Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C15H19BrO4, was synthesized during studies on the oxidation of 1,5-dienes. The molecular structure exhibits R and S chiral centres at the 2- and 5- positions on the central tetra­hydro­furan moiety, and an S centre at the hydroxy­ethano­ne pivot atom. Intermolecular hydrogen bonding gives rise to a one-dimensional-chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801017020/cv6067sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801017020/cv6067Isup2.hkl
Contains datablock I

CCDC reference: 176018

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.069
  • wR factor = 0.193
  • Data-to-parameter ratio = 10.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O(1) - H(1) ?
Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.37 From the CIF: _reflns_number_total 1851 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2030 Completeness (_total/calc) 91.18% Alert C: < 95% complete General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.37 From the CIF: _reflns_number_total 1851 Count of symmetry unique reflns 2030 Completeness (_total/calc) 91.18% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

During the development of chiral phase-transfer catalysed permanganate oxidations of 1,5-dienes the title compound, (I), was prepared (Brown & Keily, 2001). The molecular structure is given in Fig. 1. The structure is composed of a tetrahydrofuran (THF) ring substituted in the 2 and 5 positions by bromophenylhydroxyethanone and hydroxymethylethyl groups, respectively. The geometric parameters conform to standard values derived from a systematic study of similarly hybridized atoms in the Cambridge Structural Database (Allen & Kennard, 1993; Orpen et al., 1992).

The 2 position in the THF ring (C7) exhibits R chirality and the 5 position (C4) is S, whilst C8 is a centre of chirality (= S). The THF ring exhibits an envelope conformation about C5. Hydrogen bonding exists between the two hydroxyl groups in the structure where the donor–acceptor distance of O3—H3···O1i is 2.722 (6) Å [symmetry code: (i) -x + 1, y + 1/2, -z + 5/2]. Moreover, the hydroxyl group containing O3 is involved in a second, weaker intermolecular hydrogen bond, with a donor–acceptor distance C8—H8···O3i of 3.475 Å. These interactions form a one-dimensional-chain network in the crystal structure.

Experimental top

(E)-1-(4-Bromophenyl)-7-methylocta-2,6-dien-1-one was oxidized by potassium permanganate under solid–liquid phase-transfer conditions using a chiral quaternary ammonium salt. Following a standard work-up and column chromatography, the product was recrystallized from ethanol/hexane to give colourless crystals of the title compound.

Refinement top

Hydrogen atoms were observed in a difference map, but were included in idealized positions with coordinates and thermal parameters riding on those of the parent atom. Refinement of a Flack parameter (Flack, 1983) indicated that the correct absolute structure had been identified.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. View of (I) with 50% probability displacement ellipsoids.
(I) top
Crystal data top
C15H19BrO4Dx = 1.48 Mg m3
Mr = 343.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1626 reflections
a = 7.7184 (15) Åθ = 2.9–27.5°
b = 7.8674 (16) ŵ = 2.68 mm1
c = 25.374 (5) ÅT = 120 K
V = 1540.8 (5) Å3Plate, colourless
Z = 40.3 × 0.2 × 0.05 mm
F(000) = 704
Data collection top
Nonius KappaCCD
diffractometer
1051 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.057
Absorption correction: multi-scan
(Blessing, 1997)
θmax = 27.4°, θmin = 3.1°
Tmin = 0.501, Tmax = 0.878h = 89
2895 measured reflectionsk = 910
1851 independent reflectionsl = 3232
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0957P)2 + 0.1591P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.015
R[F2 > 2σ(F2)] = 0.069Δρmax = 0.50 e Å3
wR(F2) = 0.193Δρmin = 0.40 e Å3
S = 1.04Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1851 reflectionsExtinction coefficient: 0.013 (3)
186 parametersAbsolute structure: Flack (1983)
0 restraintsAbsolute structure parameter: 0.00 (3)
H-atom parameters constrained
Crystal data top
C15H19BrO4V = 1540.8 (5) Å3
Mr = 343.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7184 (15) ŵ = 2.68 mm1
b = 7.8674 (16) ÅT = 120 K
c = 25.374 (5) Å0.3 × 0.2 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1851 independent reflections
Absorption correction: multi-scan
(Blessing, 1997)
1051 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.878Rint = 0.057
2895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.193Δρmax = 0.50 e Å3
S = 1.04Δρmin = 0.40 e Å3
1851 reflectionsAbsolute structure: Flack (1983)
186 parametersAbsolute structure parameter: 0.00 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7695 (14)0.4045 (14)1.1468 (4)0.061 (3)
C20.7418 (18)0.4426 (16)1.0884 (4)0.087 (4)
H2A0.70670.56151.08410.13*
H2B0.84990.42261.06910.13*
H2C0.65090.36811.07440.13*
C30.9086 (14)0.5162 (15)1.1697 (5)0.083 (3)
H3A0.90140.51361.20830.124*
H3B1.02250.47461.15850.124*
H3C0.89250.63311.15730.124*
C40.8149 (13)0.2198 (11)1.1547 (4)0.055 (3)
H40.91580.18951.13180.066*
C50.8502 (16)0.1647 (11)1.2099 (4)0.060 (3)
H5A0.97520.17281.21830.072*
H5B0.78390.2341.23550.072*
C60.7889 (14)0.0200 (15)1.2100 (4)0.074 (3)
H6A0.74950.05421.24560.089*
H6B0.88290.09721.19870.089*
C70.6404 (12)0.0230 (11)1.1713 (4)0.053 (2)
H70.6470.12861.14950.064*
C80.4614 (14)0.0091 (16)1.1961 (3)0.063 (3)
H80.43120.12111.21230.076*
C90.3271 (13)0.0327 (14)1.1548 (4)0.060 (3)
C100.2766 (13)0.0988 (14)1.1159 (4)0.056 (3)
C110.1841 (14)0.0536 (16)1.0713 (5)0.074 (3)
H110.15250.06221.06680.089*
C120.1367 (16)0.1671 (19)1.0337 (4)0.084 (4)
H120.06790.13271.00450.101*
C130.1900 (14)0.3321 (18)1.0387 (4)0.073 (3)
C140.2785 (14)0.3849 (14)1.0825 (4)0.066 (3)
H140.31140.50071.08610.079*
C150.3194 (15)0.2699 (13)1.1213 (4)0.063 (3)
H150.37760.30751.15210.076*
O10.6096 (8)0.4402 (8)1.1742 (2)0.0582 (18)
H10.5470.50321.15540.087*
O20.6638 (9)0.1220 (7)1.1384 (2)0.0539 (17)
O30.4575 (11)0.1164 (9)1.2358 (3)0.070 (2)
H30.42410.07271.26420.105*
O40.2737 (11)0.1769 (11)1.1503 (3)0.092 (3)
Br10.14740 (19)0.4869 (2)0.98345 (5)0.1088 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (7)0.066 (7)0.055 (6)0.004 (6)0.016 (5)0.009 (5)
C20.110 (10)0.086 (8)0.065 (7)0.005 (8)0.008 (7)0.009 (6)
C30.074 (8)0.057 (7)0.117 (9)0.009 (8)0.008 (7)0.006 (7)
C40.039 (6)0.052 (6)0.074 (6)0.002 (6)0.005 (5)0.014 (5)
C50.052 (7)0.048 (6)0.079 (7)0.000 (7)0.018 (6)0.011 (5)
C60.076 (7)0.059 (7)0.088 (7)0.018 (8)0.035 (6)0.003 (7)
C70.054 (6)0.037 (5)0.068 (5)0.003 (7)0.001 (5)0.003 (5)
C80.075 (7)0.063 (7)0.051 (5)0.001 (8)0.000 (5)0.002 (6)
C90.048 (6)0.058 (7)0.075 (7)0.001 (8)0.019 (5)0.001 (5)
C100.047 (6)0.069 (7)0.052 (6)0.021 (6)0.002 (5)0.012 (5)
C110.055 (7)0.092 (8)0.075 (7)0.015 (8)0.006 (5)0.014 (7)
C120.058 (8)0.134 (12)0.059 (7)0.028 (9)0.002 (6)0.005 (8)
C130.044 (6)0.115 (10)0.060 (7)0.019 (8)0.005 (5)0.016 (7)
C140.056 (7)0.067 (6)0.075 (7)0.013 (7)0.002 (6)0.004 (6)
C150.059 (8)0.070 (7)0.060 (6)0.001 (7)0.005 (5)0.002 (5)
O10.063 (4)0.047 (4)0.064 (4)0.027 (4)0.007 (3)0.010 (3)
O20.043 (4)0.058 (4)0.060 (4)0.008 (4)0.003 (3)0.001 (3)
O30.096 (6)0.053 (4)0.060 (4)0.020 (5)0.018 (4)0.003 (4)
O40.078 (6)0.070 (5)0.127 (7)0.031 (5)0.017 (5)0.005 (5)
Br10.0795 (9)0.1593 (15)0.0877 (10)0.0123 (13)0.0108 (7)0.0427 (9)
Geometric parameters (Å, º) top
C1—O11.444 (12)C7—C81.522 (13)
C1—C31.504 (15)C7—H71
C1—C41.508 (13)C8—O31.411 (12)
C1—C21.528 (15)C8—C91.509 (15)
C2—H2A0.98C8—H81
C2—H2B0.98C9—O41.213 (12)
C2—H2C0.98C9—C101.483 (14)
C3—H3A0.98C10—C111.385 (14)
C3—H3B0.98C10—C151.392 (13)
C3—H3C0.98C11—C121.358 (15)
C4—O21.457 (11)C11—H110.95
C4—C51.491 (13)C12—C131.367 (16)
C4—H41C12—H120.95
C5—C61.528 (15)C13—C141.370 (15)
C5—H5A0.99C13—Br11.885 (11)
C5—H5B0.99C14—C151.373 (14)
C6—C71.511 (13)C14—H140.95
C6—H6A0.99C15—H150.95
C6—H6B0.99O1—H10.84
C7—O21.425 (11)O3—H30.84
O1—C1—C3108.1 (8)O2—C7—C6105.8 (8)
O1—C1—C4108.8 (8)O2—C7—C8107.4 (8)
C3—C1—C4110.2 (9)C6—C7—C8114.8 (8)
O1—C1—C2108.0 (9)O2—C7—H7109.6
C3—C1—C2111.1 (10)C6—C7—H7109.6
C4—C1—C2110.5 (9)C8—C7—H7109.6
C1—C2—H2A109.5O3—C8—C9109.2 (9)
C1—C2—H2B109.5O3—C8—C7111.4 (9)
H2A—C2—H2B109.5C9—C8—C7110.7 (7)
C1—C2—H2C109.5O3—C8—H8108.5
H2A—C2—H2C109.5C9—C8—H8108.5
H2B—C2—H2C109.5C7—C8—H8108.5
C1—C3—H3A109.5O4—C9—C10120.0 (10)
C1—C3—H3B109.5O4—C9—C8120.2 (10)
H3A—C3—H3B109.5C10—C9—C8119.3 (9)
C1—C3—H3C109.5C11—C10—C15116.8 (11)
H3A—C3—H3C109.5C11—C10—C9120.0 (10)
H3B—C3—H3C109.5C15—C10—C9123.2 (9)
O2—C4—C5105.0 (7)C12—C11—C10123.0 (11)
O2—C4—C1106.6 (8)C12—C11—H11118.5
C5—C4—C1116.6 (8)C10—C11—H11118.5
O2—C4—H4109.5C11—C12—C13118.5 (11)
C5—C4—H4109.5C11—C12—H12120.7
C1—C4—H4109.5C13—C12—H12120.7
C4—C5—C6102.8 (8)C12—C13—C14120.9 (11)
C4—C5—H5A111.2C12—C13—Br1119.4 (9)
C6—C5—H5A111.2C14—C13—Br1119.6 (10)
C4—C5—H5B111.2C13—C14—C15119.8 (11)
C6—C5—H5B111.2C13—C14—H14120.1
H5A—C5—H5B109.1C15—C14—H14120.1
C7—C6—C5104.4 (8)C14—C15—C10120.8 (10)
C7—C6—H6A110.9C14—C15—H15119.6
C5—C6—H6A110.9C10—C15—H15119.6
C7—C6—H6B110.9C1—O1—H1109.5
C5—C6—H6B110.9C7—O2—C4111.0 (7)
H6A—C6—H6B108.9C8—O3—H3109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.902.722 (9)167
C8—H8···O3i1.002.603.475 (8)146
Symmetry code: (i) x+1, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC15H19BrO4
Mr343.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)7.7184 (15), 7.8674 (16), 25.374 (5)
V3)1540.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.3 × 0.2 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1997)
Tmin, Tmax0.501, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
2895, 1851, 1051
Rint0.057
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.193, 1.04
No. of reflections1851
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.40
Absolute structureFlack (1983)
Absolute structure parameter0.00 (3)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), PLATON (Spek, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.902.722 (9)167.2
C8—H8···O3i1.002.603.475 (8)146.4
Symmetry code: (i) x+1, y+1/2, z+5/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds