Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the adduct, C21H21NO2, of tetra­methyl­purpurogallin with nitro­so­benzene is reported. The compound exhibits a [3.2.2] bicyclic system corresponding to two seven-membered rings and one six-membered ring in distorted chair, boat and twist-boat conformations, respectively. One intramolecular and two intermolecular hydrogen bonds direct the packing and stabilize the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801006286/cv6018sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801006286/cv6018Isup2.hkl
Contains datablock I

CCDC reference: 165664

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.145
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

Comment top

Continuing our studies on Diels–Alder reactions using NO compounds as dienophiles as the key reaction directed towards the total synthesis of naturally occurring alkaloids (Russi et al., 2000), we report in this work the structure of the adduct, (I), between tetramethylpurpurogallin, a synthetic benzotropolone, and nitrosobenzene. The regiochemistry of the cycloaddition reaction is strongly dependent on stereo-electronic factors and can be analyzed by spectroscopic methods and X-ray diffraction. However, crystal structure determination is the only study that provides conclusive results about the conformation of the molecule. The NO bridge has the same orientation towards the carbonyl group as in the case of the eucarvone adduct. The O atom of the dienophile adds to C9, α to the carbonyl, and the N atom adds to the benzyllic C1 atom exclusively, yielding only the exo adduct.

The adduct shows the characteristic [3.2.2] bicyclic system present in other similar compounds (Tinant & Declercq, 1991a,b; Russi et al., 2000). Selected bond distances, endocyclic angles and torsion angles are given in Table 1. The six-membered ring exhibits a distorted twist–boat conformation. The puckering parameters (Cremer & Pople, 1975) for this ring are q2 = 0.617 Å, q3 = 0.125 Å, ϕ2 = 100.41°, θ = 78.6 ° and QT = 0.630 Å. The seven-membered ring with the C12C13 double bond has a distorted chair conformation (q2 = 0.932 Å, q3 = 0.354 Å, ϕ2 = 322.65°, ϕ3 = 58.71° and QT = 0.997 Å), and the one containing the N—O is a distorted boat (q2 = 1.003 Å, q3 = 0.313 Å, ϕ2 = 322.77°, ϕ3 = 290.06° and QT = 1.051 Å).

As in the eucarvone adduct (Russi et al., 2000), there is not conjugation between the phenyl group and the NO. The N atom is pyramidal and is located 0.444 (2) Å from the C1/O10/C1' plane. The N—O bond length is 1.434 (2) Å and the distance between O10 and the phenyl-group plane is 0.506 (1) Å (longer than in the eucarvone adduct).

The ring bonded to the [3.2.2] bicyclic system is planar and the maximum deviation from this plane is 0.012 (1) Å for C4. Steric factors place two of the C atoms belonging to the methoxy groups (C41 and C61) above the ring plane, while the other one (C51) is placed below. The dihedral angles are -161.8 (2)° for C5—C4—O41—C41, -91.7 (2)° for C7—C6—O61—C61 and 85.5 (3)° for C6—C5—O51—C51.

The combination of electronic and steric factors direct the cycloaddition to give a compound whose structure explains the spectral data (1H and 13C NMR) obtained, as the deshielding of H1 and H12 by an anisotropic effect due to the orientation of the phenyl group.

Experimental top

Tetra-O-methyl purpurogallin (Baltrop & Nichols, 1948) (1.11 g, 4.02 mmol) and nitrosobenzene (0.52 g, 4.86 mmol) were dissolved in hexane (50 ml). The solution was left standing at room temperature, in the absence of light, for 40 h. The white crystals obtained were filtered and recrystallized from methanol to yield the tetra-O-methylpurpurogallin–nitrosobenzene adduct (1.39 g, 90%; m.p. 387–388 K). The filtrate was concentrated under vacuum and the crystals obtained were recrystallized from methanol (160 mg, 10%).

Refinement top

H atoms were located at geometrically suitable positions and refined with fixed isotropic displacement parameters Uiso = 1.2Ueq of the parent atom.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Pritzkow, 1995); software used to prepare material for publication: PLATON (Spek, 1990) and CSD (Allen & Kennard, 1993).

Figures top
[Figure 1] Fig. 1. ZORTEP drawing (Zsolnai & Pritzkow, 1995) of the molecular structure of (I) showing 30% probability displacement ellipsoids.
4,5,6,9-tetramethoxy-11-phenyl-10-oxa-11-aza-tricyclo[7.2.2.0 2,7] trideca-2(7),3,5,12-tetraen-8-one top
Crystal data top
C21H21NO6Dx = 1.355 Mg m3
Mr = 383.39Melting point: 387-388 K K
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 13.495 (2) ÅCell parameters from 25 reflections
b = 10.2178 (18) Åθ = 22.8–34.0°
c = 15.154 (3) ŵ = 0.10 mm1
β = 115.956 (14)°T = 293 K
V = 1878.8 (6) Å3Prismatic, colourless
Z = 40.15 × 0.12 × 0.10 mm
F(000) = 808
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.047
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 117
θ/2θ scansk = 113
5381 measured reflectionsl = 1918
4300 independent reflections3 standard reflections every 150 reflections
2466 reflections with I > 2σ(I) intensity decay: 8.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.3861P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4300 reflectionsΔρmax = 0.22 e Å3
259 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (15)
Crystal data top
C21H21NO6V = 1878.8 (6) Å3
Mr = 383.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.495 (2) ŵ = 0.10 mm1
b = 10.2178 (18) ÅT = 293 K
c = 15.154 (3) Å0.15 × 0.12 × 0.10 mm
β = 115.956 (14)°
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.047
5381 measured reflections3 standard reflections every 150 reflections
4300 independent reflections intensity decay: 8.9%
2466 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
4300 reflectionsΔρmin = 0.21 e Å3
259 parameters
Special details top

Experimental. IR (Shimadzu FT—IR DR-8031, KBr):ν (cm-1)=3003.5, 2982.3, 2943.7, 1693.7, 1589.5, 1491.2, 1456.4, 1402.4, 1356.1, 1325.3, 1282.8, 1257.7, 1215.3, 1197.9, 1134.3, 1107.3, 1088.0, 1049.4, 1032.0, 987.7, 954.9, 918.2, 898.9, 877.7, 841.1, 806.3, 763.9, 694.5, 655.9.

MS (Shimadzu GC—MS QP 1100 EX, ID, IE; 70 eV, 298 K) m/z= 276(83%); 261(17%); 248(32%); 233(24%); 218(65%); 205(20%); 190(15%); 173(11%); 161(14%); 147(9%); 131(7%); 115(10%); 107(PhNO+, 62%); 77 (Ph+, 100%), 51(52%). Found: C: 65.8%; H: 5.8%; N: 3.7%. Requires: C: 65.8%, H: 5.5%; N: 3.7%. νmax (CH2Cl2) 1696, 1586 cm-1. νmax (nujol) 1700, 1585 cm-1. λmax (methanol) 245, 296 µm (ε=26500 and 10500 respectively).

1H NMR (CDCl3, 400 MHz, Bruker Avance DPX400: δ(p.p.m.)= 7.21 (dd; J1= 7.8 Hz, J2= 7.3 Hz, H'3, H'5); 7.09 (dd; J1= 8.6 Hz, J2= 1.0 Hz, H'2, H'6); 6.93 (d; J= 7.3 Hz, H'4); 6.62 (s; H3), 6.55 (dd; J1=9.2 Hz. J2= 6.7 Hz, H12), 6.12 (d; J= 9.2 Hz, H13), 5.18 (d; J= 6.7 Hz, H1), 3.87 (s; 9, OCH3), 3.84 (s; 6, OCH3), 3.79 (s; 5, OCH3), 3.63 (s; 4, OCH3).

13C (CDCl3), 400 MHz, Bruker Avance DPX400: δ(p.p.m.)= 190.2, (C8); 157.9, (C4); 156.7, (C6); 150.9, (C1'); 144.2, (C5); 136.7, (C12); 135.8, (C2); 129.3, (C3', C5'); 127.7, (C13); 123.4, (C4'); 120.5, (C7); 118.3, (C2', C6'); 109.4, (C3); 102.7, (C9); 69.5, (C9); 62.2, (C6, OCH3); 61.4, (C5, OCH3); 56.6, (C4, OCH3); 53.3, (C9, OCH3).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.00563 (15)0.77843 (19)0.14866 (14)0.0385 (4)
C60.08759 (15)0.7929 (2)0.16777 (15)0.0432 (5)
C50.07709 (16)0.8316 (2)0.25884 (16)0.0478 (5)
C40.02604 (17)0.8594 (2)0.33397 (16)0.0484 (5)
C30.11862 (16)0.8433 (2)0.31717 (14)0.0424 (5)
H30.18800.85980.36770.051*
C20.10964 (14)0.80323 (18)0.22696 (14)0.0365 (4)
C10.21776 (14)0.78348 (18)0.21972 (13)0.0351 (4)
H10.27860.78960.28580.042*
C120.22504 (15)0.65380 (18)0.17618 (15)0.0388 (4)
H120.26810.58580.21480.047*
C130.16764 (15)0.64135 (19)0.08099 (15)0.0417 (5)
H130.17280.56670.04820.050*
C90.09356 (15)0.75240 (19)0.02756 (13)0.0386 (4)
O100.14043 (10)0.88179 (12)0.06203 (9)0.0380 (3)
N110.22991 (11)0.89065 (15)0.15848 (10)0.0348 (4)
C1'0.33517 (14)0.89093 (18)0.15450 (13)0.0362 (4)
C2'0.42359 (15)0.9407 (2)0.23617 (15)0.0459 (5)
H2'0.41350.96860.29010.046 (6)*
C3'0.52644 (17)0.9491 (2)0.23794 (18)0.0572 (6)
H3'0.58550.98180.29320.067 (7)*
C4'0.54176 (18)0.9092 (3)0.15815 (19)0.0653 (7)
H4'0.61100.91550.15920.066 (7)*
C5'0.4545 (2)0.8600 (3)0.07699 (19)0.0658 (7)
H5'0.46520.83260.02320.080 (8)*
C6'0.35047 (17)0.8505 (2)0.07421 (15)0.0507 (5)
H6'0.29170.81720.01890.048 (6)*
O810.09261 (12)0.69348 (19)0.01466 (12)0.0658 (5)
C610.24770 (18)0.8769 (2)0.04003 (18)0.0619 (6)
H61A0.31990.85140.00750.074*
H61B0.20660.91030.00680.074*
H61C0.25400.94360.08190.074*
C510.2104 (2)0.7344 (3)0.2982 (2)0.0899 (11)
H51A0.27460.75470.30750.108*
H51B0.15460.69820.35760.108*
H51C0.22930.67190.24600.108*
C410.12584 (19)0.9639 (3)0.48911 (18)0.0671 (7)
H41A0.11710.98600.54690.081*
H41B0.13691.04230.45970.081*
H41C0.18850.90750.50670.081*
C910.0061 (2)0.8511 (2)0.13090 (16)0.0593 (6)
H91A0.00720.83620.19770.071*
H91B0.04660.93110.10780.071*
H91C0.06300.85760.12730.071*
C80.00847 (15)0.7393 (2)0.04852 (15)0.0427 (5)
O610.19195 (10)0.76589 (15)0.09787 (11)0.0539 (4)
O510.16999 (12)0.85037 (17)0.27366 (13)0.0636 (5)
O410.02894 (13)0.89809 (19)0.42060 (12)0.0673 (5)
O910.06864 (12)0.74409 (14)0.07090 (9)0.0490 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0309 (9)0.0398 (10)0.0434 (10)0.0015 (8)0.0149 (8)0.0043 (8)
C60.0268 (9)0.0438 (11)0.0550 (12)0.0002 (8)0.0141 (9)0.0101 (9)
C50.0331 (10)0.0573 (13)0.0597 (13)0.0067 (9)0.0262 (9)0.0080 (10)
C40.0418 (11)0.0592 (14)0.0509 (12)0.0060 (10)0.0263 (10)0.0018 (10)
C30.0324 (10)0.0534 (12)0.0416 (10)0.0005 (9)0.0165 (8)0.0003 (9)
C20.0296 (9)0.0400 (10)0.0415 (10)0.0023 (8)0.0171 (8)0.0036 (8)
C10.0255 (8)0.0453 (10)0.0334 (9)0.0012 (8)0.0119 (7)0.0030 (8)
C120.0320 (9)0.0370 (10)0.0478 (11)0.0037 (8)0.0179 (8)0.0068 (8)
C130.0391 (10)0.0371 (10)0.0491 (11)0.0023 (8)0.0193 (9)0.0020 (9)
C90.0338 (10)0.0407 (11)0.0355 (9)0.0010 (8)0.0100 (8)0.0036 (8)
O100.0315 (7)0.0381 (7)0.0369 (7)0.0007 (5)0.0081 (5)0.0029 (6)
N110.0270 (7)0.0404 (8)0.0338 (8)0.0003 (7)0.0104 (6)0.0006 (7)
C1'0.0318 (9)0.0361 (9)0.0428 (10)0.0033 (8)0.0183 (8)0.0047 (8)
C2'0.0361 (10)0.0517 (12)0.0499 (11)0.0030 (9)0.0188 (9)0.0048 (10)
C3'0.0351 (11)0.0654 (15)0.0672 (15)0.0052 (10)0.0188 (11)0.0010 (12)
C4'0.0364 (12)0.0895 (19)0.0785 (17)0.0035 (12)0.0330 (12)0.0177 (15)
C5'0.0580 (15)0.093 (2)0.0620 (15)0.0077 (13)0.0408 (13)0.0062 (14)
C6'0.0431 (11)0.0697 (15)0.0420 (11)0.0024 (10)0.0210 (10)0.0040 (10)
O810.0414 (8)0.0868 (12)0.0588 (9)0.0174 (8)0.0124 (7)0.0184 (9)
C610.0403 (12)0.0710 (16)0.0639 (15)0.0120 (11)0.0132 (10)0.0121 (13)
C510.0595 (16)0.123 (3)0.110 (2)0.0247 (17)0.0585 (17)0.054 (2)
C410.0571 (14)0.0875 (19)0.0608 (14)0.0084 (14)0.0294 (12)0.0169 (14)
C910.0566 (14)0.0620 (15)0.0394 (11)0.0034 (11)0.0024 (10)0.0065 (10)
C80.0306 (9)0.0432 (11)0.0466 (11)0.0017 (8)0.0098 (8)0.0002 (9)
O610.0269 (7)0.0596 (9)0.0640 (10)0.0024 (6)0.0097 (6)0.0122 (8)
O510.0397 (8)0.0797 (12)0.0832 (11)0.0097 (8)0.0376 (8)0.0072 (9)
O410.0507 (9)0.1044 (14)0.0582 (10)0.0014 (9)0.0345 (8)0.0161 (9)
O910.0521 (8)0.0541 (9)0.0346 (7)0.0032 (7)0.0132 (6)0.0022 (6)
Geometric parameters (Å, º) top
C7—C21.409 (3)C9—O101.460 (2)
C7—C61.417 (3)C9—C81.548 (3)
C7—C81.499 (3)O10—N111.4345 (18)
C6—O611.370 (2)N11—C1'1.448 (2)
C6—C51.382 (3)C1'—C6'1.383 (3)
C5—O511.381 (2)C1'—C2'1.386 (3)
C5—C41.388 (3)C2'—C3'1.379 (3)
C4—O411.355 (3)C3'—C4'1.375 (3)
C4—C31.390 (3)C4'—C5'1.373 (4)
C3—C21.380 (3)C5'—C6'1.390 (3)
C2—C11.524 (2)O81—C81.214 (2)
C1—N111.490 (2)C61—O611.430 (3)
C1—C121.502 (3)C51—O511.420 (3)
C12—C131.311 (3)C41—O411.432 (3)
C13—C91.495 (3)C91—O911.437 (3)
C9—O911.381 (2)
C2—C7—C6117.10 (17)O10—C9—C13114.29 (14)
C2—C7—C8122.61 (17)O91—C9—C8113.48 (15)
C6—C7—C8120.29 (17)O10—C9—C8106.83 (15)
O61—C6—C5116.83 (18)C13—C9—C8105.52 (16)
O61—C6—C7121.69 (19)N11—O10—C9117.48 (12)
C5—C6—C7121.46 (17)O10—N11—C1'111.19 (13)
O51—C5—C6119.92 (18)O10—N11—C1108.37 (13)
O51—C5—C4119.6 (2)C1'—N11—C1113.88 (14)
C6—C5—C4120.36 (18)C6'—C1'—C2'119.55 (17)
O41—C4—C5116.60 (18)C6'—C1'—N11124.26 (17)
O41—C4—C3124.40 (19)C2'—C1'—N11116.13 (16)
C5—C4—C3118.98 (19)C3'—C2'—C1'120.4 (2)
C2—C3—C4121.34 (18)C4'—C3'—C2'120.1 (2)
C3—C2—C7120.71 (17)C5'—C4'—C3'119.8 (2)
C3—C2—C1116.03 (16)C4'—C5'—C6'120.8 (2)
C7—C2—C1123.23 (16)C1'—C6'—C5'119.4 (2)
N11—C1—C12109.18 (14)O81—C8—C7124.18 (19)
N11—C1—C2108.51 (14)O81—C8—C9118.70 (18)
C12—C1—C2113.40 (15)C7—C8—C9117.04 (16)
C13—C12—C1116.62 (17)C6—O61—C61113.65 (16)
C12—C13—C9117.08 (17)C5—O51—C51113.99 (18)
O91—C9—O10107.74 (15)C4—O41—C41117.98 (17)
O91—C9—C13109.11 (16)C9—O91—C91115.76 (16)
C2—C7—C6—O61177.24 (17)C12—C1—N11—O1062.14 (17)
C8—C7—C6—O613.2 (3)C2—C1—N11—O1061.90 (17)
C2—C7—C6—C50.9 (3)C12—C1—N11—C1'62.15 (18)
C8—C7—C6—C5178.60 (19)C2—C1—N11—C1'173.80 (14)
O61—C6—C5—O514.6 (3)O10—N11—C1'—C6'17.4 (2)
C7—C6—C5—O51177.10 (19)C1—N11—C1'—C6'105.3 (2)
O61—C6—C5—C4179.33 (19)O10—N11—C1'—C2'159.78 (16)
C7—C6—C5—C41.1 (3)C1—N11—C1'—C2'77.5 (2)
O51—C5—C4—O413.2 (3)C6'—C1'—C2'—C3'0.5 (3)
C6—C5—C4—O41179.3 (2)N11—C1'—C2'—C3'177.83 (19)
O51—C5—C4—C3178.34 (19)C1'—C2'—C3'—C4'0.6 (3)
C6—C5—C4—C32.3 (3)C2'—C3'—C4'—C5'0.5 (4)
O41—C4—C3—C2179.8 (2)C3'—C4'—C5'—C6'0.3 (4)
C5—C4—C3—C21.5 (3)C2'—C1'—C6'—C5'0.3 (3)
C4—C3—C2—C70.5 (3)N11—C1'—C6'—C5'177.4 (2)
C4—C3—C2—C1177.34 (18)C4'—C5'—C6'—C1'0.2 (4)
C6—C7—C2—C31.7 (3)C2—C7—C8—O81165.3 (2)
C8—C7—C2—C3177.80 (18)C6—C7—C8—O8115.2 (3)
C6—C7—C2—C1175.99 (17)C2—C7—C8—C911.4 (3)
C8—C7—C2—C14.5 (3)C6—C7—C8—C9168.09 (17)
C3—C2—C1—N11108.72 (18)O91—C9—C8—O8117.2 (3)
C7—C2—C1—N1173.5 (2)O10—C9—C8—O81135.80 (19)
C3—C2—C1—C12129.79 (18)C13—C9—C8—O81102.2 (2)
C7—C2—C1—C1248.0 (2)O91—C9—C8—C7165.87 (16)
N11—C1—C12—C1345.9 (2)O10—C9—C8—C747.3 (2)
C2—C1—C12—C1375.2 (2)C13—C9—C8—C774.7 (2)
C1—C12—C13—C95.4 (3)C5—C6—O61—C6190.1 (2)
C12—C13—C9—O91160.46 (17)C7—C6—O61—C6191.7 (2)
C12—C13—C9—O1039.8 (2)C6—C5—O51—C5185.4 (3)
C12—C13—C9—C877.3 (2)C4—C5—O51—C5198.5 (3)
O91—C9—O10—N11141.62 (14)C5—C4—O41—C41161.8 (2)
C13—C9—O10—N1120.2 (2)C3—C4—O41—C4119.9 (3)
C8—C9—O10—N1196.12 (16)O10—C9—O91—C9149.9 (2)
C9—O10—N11—C1'96.91 (17)C13—C9—O91—C91174.48 (16)
C9—O10—N11—C128.98 (18)C8—C9—O91—C9168.2 (2)

Experimental details

Crystal data
Chemical formulaC21H21NO6
Mr383.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.495 (2), 10.2178 (18), 15.154 (3)
β (°) 115.956 (14)
V3)1878.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5381, 4300, 2466
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.145, 1.01
No. of reflections4300
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Pritzkow, 1995), PLATON (Spek, 1990) and CSD (Allen & Kennard, 1993).

Selected geometric parameters (Å, º) top
C7—C21.409 (3)C12—C131.311 (3)
C7—C81.499 (3)C13—C91.495 (3)
C2—C11.524 (2)C9—O101.460 (2)
C1—N111.490 (2)C9—C81.548 (3)
C1—C121.502 (3)O10—N111.4345 (18)
C2—C7—C8122.61 (17)O10—C9—C13114.29 (14)
C7—C2—C1123.23 (16)O10—C9—C8106.83 (15)
N11—C1—C12109.18 (14)C13—C9—C8105.52 (16)
N11—C1—C2108.51 (14)N11—O10—C9117.48 (12)
C12—C1—C2113.40 (15)O10—N11—C1108.37 (13)
C13—C12—C1116.62 (17)C7—C8—C9117.04 (16)
C12—C13—C9117.08 (17)
C8—C7—C2—C14.5 (3)C13—C9—O10—N1120.2 (2)
C7—C2—C1—N1173.5 (2)C8—C9—O10—N1196.12 (16)
C7—C2—C1—C1248.0 (2)C9—O10—N11—C128.98 (18)
N11—C1—C12—C1345.9 (2)C12—C1—N11—O1062.14 (17)
C2—C1—C12—C1375.2 (2)C2—C1—N11—O1061.90 (17)
C1—C12—C13—C95.4 (3)C2—C7—C8—C911.4 (3)
C12—C13—C9—O1039.8 (2)O10—C9—C8—C747.3 (2)
C12—C13—C9—C877.3 (2)C13—C9—C8—C774.7 (2)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds