.28 g, 2.0 mmol) and stirring for 2 h, the reaction solution was filtered. The filtrate was allowed to stand at room temperature for two weeks to deposit orange crystals of (I).

Refinement top

The structure was solved by direct methods and subsequent difference Fourier syntheses. H atoms bonded to C atoms were inserted at calculated positions with isotropic displacement parameters riding on those of their carrier atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
(Acetylacetonato)bis(1,10'-phenanthroline-N,N')manganese(II) perchlorate top
Crystal data top
[Mn(C5H7O2)(C12H8N2)2](ClO4)F(000) = 2520
Mr = 613.90Dx = 1.435 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.3452 (4) ÅCell parameters from 4315 reflections
b = 10.5753 (1) Åθ = 2.3–25.0°
c = 17.1597 (3) ŵ = 0.61 mm1
β = 110.05°T = 293 K
V = 5684.35 (13) Å3Block, orange
Z = 80.40 × 0.38 × 0.26 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4933 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 3933
Tmin = 0.593, Tmax = 0.854k = 812
10092 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4933 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mn(C5H7O2)(C12H8N2)2](ClO4)V = 5684.35 (13) Å3
Mr = 613.90Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.3452 (4) ŵ = 0.61 mm1
b = 10.5753 (1) ÅT = 293 K
c = 17.1597 (3) Å0.40 × 0.38 × 0.26 mm
β = 110.05°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4933 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3118 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.854Rint = 0.035
10092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.03Δρmax = 0.86 e Å3
4933 reflectionsΔρmin = 0.53 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.12791 (2)0.44179 (6)0.17500 (4)0.0490 (3)
Cl0.11302 (5)1.06724 (15)0.46179 (11)0.0849 (5)
O10.16161 (10)0.3908 (3)0.30019 (19)0.0603 (8)
O20.09971 (11)0.5836 (3)0.2264 (2)0.0651 (9)
O30.0832 (3)0.9660 (6)0.4550 (7)0.219 (4)
O40.1405 (3)1.0208 (8)0.4286 (6)0.220 (4)
O50.0890 (2)1.1706 (6)0.4184 (4)0.162 (3)
O60.1248 (3)1.0866 (8)0.5452 (4)0.215 (4)
N10.08214 (12)0.2793 (4)0.1600 (2)0.0570 (10)
N20.07962 (12)0.4578 (3)0.0440 (2)0.0509 (9)
N30.17660 (12)0.3290 (4)0.1328 (2)0.0534 (10)
N40.17730 (12)0.5814 (4)0.1637 (2)0.0545 (10)
C10.08273 (17)0.1955 (5)0.2182 (3)0.0698 (14)
H1A0.10480.19960.26910.084*
C20.0518 (2)0.1020 (5)0.2064 (4)0.0811 (17)
H2A0.05320.04570.24890.097*
C30.01916 (19)0.0938 (5)0.1315 (4)0.0752 (16)
H3B0.00180.03220.12290.090*
C40.01780 (16)0.1794 (4)0.0680 (3)0.0591 (13)
C50.01545 (16)0.1799 (5)0.0120 (4)0.0693 (15)
H5B0.03650.11790.02440.083*
C60.01669 (16)0.2674 (5)0.0687 (4)0.0661 (14)
H6B0.03870.26540.11980.079*
C70.01513 (14)0.3645 (5)0.0526 (3)0.0570 (12)
C80.01400 (17)0.4615 (5)0.1106 (3)0.0677 (14)
H8A0.00760.46330.16220.081*
C90.04525 (17)0.5524 (5)0.0892 (3)0.0676 (14)
H9A0.04490.61710.12610.081*
C100.07748 (16)0.5471 (5)0.0118 (3)0.0585 (12)
H10A0.09850.60910.00150.070*
C110.04838 (13)0.3669 (4)0.0236 (3)0.0479 (11)
C120.05009 (14)0.2723 (4)0.0860 (3)0.0490 (11)
C130.17499 (17)0.2070 (5)0.1119 (3)0.0662 (14)
H13A0.15080.16070.10870.079*
C140.2079 (2)0.1463 (6)0.0948 (4)0.0836 (18)
H14A0.20550.06120.08010.100*
C150.2432 (2)0.2109 (7)0.0995 (4)0.0861 (19)
H15A0.26550.17010.08890.103*
C160.24684 (16)0.3392 (6)0.1203 (3)0.0715 (16)
C170.28368 (19)0.4177 (8)0.1272 (4)0.090 (2)
H17A0.30710.38220.11750.108*
C180.28450 (19)0.5403 (8)0.1471 (4)0.092 (2)
H18A0.30880.58740.15230.110*
C190.24895 (16)0.6017 (6)0.1608 (3)0.0705 (16)
C200.2473 (2)0.7326 (7)0.1751 (3)0.0838 (19)
H20A0.27080.78350.17990.101*
C210.2116 (2)0.7836 (6)0.1819 (3)0.0841 (18)
H21A0.21000.87000.19030.101*
C220.17703 (19)0.7050 (5)0.1761 (3)0.0702 (15)
H22A0.15260.74120.18110.084*
C230.21265 (15)0.5288 (5)0.1551 (3)0.0546 (12)
C240.21200 (14)0.3954 (5)0.1365 (3)0.0539 (12)
C250.1925 (2)0.3930 (7)0.4460 (3)0.100 (2)
H25A0.20590.31840.43450.150*
H25B0.17590.37130.48000.150*
H25C0.21400.45340.47460.150*
C260.16360 (16)0.4499 (5)0.3652 (3)0.0612 (13)
C270.14085 (18)0.5600 (5)0.3677 (3)0.0713 (15)
H27A0.14640.59700.41950.086*
C280.11076 (16)0.6200 (5)0.3008 (3)0.0616 (13)
C290.0887 (2)0.7364 (6)0.3174 (4)0.096 (2)
H29A0.06910.76820.26600.144*
H29B0.10960.80000.34300.144*
H29C0.07330.71490.35370.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0448 (4)0.0557 (5)0.0455 (4)0.0041 (3)0.0143 (3)0.0034 (3)
Cl0.0909 (11)0.0797 (11)0.0905 (11)0.0230 (9)0.0392 (9)0.0065 (8)
O10.060 (2)0.073 (2)0.0432 (18)0.0099 (17)0.0130 (15)0.0033 (16)
O20.065 (2)0.068 (2)0.059 (2)0.0099 (17)0.0176 (17)0.0074 (17)
O30.174 (7)0.107 (5)0.417 (14)0.015 (4)0.153 (8)0.044 (6)
O40.208 (8)0.229 (8)0.306 (11)0.107 (6)0.193 (8)0.054 (7)
O50.207 (7)0.144 (5)0.167 (6)0.086 (5)0.108 (5)0.053 (4)
O60.192 (7)0.276 (9)0.121 (6)0.093 (7)0.017 (5)0.066 (6)
N10.058 (2)0.056 (2)0.058 (3)0.0020 (19)0.021 (2)0.003 (2)
N20.050 (2)0.053 (2)0.050 (2)0.0006 (18)0.0186 (18)0.0008 (19)
N30.051 (2)0.062 (3)0.050 (2)0.0038 (19)0.0205 (18)0.0032 (19)
N40.056 (2)0.057 (3)0.048 (2)0.0101 (19)0.0143 (19)0.0038 (18)
C10.068 (3)0.070 (4)0.067 (3)0.004 (3)0.017 (3)0.013 (3)
C20.094 (4)0.067 (4)0.086 (4)0.010 (3)0.036 (4)0.016 (3)
C30.075 (4)0.060 (3)0.095 (5)0.018 (3)0.036 (4)0.004 (3)
C40.060 (3)0.051 (3)0.072 (3)0.001 (2)0.030 (3)0.007 (3)
C50.056 (3)0.069 (4)0.082 (4)0.015 (3)0.023 (3)0.022 (3)
C60.050 (3)0.075 (4)0.067 (4)0.007 (3)0.013 (3)0.015 (3)
C70.047 (3)0.065 (3)0.055 (3)0.004 (2)0.012 (2)0.009 (2)
C80.063 (3)0.079 (4)0.056 (3)0.010 (3)0.014 (3)0.002 (3)
C90.077 (4)0.071 (3)0.056 (3)0.009 (3)0.024 (3)0.011 (3)
C100.057 (3)0.059 (3)0.058 (3)0.002 (2)0.018 (2)0.004 (3)
C110.040 (2)0.052 (3)0.052 (3)0.000 (2)0.017 (2)0.011 (2)
C120.046 (3)0.049 (3)0.054 (3)0.001 (2)0.020 (2)0.009 (2)
C130.072 (3)0.063 (3)0.070 (3)0.002 (3)0.032 (3)0.008 (3)
C140.094 (5)0.076 (4)0.088 (4)0.014 (4)0.040 (4)0.011 (3)
C150.084 (4)0.108 (5)0.076 (4)0.033 (4)0.039 (4)0.007 (4)
C160.061 (3)0.105 (5)0.053 (3)0.015 (3)0.026 (3)0.015 (3)
C170.053 (3)0.150 (7)0.077 (4)0.002 (4)0.035 (3)0.015 (4)
C180.058 (4)0.148 (7)0.068 (4)0.030 (4)0.018 (3)0.011 (4)
C190.057 (3)0.106 (5)0.042 (3)0.031 (3)0.010 (2)0.005 (3)
C200.096 (5)0.096 (5)0.053 (3)0.051 (4)0.017 (3)0.004 (3)
C210.110 (5)0.078 (4)0.058 (4)0.035 (4)0.020 (4)0.004 (3)
C220.090 (4)0.060 (3)0.061 (3)0.017 (3)0.026 (3)0.003 (3)
C230.053 (3)0.074 (3)0.035 (2)0.017 (2)0.012 (2)0.002 (2)
C240.047 (3)0.075 (3)0.041 (2)0.002 (2)0.017 (2)0.004 (2)
C250.108 (5)0.132 (6)0.048 (3)0.021 (4)0.010 (3)0.005 (3)
C260.055 (3)0.079 (4)0.046 (3)0.002 (3)0.014 (2)0.003 (3)
C270.074 (4)0.088 (4)0.056 (3)0.008 (3)0.027 (3)0.022 (3)
C280.060 (3)0.063 (3)0.067 (4)0.004 (3)0.030 (3)0.010 (3)
C290.116 (5)0.079 (4)0.101 (5)0.007 (4)0.046 (4)0.023 (4)
Geometric parameters (Å, º) top
Mn—O22.116 (3)C9—C101.394 (7)
Mn—O12.124 (3)C9—H9A0.9300
Mn—N12.253 (4)C10—H10A0.9300
Mn—N42.269 (4)C11—C121.453 (6)
Mn—N22.279 (4)C13—C141.388 (7)
Mn—N32.322 (4)C13—H13A0.9300
Cl—O41.328 (6)C14—C151.337 (8)
Cl—O61.363 (7)C14—H14A0.9300
Cl—O51.407 (5)C15—C161.398 (8)
Cl—O31.438 (7)C15—H15A0.9300
O1—C261.261 (6)C16—C241.415 (7)
O2—C281.262 (6)C16—C171.453 (8)
N1—C11.331 (6)C17—C181.339 (9)
N1—C121.352 (6)C17—H17A0.9300
N2—C101.329 (6)C18—C191.440 (9)
N2—C111.371 (5)C18—H18A0.9300
N3—C241.356 (6)C19—C201.409 (8)
N3—C131.335 (6)C19—C231.410 (7)
N4—C221.325 (6)C20—C211.350 (8)
N4—C231.356 (6)C20—H20A0.9300
C1—C21.393 (7)C21—C221.396 (8)
C1—H1A0.9300C21—H21A0.9300
C2—C31.372 (8)C22—H22A0.9300
C2—H2A0.9300C23—C241.445 (7)
C3—C41.405 (7)C25—C261.515 (7)
C3—H3B0.9300C25—H25A0.9600
C4—C121.411 (6)C25—H25B0.9600
C4—C51.439 (7)C25—H25C0.9600
C5—C61.333 (7)C26—C271.398 (7)
C5—H5B0.9300C27—C281.392 (7)
C6—C71.434 (7)C27—H27A0.9300
C6—H6B0.9300C28—C291.511 (7)
C7—C111.395 (6)C29—H29A0.9600
C7—C81.421 (7)C29—H29B0.9600
C8—C91.372 (7)C29—H29C0.9600
C8—H8A0.9300
O2—Mn—O185.13 (13)C4—C12—C11119.0 (4)
O2—Mn—N1101.99 (14)N3—C13—C14122.8 (5)
O1—Mn—N191.43 (14)N3—C13—H13A118.6
O2—Mn—N490.79 (14)C14—C13—H13A118.6
O1—Mn—N495.94 (13)C15—C14—C13119.6 (6)
N1—Mn—N4165.76 (14)C15—C14—H14A120.2
O2—Mn—N295.38 (13)C13—C14—H14A120.2
O1—Mn—N2165.08 (13)C14—C15—C16120.7 (6)
N1—Mn—N273.85 (14)C14—C15—H15A119.7
N4—Mn—N298.96 (13)C16—C15—H15A119.7
O2—Mn—N3162.22 (14)C15—C16—C24116.9 (5)
O1—Mn—N390.06 (13)C15—C16—C17124.9 (6)
N1—Mn—N395.22 (14)C24—C16—C17118.2 (6)
N4—Mn—N372.66 (14)C18—C17—C16121.1 (6)
N2—Mn—N393.65 (13)C18—C17—H17A119.5
C26—O1—Mn128.2 (3)C16—C17—H17A119.5
C28—O2—Mn128.4 (3)C17—C18—C19122.2 (6)
C1—N1—C12118.1 (4)C17—C18—H18A118.9
C1—N1—Mn125.9 (4)C19—C18—H18A118.9
C12—N1—Mn115.8 (3)C20—C19—C23117.8 (6)
C10—N2—C11117.7 (4)C20—C19—C18123.6 (6)
C10—N2—Mn127.5 (3)C23—C19—C18118.5 (6)
C11—N2—Mn114.7 (3)C21—C20—C19119.7 (6)
C24—N3—C13117.9 (4)C21—C20—H20A120.2
C24—N3—Mn114.2 (3)C19—C20—H20A120.2
C13—N3—Mn127.7 (3)C20—C21—C22119.2 (6)
C22—N4—C23118.4 (4)C20—C21—H21A120.4
C22—N4—Mn125.7 (4)C22—C21—H21A120.4
C23—N4—Mn115.2 (3)N4—C22—C21123.2 (6)
N1—C1—C2122.9 (5)N4—C22—H22A118.4
N1—C1—H1A118.5C21—C22—H22A118.4
C2—C1—H1A118.5N4—C23—C19121.7 (5)
C3—C2—C1119.4 (5)N4—C23—C24118.4 (4)
C3—C2—H2A120.3C19—C23—C24119.8 (5)
C1—C2—H2A120.3N3—C24—C16122.2 (5)
C2—C3—C4119.3 (5)N3—C24—C23117.6 (4)
C2—C3—H3B120.3C16—C24—C23120.1 (5)
C4—C3—H3B120.3C26—C25—H25A109.5
C12—C4—C3117.3 (5)C26—C25—H25B109.5
C12—C4—C5119.1 (5)H25A—C25—H25B109.5
C3—C4—C5123.5 (5)C26—C25—H25C109.5
C6—C5—C4121.3 (5)H25A—C25—H25C109.5
C6—C5—H5B119.3H25B—C25—H25C109.5
C4—C5—H5B119.3O1—C26—C27125.1 (5)
C5—C6—C7121.4 (5)O1—C26—C25115.9 (5)
C5—C6—H6B119.3C27—C26—C25119.0 (5)
C7—C6—H6B119.3C28—C27—C26126.8 (5)
C11—C7—C8117.7 (4)C28—C27—H27A116.6
C11—C7—C6119.5 (5)C26—C27—H27A116.6
C8—C7—C6122.8 (5)O2—C28—C27125.0 (5)
C9—C8—C7118.9 (5)O2—C28—C29116.6 (5)
C9—C8—H8A120.5C27—C28—C29118.4 (5)
C7—C8—H8A120.5C28—C29—H29A109.5
C8—C9—C10119.6 (5)C28—C29—H29B109.5
C8—C9—H9A120.2H29A—C29—H29B109.5
C10—C9—H9A120.2C28—C29—H29C109.5
N2—C10—C9123.2 (5)H29A—C29—H29C109.5
N2—C10—H10A118.4H29B—C29—H29C109.5
C9—C10—H10A118.4O4—Cl—O6120.8 (6)
N2—C11—C7122.9 (4)O4—Cl—O5114.3 (4)
N2—C11—C12117.4 (4)O6—Cl—O5110.2 (4)
C7—C11—C12119.7 (4)O4—Cl—O3104.5 (5)
N1—C12—C4122.8 (4)O6—Cl—O398.0 (6)
N1—C12—C11118.2 (4)O5—Cl—O3106.4 (5)

Experimental details

Crystal data
Chemical formula[Mn(C5H7O2)(C12H8N2)2](ClO4)
Mr613.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)33.3452 (4), 10.5753 (1), 17.1597 (3)
β (°) 110.05
V3)5684.35 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.38 × 0.26
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.593, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
10092, 4933, 3118
Rint0.035
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.191, 1.03
No. of reflections4933
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.53

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Mn—O22.116 (3)Mn—N42.269 (4)
Mn—O12.124 (3)Mn—N22.279 (4)
Mn—N12.253 (4)Mn—N32.322 (4)
O2—Mn—O185.13 (13)N1—Mn—N273.85 (14)
O2—Mn—N1101.99 (14)N4—Mn—N298.96 (13)
O1—Mn—N191.43 (14)O2—Mn—N3162.22 (14)
O2—Mn—N490.79 (14)O1—Mn—N390.06 (13)
O1—Mn—N495.94 (13)N1—Mn—N395.22 (14)
N1—Mn—N4165.76 (14)N4—Mn—N372.66 (14)
O2—Mn—N295.38 (13)N2—Mn—N393.65 (13)
O1—Mn—N2165.08 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds