Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [MnIII(salen)(OCOC3H2N2COOH)(H2O)]·H2O, (H2salen = N,N'-disalicyl­idene­ethyl­ene­di­amine, C16H14N2O2), two N and two O atoms from salen chelate to the MnIII ion, forming a distorted octahedral coordination sphere together with two other axial O atoms from a carboxyl group and a water mol­ecule. Extended intermolecular hydrogen bonds are observed to link the complex mol­ecules, forming a one-dimensional chain structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801014817/cv6053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801014817/cv6053Isup2.hkl
Contains datablock I

CCDC reference: 175329

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.037
  • wR factor = 0.130
  • Data-to-parameter ratio = 11.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The imidazole N atom of histidine have been described as a functional group (Wieghardt, 1989) in the oxygen-evolving complex (EOC) of photosystem II (PS II). 4,5-Imidazoledicarboxylate was suggested as a bridging ligand (Rypniewski et al., 1995; Tainer et al., 1982) and a dinuclear MnIV cluster with 4,5-imidazoledicarboxylate-bridged dimanganese(IV) has been reported (Caudle et al., 1997). It is interesting to study the differing coordination behavior of 4,5-dicarboxyimidazole. We present here a new complex, [Mn(salen)(OCOC3H2N2COOH)(H2O)]·H2O, (I), in which 4,5-imidazoledicarboxylate coordinates to MnIII as a terminal ligand. The structure of (I) is shown in Fig. 1. The Mn atom is chelated by two N [Mn—N1 1.991 (2) Å and Mn—N2 1.989 (2) Å] and two O atoms [Mn—O1 1.8793 (18) Å and Mn—O2 1.8944 (18) Å] from the salen ligand to form an equatorial plane with a maximum deviation of 0.0052 (10) Å from the least-squares plane, while the opposite axial positions are occupied by another two O atoms from the 4,5-dicarboxylatoimidazole [Mn—O4 2.1815 (19) Å] and the ligated aqua [Mn—O3 2.249 (2) Å]. The Mn site is surrounded in a distorted octahedral coordination sphere, with the trans angles ranging from 172.83 (9) to 178.04 (9)° and the other angles ranging from N2—Mn—N1 of 82.50 (9)° to O2—Mn—O1 of 94.69 (8)°. All the bond lengths and angles are comparable to those of the other six-coordinate MnIII Schiff base complexes (Shyu et al., 1999; Watkinson et al., 1999; Oshio et al., 1995), while the Mn—O bonds of (I) are longer than those reported by Caudle et al. (1997), where Mn possesses a 4+ oxidation state, higher than that in (I).

The packing diagram of the title compound is presented in Fig. 2 and shows the intermolecular extensive hydrogen-bonding interactions, which contain Nimidazo······H—Oaqua [2.992 (3) Å] Ocarboxy······H—Oaqua [2.880 (3) Å]- and Nimidazo······H—Oaqua [2.861 (3) Å]. These hydrogen bonds produce a one-dimensional polymeric structure.

Experimental top

To a solution of 0.268 g (1 mmol) of H2salen in 40 ml of CH2Cl2/MeCN (v/v, 1:1), 0.165 g (1 mmol) of 4,5-dicarboxyimidazole was added and the resulting solution stirred. The reaction solution was refluxed for 18 h, accompanied by the addition of 0.245 g (1 mmol) of Mn(CH3COO)2·4H2O. After filtration, the filtrate was allowed to stay for several days at room temperature to deposit dark-red crystals of (I), which were recrystallized from ethanol solution to attain the crystals suitable for X-ray diffraction.

Refinement top

H atoms were located and added to the structure-factor calculations but their positions were not refined except for those of the aqua molecule coordinated to Mn.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SHELXTL XPREP (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL (Siemens, 1994); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. ORTEP diagram (SHELXTL; Bruker, 1998) of (I) showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of the title compound.
Aqua(N,N'-disalicylideneethylenediamino-N,N'O,O')(4,5-imidazoledicarboxylato- O)manganese(III) monohydrate top
Crystal data top
[Mn(C5H3N2O4)(C16H14N2O2)(H2O)]·H2OF(000) = 1056
Mr = 512.36Dx = 1.532 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.009 ÅCell parameters from 4856 reflections
b = 19.8634 (4) Åθ = 1.6–25.0°
c = 16.2811 (3) ŵ = 0.65 mm1
β = 101.422 (1)°T = 293 K
V = 2221.93 (6) Å3Block, dark-red
Z = 40.76 × 0.54 × 0.34 mm
Data collection top
Siemens SMART CCD
diffractometer
3856 independent reflections
Radiation source: fine-focus sealed tube3101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.611, Tmax = 0.802k = 2317
7277 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C5H3N2O4)(C16H14N2O2)(H2O)]·H2OV = 2221.93 (6) Å3
Mr = 512.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.009 ŵ = 0.65 mm1
b = 19.8634 (4) ÅT = 293 K
c = 16.2811 (3) Å0.76 × 0.54 × 0.34 mm
β = 101.422 (1)°
Data collection top
Siemens SMART CCD
diffractometer
3856 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3101 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.802Rint = 0.021
7277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.97Δρmax = 0.33 e Å3
3856 reflectionsΔρmin = 0.45 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.70172 (5)0.140530 (19)0.66060 (2)0.03263 (16)
O10.4914 (3)0.19651 (9)0.61470 (12)0.0434 (5)
O20.5865 (3)0.10854 (10)0.74902 (11)0.0404 (4)
O30.5628 (4)0.05662 (12)0.57685 (16)0.0579 (6)
O40.8303 (3)0.22437 (10)0.73898 (13)0.0508 (5)
O51.1027 (3)0.27560 (10)0.72089 (14)0.0527 (5)
O61.2978 (3)0.37689 (12)0.78152 (17)0.0594 (6)
O71.2960 (3)0.44854 (11)0.88485 (15)0.0608 (6)
O80.4549 (4)0.22497 (13)0.82464 (17)0.0551 (6)
N10.8476 (3)0.16515 (11)0.57174 (13)0.0377 (5)
N20.9318 (3)0.08161 (11)0.69864 (14)0.0409 (5)
N30.7437 (3)0.32662 (12)0.83806 (14)0.0404 (5)
H3A0.64980.29820.82620.048*
N40.9135 (3)0.41443 (12)0.89485 (14)0.0428 (5)
C10.4872 (4)0.24580 (14)0.55992 (17)0.0383 (6)
C20.3291 (4)0.29061 (15)0.54791 (19)0.0504 (7)
H2A0.23340.28600.57980.061*
C30.3145 (6)0.34166 (18)0.4890 (2)0.0649 (9)
H3B0.20880.37080.48200.078*
C40.4528 (6)0.35008 (18)0.4407 (2)0.0682 (10)
H4B0.43950.38430.40100.082*
C50.6102 (5)0.30794 (17)0.45151 (19)0.0583 (8)
H5A0.70410.31400.41900.070*
C60.6325 (4)0.25537 (14)0.51120 (17)0.0416 (6)
C70.8014 (4)0.21302 (15)0.51856 (17)0.0431 (6)
H7A0.88430.22100.48160.052*
C81.0222 (4)0.12261 (16)0.5725 (2)0.0493 (7)
H8A1.12020.14780.55090.059*
H8B0.98760.08320.53760.059*
C91.0998 (4)0.10187 (16)0.6617 (2)0.0508 (8)
H9A1.18970.06450.66340.061*
H9B1.16830.13910.69300.061*
C100.9354 (4)0.02887 (15)0.74407 (18)0.0477 (7)
H10A1.04480.00150.75000.057*
C110.7833 (5)0.00860 (14)0.78675 (18)0.0487 (7)
C120.8058 (6)0.05244 (19)0.8325 (2)0.0719 (11)
H12A0.91340.07950.83100.086*
C130.6746 (8)0.0725 (2)0.8783 (3)0.0893 (14)
H13A0.69030.11330.90700.107*
C140.5163 (7)0.0314 (2)0.8820 (2)0.0784 (12)
H14A0.42710.04480.91410.094*
C150.4878 (5)0.02932 (18)0.83891 (19)0.0588 (8)
H15A0.38170.05630.84290.071*
C160.6195 (4)0.04963 (14)0.78943 (16)0.0429 (7)
C170.9523 (4)0.27048 (13)0.75183 (16)0.0370 (6)
C180.9150 (3)0.32475 (12)0.80983 (15)0.0321 (5)
C190.7488 (4)0.38066 (16)0.88730 (19)0.0475 (7)
H19A0.64750.39310.91340.057*
C201.0192 (4)0.37964 (13)0.84560 (16)0.0345 (6)
C211.2155 (4)0.40446 (14)0.83944 (19)0.0434 (7)
H8C0.506 (7)0.191 (3)0.804 (3)0.100 (16)*
H6A1.227 (7)0.341 (2)0.755 (3)0.105 (16)*
H8D0.370 (6)0.232 (2)0.785 (3)0.076 (14)*
H3C0.528 (6)0.063 (2)0.532 (3)0.066 (12)*
H3D0.563 (6)0.016 (3)0.586 (3)0.094 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0330 (2)0.0276 (2)0.0371 (3)0.00024 (15)0.00621 (17)0.00084 (15)
O10.0383 (10)0.0365 (11)0.0570 (12)0.0048 (8)0.0134 (8)0.0125 (9)
O20.0434 (10)0.0349 (10)0.0435 (10)0.0014 (8)0.0104 (8)0.0033 (8)
O30.0937 (17)0.0298 (12)0.0405 (13)0.0141 (11)0.0104 (11)0.0012 (10)
O40.0557 (12)0.0414 (12)0.0575 (13)0.0156 (9)0.0163 (10)0.0192 (9)
O50.0473 (11)0.0487 (13)0.0680 (14)0.0042 (9)0.0258 (10)0.0179 (10)
O60.0435 (12)0.0504 (13)0.0907 (18)0.0103 (10)0.0282 (12)0.0141 (12)
O70.0540 (12)0.0450 (13)0.0803 (16)0.0171 (10)0.0060 (11)0.0129 (11)
O80.0491 (13)0.0525 (15)0.0671 (16)0.0037 (11)0.0194 (13)0.0076 (12)
N10.0395 (12)0.0325 (12)0.0422 (12)0.0025 (10)0.0104 (10)0.0067 (10)
N20.0393 (12)0.0361 (13)0.0438 (12)0.0057 (10)0.0002 (10)0.0098 (10)
N30.0359 (11)0.0429 (14)0.0442 (12)0.0093 (10)0.0124 (9)0.0106 (10)
N40.0461 (13)0.0395 (13)0.0428 (13)0.0027 (10)0.0087 (10)0.0108 (10)
C10.0440 (14)0.0325 (14)0.0367 (14)0.0036 (11)0.0037 (11)0.0019 (11)
C20.0507 (17)0.0464 (17)0.0516 (17)0.0136 (14)0.0040 (14)0.0032 (14)
C30.078 (2)0.053 (2)0.058 (2)0.0209 (18)0.0004 (18)0.0124 (16)
C40.102 (3)0.052 (2)0.0470 (18)0.014 (2)0.0069 (19)0.0193 (15)
C50.082 (2)0.0528 (19)0.0417 (16)0.0031 (18)0.0165 (15)0.0064 (14)
C60.0539 (16)0.0339 (14)0.0355 (14)0.0018 (12)0.0059 (12)0.0030 (11)
C70.0488 (15)0.0428 (16)0.0406 (15)0.0095 (13)0.0159 (12)0.0074 (12)
C80.0443 (16)0.0486 (17)0.0596 (19)0.0000 (13)0.0215 (14)0.0118 (14)
C90.0360 (15)0.0480 (18)0.067 (2)0.0067 (12)0.0077 (13)0.0141 (15)
C100.0499 (16)0.0390 (16)0.0471 (16)0.0084 (13)0.0073 (13)0.0084 (13)
C110.0645 (18)0.0350 (15)0.0392 (15)0.0003 (14)0.0077 (14)0.0011 (12)
C120.101 (3)0.045 (2)0.058 (2)0.0057 (19)0.012 (2)0.0091 (16)
C130.136 (4)0.056 (2)0.065 (2)0.013 (3)0.007 (3)0.026 (2)
C140.103 (3)0.074 (3)0.055 (2)0.027 (2)0.006 (2)0.0225 (19)
C150.070 (2)0.057 (2)0.0473 (17)0.0172 (17)0.0063 (15)0.0080 (15)
C160.0541 (16)0.0377 (15)0.0318 (13)0.0138 (13)0.0040 (11)0.0014 (11)
C170.0357 (14)0.0339 (14)0.0406 (14)0.0014 (11)0.0057 (11)0.0030 (11)
C180.0309 (12)0.0311 (13)0.0347 (12)0.0021 (10)0.0076 (10)0.0005 (10)
C190.0453 (16)0.0536 (18)0.0483 (17)0.0025 (14)0.0204 (13)0.0134 (14)
C200.0374 (13)0.0289 (13)0.0369 (14)0.0006 (11)0.0065 (11)0.0012 (10)
C210.0372 (14)0.0327 (15)0.0578 (17)0.0033 (12)0.0036 (13)0.0038 (13)
Geometric parameters (Å, º) top
Mn—O11.8793 (18)N4—C201.380 (3)
Mn—O21.8944 (18)C1—C21.405 (4)
Mn—N21.989 (2)C1—C61.422 (4)
Mn—N11.991 (2)C2—C31.385 (4)
Mn—O42.1815 (19)C3—C41.373 (6)
Mn—O32.249 (2)C4—C51.368 (5)
O1—C11.321 (3)C5—C61.414 (4)
O2—C161.340 (3)C6—C71.437 (4)
O4—C171.242 (3)C8—C91.505 (5)
O5—C171.259 (3)C10—C111.440 (5)
O6—C211.318 (4)C11—C161.416 (4)
O7—C211.211 (4)C11—C121.415 (5)
N1—C71.284 (4)C12—C131.354 (6)
N1—C81.485 (4)C13—C141.389 (6)
N2—C101.280 (4)C14—C151.389 (5)
N2—C91.480 (4)C15—C161.399 (4)
N3—C191.336 (4)C17—C181.490 (3)
N3—C181.369 (3)C18—C201.376 (4)
N4—C191.320 (4)C20—C211.484 (4)
O1—Mn—O294.69 (8)C4—C5—C6121.1 (3)
O1—Mn—N2174.55 (9)C5—C6—C1119.2 (3)
O2—Mn—N290.42 (9)C5—C6—C7117.8 (3)
O1—Mn—N192.35 (9)C1—C6—C7122.9 (3)
O2—Mn—N1172.83 (9)N1—C7—C6125.7 (3)
N2—Mn—N182.50 (9)N1—C8—C9107.6 (2)
O1—Mn—O488.95 (9)N2—C9—C8107.6 (2)
O2—Mn—O490.02 (8)N2—C10—C11125.2 (3)
N2—Mn—O492.95 (9)C16—C11—C12118.9 (3)
N1—Mn—O491.45 (8)C16—C11—C10122.4 (3)
O1—Mn—O389.20 (10)C12—C11—C10118.5 (3)
O2—Mn—O390.78 (9)C13—C12—C11121.7 (4)
N2—Mn—O388.84 (10)C12—C13—C14119.1 (4)
N1—Mn—O387.97 (9)C13—C14—C15121.7 (4)
O4—Mn—O3178.04 (9)C14—C15—C16119.7 (4)
C1—O1—Mn128.15 (17)O2—C16—C15117.7 (3)
C16—O2—Mn127.45 (18)O2—C16—C11123.3 (2)
C17—O4—Mn148.47 (18)C15—C16—C11118.9 (3)
C7—N1—C8121.6 (2)O4—C17—O5126.5 (2)
C7—N1—Mn125.1 (2)O4—C17—C18116.0 (2)
C8—N1—Mn113.30 (18)O5—C17—C18117.5 (2)
C10—N2—C9122.1 (2)N3—C18—C20105.3 (2)
C10—N2—Mn125.7 (2)N3—C18—C17120.5 (2)
C9—N2—Mn112.02 (18)C20—C18—C17134.2 (2)
C19—N3—C18107.6 (2)N4—C19—N3112.6 (2)
C19—N4—C20104.6 (2)C18—C20—N4110.0 (2)
O1—C1—C2118.4 (2)C18—C20—C21131.0 (2)
O1—C1—C6123.6 (2)N4—C20—C21119.0 (2)
C2—C1—C6118.0 (3)O7—C21—O6121.3 (3)
C3—C2—C1120.5 (3)O7—C21—C20121.7 (3)
C4—C3—C2121.4 (3)O6—C21—C20117.0 (2)
C5—C4—C3119.6 (3)

Experimental details

Crystal data
Chemical formula[Mn(C5H3N2O4)(C16H14N2O2)(H2O)]·H2O
Mr512.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.009, 19.8634 (4), 16.2811 (3)
β (°) 101.422 (1)
V3)2221.93 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.76 × 0.54 × 0.34
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.611, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
7277, 3856, 3101
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.130, 0.97
No. of reflections3856
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), SHELXTL XPREP (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Mn—O11.8793 (18)Mn—N11.991 (2)
Mn—O21.8944 (18)Mn—O42.1815 (19)
Mn—N21.989 (2)Mn—O32.249 (2)
O1—Mn—O294.69 (8)N2—Mn—O492.95 (9)
O1—Mn—N2174.55 (9)N1—Mn—O491.45 (8)
O2—Mn—N290.42 (9)O1—Mn—O389.20 (10)
O1—Mn—N192.35 (9)O2—Mn—O390.78 (9)
O2—Mn—N1172.83 (9)N2—Mn—O388.84 (10)
N2—Mn—N182.50 (9)N1—Mn—O387.97 (9)
O1—Mn—O488.95 (9)O4—Mn—O3178.04 (9)
O2—Mn—O490.02 (8)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds